
Memory integration constructs maps of space, time, and 
concepts

Neal W Morton1,*, Katherine R. Sherrill1,*, and Alison R. Preston1,2,3

1Center for Learning & Memory, The University of Texas at Austin

2Department of Psychology, The University of Texas at Austin

3Department of Neuroscience, The University of Texas at Austin

Abstract

Recent evidence demonstrates that new events are learned in the context of their relationships to 

existing memories. Within the hippocampus and medial prefrontal cortex, related memories are 

represented by integrated codes that connect events experienced at different times and places. 

Integrated codes form the basis of spatial, temporal, and conceptual maps of experience. These 

maps represent information that goes beyond direct experience and support generalization 

behaviors that require knowledge be used in new ways. The degree to which an individual memory 

is integrated into a coherent map is determined by its spatial, temporal, and conceptual proximity 

to existing knowledge. Integration is observed over a wide range of scales, suggesting that 

memories contain information about both broad and fine-grained contexts.

Introduction

Although episodic memory research often focuses on representation of discrete events, 

memories can extend beyond direct experience by connecting information encountered at 

different times or places [1, 2]. For instance, learning your way around a new town involves 

gradually learning about landmarks and their relative positions. You might learn about one 

set of landmarks on one trip through the town and an overlapping set on a different trip. An 

effective way to represent the paths taken on both trips is through a common map that 

represents the relationships between landmarks experienced at different times. A similar 

process can support forming maps of social relationships [3, 4]; for example, meeting a 

woman and her son, then later meeting the woman’s husband, one can infer that the man and 

the boy are father and son.

These types of knowledge structures, known as cognitive maps [5], are thought to rely on 

memory integration. Memory integration is a dynamic process wherein new events interact 
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with existing knowledge [1]. For memory integration to occur, a new event that overlaps 

with prior experience (e.g., meeting the husband) must trigger reactivation of a prior related 

episode (initially meeting the woman and her son); new information may then be integrated 

into the reactivated memory (connecting the boy with his father in memory) [1, 6]. As a 

result of integration, the two events are represented with overlapping neural codes, in which 

elements common to both events act as nodes linking the two memories [7, 8]. Such links 

allow representation of information beyond direct experience and can support flexible 

behaviors [1], such as taking a shortcut between places in a new town.

Memory integration is thought to be supported by bidirectional interactions between 

hippocampus and medial prefrontal cortex (mPFC) [9, 10]. Reactivation of related memories 

during new events is mediated by hippocampal pattern completion processes that allow for 

reinstatement of entire memory traces from overlapping input [11, 12]. Medial PFC, which 

is thought to represent mental models that guide behavior [13, 14], may further bias 

hippocampal pattern completion to the most relevant prior knowledge [9]. Hippocampus 

then signals deviations between current events and reactivated memories, triggering memory 

updating [1, 15, 16]. Finally, new content is integrated with existing mental models via 

hippocampus—mPFC interactions [17–19]. During integration, mPFC biases hippocampal 

encoding processes to emphasize representation of features common to multiple events [20, 

21], resulting in cognitive maps that use overlapping neural codes to represent the 

relationships among discrete learning episodes [22, 23]. Here, we review recent evidence 

that hippocampus—mPFC memory integration mechanisms support the formation of 

cognitive maps across different domains of experience, including space, time, and concepts. 

Hippocampus and mPFC may organize information about spatial, temporal, and conceptual 

relationships in similar ways, allowing for the formation of flexible knowledge about many 

different aspects of the world. Furthermore, memory integration occurs simultaneously at 

different spatial, temporal, and conceptual scales, which may facilitate learning about both 

detailed features and broader contextual attributes that are shared across events.

Integration of spatial experience

The seminal work of Tolman first showed that memories of recently traveled routes are 

combined with memories of previously traveled routes to create an integrated map of the 

environment [5]. More recent evidence indicates that representations of past and present 

spatial trajectories are simultaneously active within hippocampus during learning [24–26], 

providing an opportunity for links to be formed among different spatial experiences in an 

environment. Reinstatement of behaviorally relevant memories within hippocampus during 

spatial learning may be particularly dependent on top-down influence from mPFC [10]. 

When rodents make decisions that depend on spatial context, mPFC drives hippocampal 

responses [9], suggesting that mPFC coordinates reinstatement of hippocampal memory 

representations that are most relevant to ongoing experience [27]. Increased hippocampal—

mPFC coupling is also observed during spatial memory retrieval in humans [28, 29], and 

such coupling has been further shown to support individuals’ ability to connect past and 

present experience [17, 18, 30].
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Memory integration mechanisms may cause events (e.g., encountering landmarks) 

experienced at different times within the same spatial environment to be represented by 

overlapping neural responses within hippocampus. Evidence from rodents has revealed 

highly structured hippocampal population codes, wherein responses are similar for objects 

that share spatial context or position information [33] as well as for locations that share 

relationships [34]. To represent cognitive maps, the similarity between hippocampal 

representations of events experienced within an environment should scale with their distance 

from one another in the environment. Events experienced close together in space should be 

represented by highly overlapping hippocampal populations, while events experienced in 

more distant locations should evoke less similar hippocampal responses (Fig. 1A). Human 

electrophysiological data shows that when participants recall objects learned within a virtual 

environment, hippocampal place cell activity is highest for locations closest to an object’s 

learned location, dropping off with increasing distance from the object (Fig. 1B) [31]. 

Moreover, human neuroimaging data indicate that hippocampal patterns for individual 

objects experienced in different locations within a virtual town scale with individual’s 

subjective memory for their distance in space [35]; objects judged as more spatially 

proximal evoke more similar hippocampal activation patterns after learning.

Collectively, these findings indicate that reactivation of prior spatial experience during new 

learning results in the formation of integrated spatial maps within the hippocampus. 

Importantly, such maps include information not only about directly traveled paths, but also 

routes through the environment that can be inferred from relationships among those traveled 

[36–38]. When directly experienced routes to a goal are blocked, the integrated hippocampal 

map can thus support flexible navigation via novel, alternate paths [39–41]. The mPFC may 

resolve interference by biasing the hippocampus to retrieve the behaviorally relevant route 

[42, 43]. Reactivation of integrated spatial maps also facilitates new learning. Work in 

rodents has shown that integrated spatial maps provide a framework for rapid learning of 

new object-location associations in the same environment [44, 45]. Reactivation of 

hippocampal spatial maps also facilitates learning in new environments that share properties 

with existing maps [24], thus allowing for generalization of spatial experience to novel 

contexts.

The physical similarity between environments or events within an environment may be an 

important boundary condition that determines which events are combined into a coherent 

cognitive map of space. A new spatial experience that shares many features with an existing 

memory may be more likely to trigger reactivation of the related memory than an event that 

shares fewer overlapping features. As a result, increased physical similarity among spatial 

experiences may be associated with an increasing likelihood of integration. Consistent with 

this idea, population responses within the CA1 subfield of the rodent hippocampus scale 

linearly with the number of spatial features shared across environments [46]; the greater the 

number of shared features, the greater the overlap in the CA1 population response. However, 

the integration boundaries may be different across hippocampal subfields [47]. In contrast to 

CA1, CA3 population responses overlap only when environments are highly similar, 

suggesting that the CA3 subfield has a higher threshold for integration [46]. One possibility 

for future study is to explore whether different hippocampal subregions support different 
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levels of memory integration that represent the similarities among events in terms of whether 

they share fine details or global characteristics.

Representation of temporal context through memory integration

Similar to maps of space, memory integration in hippocampal and mPFC networks may 

code the temporal context of events by representing temporally proximal events with 

overlapping neural ensembles (Fig. 1C). Lesions to the hippocampus in rodents and humans 

impair the ability to extract temporal regularities from the environment and remember the 

sequential order of events [48, 49], suggesting a critical role for the hippocampus in 

temporal integration. Recent evidence suggests that temporal proximity affects memory 

integration at a range of timescales, which involve distinct mechanisms [50]. Memory 

integration at time scales on the order of seconds may be organized by “time cells” in the 

hippocampus and mPFC, which respond at specific temporal intervals during task 

performance [51, 52]. Computational modeling suggests that, like place cells, time cells may 

provide a map for organizing sequences of memories [53]. Integration of new memories into 

an existing temporal map may facilitate learning about the relative timing of overlapping 

sequences of events [54]. For example, if a musician learns to play a song, then later learns a 

new introduction to the song, memories of these sub-sequences may be integrated to form a 

complete song timeline.

Human neuroimaging data has shown that hippocampal [55–57] and mPFC [58] activation 

patterns reflect the temporal organization of events that occur seconds apart. In these studies, 

hippocampal and mPFC activation patterns are more similar for items that are seen in 

immediate succession to one another [55, 56, 59]. Similar to maps of space, the degree of 

similarity in these regions scales with the temporal distance among items [35, 56, 58] and, in 

the case of hippocampus, is related to individuals’ subjective estimates of temporal 

proximity [35, 56]. In rodents, the temporal context of individual items in a sequence can be 

decoded from CA1 ensembles, and sequence coding at the single cell and ensemble level is 

correlated with sequence memory [60]. Neuroimaging has also revealed coding of sequential 

position information within human hippocampus that relates to memory performance [61].

Notably, integration of memories at longer timescales, on the order of minutes [62] as well 

as days and weeks (Fig. 2C) [63], is also observed within hippocampus. Memory integration 

across longer temporal intervals may result from a different mechanism than that supported 

by time cells. Temporal proximity at longer time scales may promote integration through a 

memory tagging and allocation mechanism, whereby neurons and synapses recruited to 

represent a recent episode are more readily reactivated during new events that occur within 

hours of the original episode [32, 50, 64]. Recruitment of the same neural ensembles through 

tagging and allocation would thus result in overlapping population codes for events that 

occur within minutes and hours of one another as observed in CA1 of rodents (Fig. 1C) [32] 

and CA1 and mPFC in humans [16, 22]. Similarly, neurogenesis in the dentate gyrus of 

hippocampus may affect memory allocation on longer scales of days and weeks, linking 

memories encoded at similar times while avoiding interference between temporally distant 

events in memory [65]. Through these different mechanisms, hippocampus and mPFC may 

come to represent the temporal context of individual events at different time scales, from 
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fine (e.g., position in a short sequence of events) to broad (e.g., whether an event happened 

one week or four weeks ago).

In addition to providing a map of temporal context, integration may support flexible 

generalization of information across episodes that share temporal context. For instance, a 

study examining hippocampal ensemble responses in rodents found that memories that are 

encoded close together in time (within 5 h) are represented with overlapping populations of 

CA1 neurons, with the amount of overlap predicting the degree of fear responding that 

generalized across the two memories (Fig. 1C) [32]. However, there may be important 

boundary conditions on the degree of integration and generalization observed across longer 

time intervals. Although reactivation of related memories has been found to promote 

integration [17], a recent study found that memories encoded on different days were less 

likely to be integrated compared to memories encoded on the same day, even when 

controlling for the amount of reactivation [66]. Future work is needed to determine precisely 

how different mechanisms for temporal coding facilitate generalization of information 

across episodes.

Integrated maps of conceptual space

Emerging evidence suggests that the same mechanisms that support integration of spatial 

and temporal information may also play a key role in our ability to acquire concepts [67]. 

Concepts organize our experiences by highlighting shared features and allow for meaningful 

generalizations in novel situations. Acquiring new concepts requires extracting information 

across multiple individual learning experiences to learn both what features are common to 

concept exemplars and what features differentiate between concepts. As a result of learning, 

concept representations emphasize diagnostic features for a given concept, rather than the 

overall perceptual similarity of individual stimuli (Fig. 1D). When presented with a stimulus 

to be assigned to a concept, hippocampus—mPFC interactions may trigger reactivation of 

similar, concept-relevant learning experiences. Medial PFC also influences hippocampal 

encoding by compressing memory representations to emphasize features that capture 

commonalities across events [21], consistent with its hypothesized role in forming mental 

models of latent structures that are not directly observable [13, 14, 68]. The retrieved 

memories may then be used to predict a concept label for the current experience. The 

outcome of that prediction may then lead to integration of the new exemplar into an existing 

concept or formation of a new concept representation. In this way, learning concepts requires 

similar computations and representations as learning about the spatial and temporal 

regularities of the environment [67].

Electrophysiological data from human patients indicates that hippocampal neurons show 

high selectivity to the conceptual rather than the perceptual features of events [69]. 

Moreover, hippocampal responses scale with the conceptual novelty of experiences [70, 71], 

and such signals may be critical to concept formation and updating [72, 73]. Further 

evidence for the role of the hippocampus and mPFC in formation of conceptual maps comes 

from a set of recent studies that use representational approaches to neuroimaging data 

analysis [20, 74, 75]. These studies have shown that the similarity of hippocampal [20, 75] 

and mPFC [74] activation patterns between individual concept exemplars scales with their 
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distance in a learned conceptual space; exemplars of the same concept evoke more similar 

activation patterns in hippocampus and mPFC and are distinct from exemplars of different 

concepts (Fig. 1D). In one case, the conceptual organization observed in medial temporal 

lobe and mPFC regions followed a grid-like organization that is commonly observed during 

spatial navigation and imagery [74], providing a direct link between spatial and conceptual 

representation within these regions. Additional evidence suggests that hippocampal—mPFC 

interactions are critical when conceptual knowledge is applied to new situations with the 

same underlying conceptual structure [9, 76]. Collectively, these results indicate that 

individual memories are integrated through hippocampal—mPFC interactions to create 

conceptual knowledge that supports flexible decisions when confronted with new stimuli or 

environments.

The scale of integration differs between hippocampal subregions

The evidence reviewed thus far indicates that integration of spatial, temporal, and conceptual 

relationships may occur at a variety of scales from fine-grained to broad. Different scales of 

integration may be linked to the function of different hippocampal subregions. For instance, 

the spatial remapping properties of CA1 and CA3 noted above [46] suggest that CA1 may 

integrate information across a broader set of contexts than CA3, which forms overlapping 

representations for only highly similar environments. Computational modeling further 

indicates that CA1, but not CA3, representations support extraction of temporal and 

associative regularities from the environment and enable inference about the relationships 

among episodes [47]. Human and rodent data have also exclusively linked memory 

integration processes to CA1 [16, 32]. The connectivity of CA1 may explain its privileged 

role in memory integration. It receives input about incoming sensory information from 

entorhinal cortex simultaneously with memory-driven expectations derived from CA3 

pattern completion processes [77]; networks of CA1 cells that represent new content and 

existing memories may therefore become linked due to their coactivation within CA1.

Differences in representational scaling have also been observed along the long axis (ventral

—dorsal in rodents, anterior—posterior in humans) of hippocampus (Fig. 2A) [22, 23]. 

Place cells in anterior hippocampus have larger receptive fields than in posterior 

hippocampus (Fig. 2B) [78–80]. Place field gradients along the hippocampus axis may thus 

support integration of experiences at different spatial, temporal, and conceptual scales. For 

instance, large place fields in anterior hippocampus are well suited for integrating events that 

occur at different positions within the same environment, while smaller place fields in 

posterior hippocampus allow distinct coding of events experienced in the same environment 

[81]. It is possible that temporal representations may vary in scale along the hippocampal 

long axis in a similar manner to spatial representations, with larger timescales represented in 

anterior hippocampus and smaller timescales in posterior hippocampus [82]. Consistent with 

this hypothesis, anterior hippocampus is more likely to demonstrate integrated codes for 

overlapping events that are separated by long time intervals than posterior hippocampus 

(Fig. 2C,D) [22, 23, 63]. The different representational capacities of anterior and posterior 

hippocampus may thus simultaneously support behaviors that rely on different levels of 

memory detail [83], with posterior hippocampus supporting fine judgments relating 

individual memory elements and anterior hippocampus supporting abstractions across 
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broader experiential scales. There is also evidence that anterior and posterior mPFC 

subregions exhibit different levels of integration that mirror functional differences along the 

hippocampal long axis [22], but more work is needed to determine whether human mPFC 

subregions are functionally distinct.

Conclusions

Much of our knowledge is derived by forming links across the individual events we 

experience. The findings reviewed here indicate that structured knowledge about the spatial, 

temporal, and conceptual relationships among events arises from memory integration 

processes supported by the hippocampus and mPFC. By forming overlapping memory codes 

that integrate information acquired at different times and places, our memories extend 

beyond what we directly experience and can be deployed flexibly to support behavior in new 

situations.

However, several open questions remain for future research on memory integration. For 

instance, what are the boundary conditions that determine when representations of 

overlapping memories are integrated rather than separated, and how might we manipulate 

the formation of integrated codes of experience? While initial findings suggest that the 

strength of existing knowledge [18], the degree of memory reactivation during encoding 

[17], the magnitude of memory-based prediction errors [15], and task demands [84] all 

impact the likelihood of integration, more work is needed to understand the full complement 

of conditions that influence how we represent related episodes in memory. As noted above, 

different memory circuits (e.g., anterior and posterior hippocampus) may integrate 

information at different scales. It remains to be tested whether these circuits play 

functionally different roles in memory, with fine-scaled representation supporting decisions 

about relationships among detailed event elements and integration at broader scales 

supporting more abstract knowledge about the conceptual relationships among events. The 

fact that hippocampus and mPFC continue to mature through the third decade of life [85, 86] 

further suggests that memory integration may have a prolonged developmental timecourse 

that extends through adolescence, with corresponding impacts on spatial, temporal, and 

conceptual learning abilities. In reviewing the current state of knowledge on memory 

integration, we hope to inspire future work on the rich set of questions that remain.
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Highlights

• Individual memories can become integrated through overlapping neural codes

• Spatial, temporal, and conceptual proximity promote memory integration

• Integration supports the formation of maps of space, time, and concepts

• Integrated codes in hippocampus and prefrontal cortex support flexible 

memory use

• Different scales of integration may be supported by distinct hippocampal 

subregions
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Figure 1. 
(A) The overlap in representations of different memories reflects the distance between their 

spatial, temporal, and conceptual attributes, with memories nearer to one another resulting in 

more overlapping representations. (B) Ensemble place-cell activity in human hippocampus 

reflects the spatial distance between memories. Participants learned the locations of objects 

in a virtual environment, then verbally recalled the objects. Ensemble activity during object 

recall was most similar to place-cell activity for locations near to where the object was 

learned. Adapted from Ref. [31]. (C) In mice, memories of different cage contexts are 

represented by overlapping neural ensembles in hippocampal subfield CA1 when exposure 

to the cages is separated by a shorter delay of 5 h, but do not show significant overlap when 

separated by a longer interval of 7 d. Adapted from Ref. [32]. (D) Model-based fMRI data in 

humans demonstrates that item representations within hippocampus reflect conceptual 

similarity. The representation of three distinct features of categorized items was estimated 

based on patterns of activity. After learning, hippocampal representations emphasize features 

that are diagnostic for the category, causing items from the same conceptual category (e.g., 

the beetles with thin antennae represented by black dots) to become representationally more 

similar, and dissimilar to items from a different category (the beetles with thick antennae 

represented by the gray dots). Adapted from Ref. [20].
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Figure 2. 
(A) Illustration of the hippocampal long axis in rodent and human. Ventral and dorsal 

hippocampus in rodent correspond to anterior and posterior hippocampus, respectively, in 

human. ERC: entorhinal cortex. Adapted from Ref. [78]. (B) Hippocampal place fields differ 

in size along the hippocampal long axis; place fields in anterior hippocampus are larger than 

those observed in posterior hippocampus. Smaller place fields in posterior hippocampus may 

support coding of detailed event information (such as precise spatial position), whereas 

larger place fields in anterior hippocampus may integrate information across spatial 

positions to support coding of global context information. Adpated from Ref. [79]. (C) 

Anterior hippocampus represents memories for real-world events more similarly when they 

occur closer together in time. The temporal organization of memories within anterior 

hippocampus is even apparent at long time scales, such as one week and one month. 

Adapted from Ref. [63]. (D) Memory elements that share a common association with an 

overlapping item are represented differently within anterior and posterior hippocampus. 

Anterior hippocampal activation patterns become more similar for elements that share 

relationships, reflecting integration of overlapping events. In contrast, posterior hippocampal 

activation patterns for those same elements become more dissimilar after learning, reflecting 

the formation of orthogonal representations for overlapping events. Adapted from Ref. [22].
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