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Abstract

The receptive fields of many auditory cortical neurons are multidimensional and are best 

represented by more than one stimulus feature. The number of these dimensions, their 

characteristics, and how they differ with stimulus context have been relatively unexplored. 

Standard methods that are often used to characterize multidimensional stimulus selectivity, such as 

spike-triggered covariance (STC) or maximally informative dimensions (MIDs), are either limited 

to Gaussian stimuli or are only able to recover a small number of stimulus features due to data 

limitations. An information theoretic extension of STC, the maximum noise entropy (MNE) 

model, can be used with non-Gaussian stimulus distributions to find an arbitrary number of 

stimulus dimensions. When we applied the MNE model to auditory cortical neurons, we often 

found more than two stimulus features that influenced neuronal firing. Excitatory and suppressive 

features coded different acoustic contexts: excitatory features encoded higher temporal and 

spectral modulations, while suppressive features had lower modulation frequency preferences. We 

found that the excitatory and suppressive features themselves were sensitive to stimulus context 

when we employed two stimuli that differed only in their short-term correlation structure: while 

the linear features were similar, the secondary features were strongly affected by stimulus 

stimulus. These results show that multidimensional receptive field processing depends on feature 

type and stimulus context.

INTRODUCTION

The spectrotemporal receptive fields (STRFs) of auditory cortical neurons have been 

extensively studied in recent years (Blake and Merzenich, 2002, Elhilali et al., 2004, 
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Gourevitch et al., 2009). The standard approach has been to estimate a single 

spectrotemporal feature in conjunction with a static nonlinearity (Chichilnisky, 2001). The 

feature may be seen as a stimulus that drives the neuron to respond, or it may be interpreted 

as a descriptor of neuronal stimulus processing (Sharpee et al., 2004). The single feature 

STRF description has provided important insights, though in recent years it has become 

apparent that many auditory cortical neurons simultaneously encode information about more 

than one stimulus feature in their spiking activity, and thus the single feature may not reveal 

the true richness of auditory cortical processing (Atencio et al., 2008, 2009, 2012, Harper et 

al., 2016, Kozlov and Gentner, 2016).

Multiple stimulus features can be estimated through dimensionality reduction techniques 

such as spike-triggered covariance (STC) and maximally informative dimensions (MID). 

STC accounts for pairwise stimulus interactions and can be applied in conjunction with 

Gaussian stimuli (Paninski, 2003, Samengo and Gollisch, 2013). The STC approach 

decomposes a spike-triggered stimulus covariance matrix into a set of eigenvectors (or 

stimulus features), where the contribution of each eigenvector is determined by the 

corresponding eigenvalue. Each feature can be classified as excitatory (increases neural 

responsiveness) or suppressive (decreases neural responsiveness) by examining the 

corresponding eigenvalue (Touryan et al., 2002, Rust et al., 2005, Chen et al., 2007). A more 

stimulus-robust approach is maximally informative dimension (MID) analysis (Kouh and 

Sharpee, 2009). MID analysis can be used with any stimulus type, making it useful when 

analyzing responses to naturalistic stimulation. However, though the MID procedure can 

account for all stimulus correlations, it is limited to identifying two or a small number of 

stimulus features due to the limits of data collection in standard physiological experiments 

(Rowekamp and Sharpee, 2011).

The tradeoff between stimulus type and filter number can be bridged by constraining the 

neural model. By assuming a functional form for the nonlinear input/output function, and by 

accounting for a restricted subset of stimulus statistics, an increased number of filters may 

be estimated. A recently developed approach, the maximum noise entropy (MNE) model, is 

able to account for the first and second order stimulus correlations that drive a neuron to fire. 

The MNE model produces an unbiased estimate of stimulus processing because it does not 

make assumptions regarding the input statistics, and parameter optimization is accomplished 

using maximum likelihood (Fitzgerald et al., 2011a, Fitzgerald et al., 2011b). For non-

specified higher-ordered correlations, the model remains as unbiased as possible. Thus, the 

MNE model can recover multiple features that account for the linear and pairwise 

correlations in the stimulus while remaining maximally uncommitted toward other stimulus 

correlations.

We applied the MNE approach to study the neural coding of auditory cortical neurons. We 

show that responses of auditory cortical neurons are affected by multiple excitatory or 

suppressive features and identify a specific relationship between the relevant features. We 

found that excitatory features encode finer temporal and spectral details compared to the 

broader contexts encoded by suppressive filters. We further found that the number of 

identifiable features depended on stimulus context. Thus, our results show that stimulus 

processing depends on feature type and stimulus context.
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MATERIALS AND METHODS

Surgical procedures

All experimental procedures were approved by the University of California, San Francisco 

Committee for Animal Research under protocol AN086113-01B. The experimental 

procedures used in this study have been previously described (Atencio and Schreiner, 2010b, 

a). Briefly, young female adult cats (N=4) were given an initial dose of ketamine (22 mg/kg) 

and acepromazine (0.11 mg/kg), and then anesthetized with pentobarbital sodium 

(Nembutal, 15–30 mg/kg) during the surgical procedure. The animal’s temperature was 

maintained with a thermostatic heating pad. Bupivacaine was applied to incisions and 

pressure points. Surgery consisted of a tracheotomy, reflection of the soft tissues of the 

scalp, craniotomy over AI, and durotomy. After surgery, to maintain an areflexive state, the 

animal received a continuous infusion of ketamine/diazepam (2–5 mg/kg/h ketamine, 0.2–

0.5 mg/kg/h diazepam in lactated Ringer solution).

Recording

With the animal inside a sound-shielded anechoic chamber (IAC, Bronx, NY), stimuli were 

delivered via a closed speaker system to the ear contralateral to the exposed cortex 

(electrostatic diaphragms, model SRX MK3, from Stax, Japan). The system frequency 

transfer function was nearly flat (+/− 6dB) for frequencies <= 14 kHz, and attenuated 10 dB/

octave for frequencies above 14 kHz.

Extracellular recordings were made using linear multi-channel silicon recording probes, 

which were provided by Neuronexus (Michigan). We used probes with channel impedances 

between 2 and 3 MΩ, since these impedances allowed us to resolve single units. Probes were 

carefully inserted using a microdrive (David Kopf Instruments, Tujunga, CA) into the center 

of the ectosylvian gyrus, allowing for recording away from the anterior and posterior 

ectosylvian sulci. The cortical depth position of each recorded neuron was estimated from 

microdrive readings, which have previously been shown to allow for accurate laminar 

estimates (Atencio and Schreiner, 2010b).

Neural traces were bandpass filtered between 0.6 and 6 kHz and recorded to disk with a 

Neuralynx Cheetah A/D system at sampling rates between 18 kHz and 27 kHz. The traces 

were sorted off-line with a Bayesian spike sorting algorithm (Lewicki, 1994, 1998, Atencio 

and Schreiner, 2013). The average over the entire recording trace was estimated, and only 

events in the traces that exceeded the average by 5 RMS noise levels were used in the spike 

sorting procedure (termed spike events). All recording locations were in AI, as verified 

through initial multi-unit mapping and determined by the layout of the tonotopic gradient 

and bandwidth modules on the crest of the ectosylvian gyrus (Imaizumi and Schreiner, 

2007).

Stimulation

All neurons were also probed with a broadband (0.5 – 40 kHz) dynamic moving ripple 

(DMR) stimulus (Escabi and Schreiner, 2002, Atencio et al., 2008). The maximum spectral 

modulation frequency of the DMR was 4 cyc/oct, and the maximum temporal modulation 
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frequency was 40 cyc/s (Escabi and Schreiner, 2002). The maximum modulation depth of 

the spectrotemporal envelope was 40 dB. Mean intensity was set at 30–50 dB above the 

average pure tone threshold. A subset of neurons was probed with a ripple noise (RN) 

stimulus. The RN is the sum of 16 independently created DMRs, and therefore it has the 

same carrier structure and modulation depth as the DMR. The RN and DMR differ in short-

term, but not long-term, correlations: the DMR has short-term correlations but no long-term 

correlations, while the RN has neither short-term nor long-term correlations (Escabi and 

Schreiner, 2002). The duration of each stimulus was either 10 minutes or 15 minutes.

Receptive field estimation and analysis

The stimulus envelope was sampled at 5 ms resolution in time and 6 carriers per octave in 

frequency. For each neuron, we first chose a set of 25 frequencies and 20 time bins that 

encompassed the stimulus bandwidth and history to which the neuron responded (500 

stimulus dimensions per feature). We then applied the binary noise maximum noise entropy 

(MNE) analysis described in (Fitzgerald et al., 2011a, Fitzgerald et al., 2011b). The MNE 

analysis code is available on Github: http://github.com/MarvinT/pyMNE. Briefly, for a given 

stimulus s, the probability of a spiking response was modeled through a logistic nonlinearity 

having the form:

The parameters a, h, and J were estimated so that the model matched the experimentally 

observed mean firing rate, the spike-triggered average (STA) statistics, and spike-triggered 

covariance (STC) statistics. Maximum likelihood estimation was used to determine a, h, and 

J while remaining as unbiased as possible otherwise. Compared to a and h alone, including 

J in the model improved the negative log-likelihood objective function values by 

approximately 30% (mean=28.9%, SE = 3.3%, N=75) over the population of neurons.

Data was divided into two sets for training and testing. The training set contained 75% of the 

data, and the test contained 25%. This allowed the MNE model to be estimated four times 

for each neuron. The final model was the average of the four estimates. The MNE procedure 

maximizes the noise entropy of the model while satisfying the STA and STC constraints, 

which is equivalent to minimizing the mutual information between the stimulus and the 

response, since the model only includes the contributions of the mean firing rate, STA, and 

STC constraints. After J was estimated, it was decomposed into a set of quadratic features 

by applying principal components analysis, which produced a set of eigenvalues/

eigenvectors. Positive eigenvalues signify excitatory features (increase the response of the 

neuron), while negative eigenvalues represent suppressive stimulus features (decrease the 

response of the neuron).

To determine significance, the spike train for each neuron was randomly circularly shifted 

between 25% and 75% of the stimulus period, and the MNE model was recomputed. Two 

random shifts were used, resulting in 1000 eigenvalues from the randomization process. The 

actual eigenvalue distribution was compared to the randomized distribution. Values from the 
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actual eigenvalue distribution that exceeded all eigenvalues from the randomized distribution 

were deemed statistically reliable and were included in analyses.

The ripple transfer function (RTF) describes the modulation of energy in a filter as a 

function of temporal (TMF) and spectral modulation frequency (SMF). To obtain the RTF, 

we first estimated the 2D FFT of the filter, and then folded the result about the TMF = 0 Hz 

axis. To obtain the temporal modulation transfer function, the RTF was summed across 

SMF, and the spectral MTF was RTF summed across TMF. The best modulation frequency 

for an MTF was the peak in the MTF for bandpass MTFs, and it was the midpoint between 0 

frequency and the 3 dB cutoff for lowpass MTFs.

To estimate the frequency preference of a filter we calculated the center of mass. Best 

frequency estimates were not used due to the complex structure of many of the filters. For a 

filter, negative values were first set to zero. Next, the filter was summed from t=0 to t=50 ms 

to encompass the excitatory subfields of interest, resulting in a distribution having amplitude 

as a function of frequency. Last, the center of mass was calculated as 

, where f(i) is ith frequency, and a(i) is the 

corresponding amplitude value of the distribution.

Receptive field estimates and statistical measures were compared across the four subjects. 

No statistically reliable differences were identified between the four populations of neurons 

from the four subjects (N=13, 5, 14, 43), and therefore the data were combined for the 

analyses presented in this report.

Analyses were carried out using Matlab 2013a (Mathworks, Inc.) and associated toolboxes. 

MNE analysis was implemented using custom programs. For statistical analyses, the 

functions signrank.m, kstest2.m, and corrcoef.m were used for Wilcoxon Signed-rank tests, 

Kolmogorov-Smirnov tests, and correlation coefficient estimates, respectively.

RESULTS

One of the challenges of sensory neuroscience is to identify the functional sets of inputs that 

influence a neuron’s responsiveness. A given cortical neuron may receive many inputs, and 

these will be activated by specific stimulus features (Chen et al., 2011). The goal, then, is to 

identify the functional consequences of the inputs, where each set of inputs is functionally 

represented by a stimulus feature, or dimension, that influences neural firing (Chen et al., 

2007). It is unlikely that a single functional descriptor, or single STRF, will be adequate to 

capture the neural processing resulting from the multiple cell types and connectivity patterns 

that impose themselves on each neuron (Klein et al., 2000, Theunissen et al., 2000, Atencio 

et al., 2009, Sharpee et al., 2011).

To assess the multidimensional nature of auditory cortical receptive fields, we employed the 

recently developed maximum noise entropy (MNE) model (Fitzgerald et al., 2011a, 

Fitzgerald et al., 2011b). The MNE analysis has been verified on model data, showing that 

the procedure can recover multiple model features from non-Gaussian stimuli (Fitzgerald et 

al., 2011a, Fitzgerald et al., 2011b). The MNE model allowed us to obtain a linear filter and 
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a covariance matrix that matches the linear and pairwise stimulus interactions that best 

account for a neuron’s responses. The linear stimulus filter, or stimulus feature, in the model 

is analogous to the spike-triggered average (STA; the median/median absolute deviation 

(MAD) correlation between the linear filter and STA was: 0.9923/0.0031). The covariance 

matrix, which captures the second-order statistics, is analogous to the spike-triggered 

covariance (STC)(Schwartz et al., 2006, Aljadeff et al., 2013). The covariance matrix can be 

decomposed into a set of eigenvectors and eigenvalues, where the eigenvectors represent 

stimulus features and the eigenvalues represent the relative contribution of each eigenvector. 

Thus, this model of neural processing allows us to identify multiple functional inputs for a 

given neuron.

To assess the dimensionality of auditory cortical receptive fields, we recorded from 75 

neurons in the thalamo-recipient granular layers (600–1000 μm) of cat AI and presented 

dynamic moving ripple (DMR) stimulation. Across the population, the DMR stimulus drove 

neurons at approximately 4 Hz (mean/se: 3.8/0.5 spikes/s). Figure 1 shows the complete 

MNE analysis for a single neuron. The STA-like linear feature shows clear spectrotemporal 

structure, with oriented excitatory and suppressive subfields that model the frequency sweep 

selectivity that may be seen in auditory cortical neurons (Fig. 1A). The covariance matrix 

(Fig. 1B) has eigenvalues that are tightly packed, with the exception of the most negative 

and most positive eigenvalues (Fig. 1,C). The eigenvalues can be tested for significance (Fig. 

1C, red lines correspond to p < 0.002, randomization test) to determine which stimulus 

features significantly contributed to the neural response. The eigenvectors corresponding to 

significant eigenvalues are shown Fig. 1 (D,E).

A significant advance is that the eigenvectors may be examined for spectrotemporal 

structure and whether they excite or suppress neural responsiveness. In this context 

excitation and suppression relate to how the feature affects neuronal responsiveness. While 

the feature subfields may be classified as excitatory and suppressive, the eigenvector 

analysis generalizes this to the overall spectrotemporal pattern of the feature, and not just the 

component subfields. Thus, the eigenvectors in Fig. 1(D,E) have clear spectrotemporal 

structure, and each may have either an excitatory or suppressive effect on the neuron’s 

response. Excitatory spectrotemporal features (Fig. 1D) are features that increase the 

responsiveness of the neuron and they are associated with positive eigenvalues. The 

frequency extent of the excitatory eigenvector subfields covered a similar range as the linear 

filter. Comparing the excitatory frequency center of masses for the most significant 

excitatory quadratic feature to the linear filter revealed a statistically reliable correlation (r = 

0.69, p<0.001, d.o.f = 68, t-statistic = 7.84).

Significantly, the eigenvalue analysis can also recover the stimulus features that suppress 

neural responsiveness (Fig. 1E). Suppressive features have been observed in visual cortex 

(Rust et al., 2005, Chen et al., 2007), though rarely in the auditory system (though see 

(Harper et al., 2016, Kozlov and Gentner, 2016). For the neuron in Fig. 1, we recovered two 

suppressive spectrotemporal features. The suppressive nature applies to the complete 

spectrotemporal pattern of the feature. Thus, while each feature may have suppressive 

components, such as suppressive frequency sidebands, it is the complete time-frequency 

distribution that accounts for the neuron’s decrease in responsiveness. Thus, suppressive 
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spectrotemporal features generalize the standard suppressive subfields of AI neural receptive 

fields, and the number of features generalizes the one-dimensional single feature STRF that 

is commonly identified.

Another example also revealed multidimensional feature selectivity (Fig. 2). The linear 

component or STA-analogous component contains well defined spectrotemporal features, 

with a main excitatory subfield surrounded by suppressive subfields in both time and 

frequency. When we diagonalized the quadratic matrix into eigenvalues/eigenvectors, we 

found eight additional significant spectrotemporal filters. Five of the features were 

excitatory, and three were suppressive. Thus, for this neuron, an extended set of 

spectrotemporal features were needed to describe the acoustic processing of the neuron.

What is the dimensionality of auditory cortical neurons? We determined this by noting the 

number of significant eigenvectors from the covariance analysis. For our sample of neurons, 

we identified between 2 and 16 spectrotemporal features that significantly affected the 

responses of neurons in our data (Fig. 3A; median = 6.0; MAD = 3.0). However, since our 

stimulus set was restricted, and because our significance level was conservative, the total 

number of features for cat AI neurons could be even higher. The number of excitatory filters 

was between 2 and 14, with most between four and eight (Fig. 3B; median = 3.0; MAD = 

2.0). For suppressive filters, most neurons had between zero and four filters (Fig. 3D; 

median = 1.0; MAD = 1.0). Across all neurons, the number of excitatory filters always 

exceeded the number of suppressive filters (Fig. 3C). Thus, the stimulus selectivity of 

auditory cortical processing may be described with multiple stimulus features.

What acoustic information is contained in the excitatory and suppressive features? To 

address this, for each neuron we examined the modulation processing of each quadratic 

feature (Atencio and Schreiner, 2010b). For each feature, we first calculated the Fourier 

transform to obtain the ripple transfer function (RTF). The RTF describes the modulation of 

energy in the feature as a function of time and frequency (Fig. 4A). We summed across 

spectral modulation frequency to obtain the temporal modulation transfer function (TMTF), 

and we summed across temporal modulation frequency to obtain the spectral modulation 

transfer function (SMTF). Features with well-defined excitatory and suppressive subfields 

have bandpass TMTFs and SMTFs, from which the best modulation frequency (BMF) may 

be inferred (Fig. 4A, last two columns, inset values). For neurons with multiple features, 

MTFs may be estimated for each feature (Fig. 4B). Excitatory features often had TMTFs 

and SMTFs (Fig. 4C,D) that were shifted to higher modulation frequencies compared to 

suppressive features (Fig. 4E,F).

For each neuron in our distribution, we estimated the TBMF and SBMF for each feature. 

Across all features, the distribution of TBMFs covered similar ranges for the excitatory and 

suppressive features. However, though there was a higher proportion of suppressive features 

that had lower TBMFs (Fig. 5A; p<0.0001, KS-test, KS statistic = 0.334, Nexc filters = 293, 

Nsup filters = 66). The distribution of SBMFs revealed that excitatory features had 

consistently higher preferred spectral modulation frequencies (Fig. 5B; p<0.0001, KS-test, 

KS statistic = 0.315, Nexc filters = 293, Nsup filters = 66).
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Since the complete distribution does not maintain neural identity, we compared the BMFs of 

excitatory and suppressive on an individual neuron basis. For neurons that had both 

excitatory and suppressive filters we estimated the mean of the BMFs for excitatory features 

and compared this to the mean of suppressive feature BMFs.

We found that the distributions of temporal BMFs for excitatory and suppressive features 

were significantly different. On a neuron-by-neuron basis, the mean TBMFs for excitatory 

features were higher than the mean TBMFs for suppressive features (p = 0.0128, Signed-

rank test, signed-rank statistic = 375, N=31). Thus, in aggregate, excitatory features contain 

faster variations of energy in time; alternatively, suppressive features have longer lasting 

subfields.

For spectral modulation, the neuron-by-neuron BMF analysis revealed that excitatory 

features coded spectral modulations that were higher than those for suppressive features (p = 

0.0177, Signed-rank test, signed-rank statistic = 369, N = 31). Since spectral modulation 

correlates with tuning bandwidth (lower spectral modulations correlate with broader tuning), 

this implies that excitatory features have bandwidths and subfield spacings that are narrower 

and sharper than those of the suppressive features (Calhoun and Schreiner, 1998, Atencio 

and Schreiner, 2012). This may also be interpreted as revealing that excitatory features 

represent fine frequency details, while suppressive features provide a broader contextual 

analysis of frequency integration.

Does the structure and number of excitatory and suppressive features depend on stimulus 

statistics? We examined this by presenting two stimuli that had identical long-term statistics 

and different short-term statistics. For a subset of neurons (N=11), we presented both a 

dynamic moving ripple (DMR; Fig. 6A) and a ripple noise (RN; Fig. 6B) stimulus. The RN 

was composed of 16 independently created DMRs added together. Thus, the carrier 

frequency spacing in the RN is identical to the DMR (Escabi and Schreiner, 2002). However, 

the DMR contains local correlations while the RN does not. The response strength of the 

neurons was moderately matched for the two stimuli, with a weakly higher overall rate for 

the RN stimulus (DMR firing rate mean/se = 10.1/2.1 Hz; RN firing rate mean/se = 14.9/2.3; 

Signed-rank test: p = 0.0537, signed-rank statistic = 11).

When we examined the receptive fields of neurons to these stimuli we found that the linear 

features (analogous to STAs) were largely similar (Fig. 6C). Features derived from the DMR 

had clear subfields, and features derived from RN had nearly matched subfields. Over the 

sample of neurons, the correlation between the linear features was always above 0.5, 

indicating very strong agreement between the spectrotemporal structure of both DMR and 

RN linear features.

If the linear features are similar, do the DMR and RN statistics induce changes in features 

derived from the quadratic kernel? We found drastic changes between the features for DMR 

and RN stimulation. For the example in Figure 7 (top), by using the DMR we were able to 

reconstruct multiple excitatory (Nexc = 7) and suppressive (Nsup = 3) features. Each feature 

had subfields that were localized in both time and frequency. In contrast, using the RN we 

were only able to obtain two excitatory features.
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The second example in Figure 7 (bottom) shows similar results. The DMR allowed us to 

estimate six excitatory features and one suppressive feature, while the RN only allowed us to 

estimate one excitatory feature. Since the long term statistics of the two sounds were the 

same, this implies that the short term statistics in the DMR (i.e. local correlations) drive 

neurons in a different manner than the RN. For DMR, additional functional inputs can be 

recovered, while for the RN a reduced number, and perhaps different set, of inputs are 

obtained.

For neurons where we presented the DMR and the RN to the same neuron, the total number 

of features was higher for DMR stimulation (Fig. 8A). DMR features counts were also 

higher than RN for both excitatory (Fig. 8B) and suppressive features (Fig. 8C). Across the 

population of neurons, the total number of features, which is the sum of excitatory and 

suppressive features, was again larger for DMR than for RN stimulation (Fig. 8D; DMR 

median = 6.0, DMR MAD = 3.0; RN median = 1.0, RN MAD = 0.0; p < 0.0001, Rank-sum 

test). For excitatory features, the DMR allowed us to obtain more excitatory features (Fig. 

8E; DMR median = 5.0, DMR MAD = 2.0; RN median = 1.0, RN MAD = 0.0; p < 0.0001, 

Rank-sum test). For suppressive features, we were able to recover more features for DMR 

than for RN (Fig. 8F; DMR median = 1.0, DMR MAD = 1.0; RN median = 0.0, RN MAD = 

0.0; p < 0.0001, Rank-sum test). Thus, feature counts were higher both across the entire 

population and for the paired stimulus results. Therefore, the differences in local-

correlations between the two stimuli allowed us to obtain a much more expansive view of 

auditory processing with the more naturalistic DMR. In comparison, the RN appears to 

either suppress the responsiveness of AI neurons, or only partially probe the preferred 

stimulus regime, and thus reduces the number of functional excitatory and suppressive 

features that may be captured.

DISCUSSION

Consistent with earlier work, our study suggests that AI STRFs are based on multiple 

excitatory and suppressive features (Atencio et al., 2008, 2009, 2012). We identify here a 

specific relationship between the excitatory and suppressive features and find that the 

number of relevant features depends on stimulus statistics. Excitatory features encode faster 

modulation details, while suppressive features process longer contextual variations in time 

and frequency. Additionally, we showed that stimulus statistics make a substantial difference 

in identifying the stimulus features that influence a neuron’s response. Thus, feature type 

(excitatory/suppressive) and feature property (modulation preferences) are influenced by 

stimulus context.

Previous work

Two previous studies are largely consistent with our work. In the first, the MNE analysis was 

applied to neurons in a secondary auditory cortex-like center in the songbird (Kozlov and 

Gentner, 2016). In concord with our results, the authors found multiple excitatory and 

suppressive features. The total number of features that were found approximated the number 

that we report in the present study, though songbird non-primary neurons had a higher 

number of suppressive features. The features themselves were complex in shape and without 
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the typical excitatory/suppressive subfields that are usually seen in more primary regions. 

When the authors applied a neural network that implemented sparse spiking and divisive 

normalization, they were able to produce multiple features. Our results differed from theirs 

in showing clear feature structure, an assessment of modulation processing, and the effect of 

stimulus statistics on multi-feature receptive field processing.

Harper and colleagues also applied a neural network to estimate a network receptive field 

(NRF) that models the relationship between natural sounds and ferret primary auditory 

cortical responses (Harper et al., 2016). They found that many AI neurons had multiple 

features, and that they could be classified as excitatory or suppressive. They found that the 

number of features varied between 1 and 7, which is lower than our finding. The individual 

features coded spectral and temporal information over large extents. Overall, the MNE and 

neural network approaches provide independent verification that AI neurons possess 

multidimensional receptive fields. Since the NRF analysis produced fewer features 

compared to the MNE approach, it is unclear if the NRF is conservative in its estimation, or 

if this is a difference between ferret and cat AI. Assessing the NRF against model inputs and 

outputs to ensure the quality of model reconstruction, as previously done for the MNE 

approach (Fitzgerald et al., 2011a), would help to resolve this issue.

An advantage of the MNE approach is that the linear and quadratic features are naturally 

incorporated into the neural model. Further, whether a quadratic feature is excitatory and 

suppressive features may be unambiguously determined by examining the sign of the 

eigenvalue. Additionally, the spiking output nonlinearity is a logistic function, which bounds 

the probability of a spiking output between 0 and 1, and therefore eliminates the possibility 

of non-zero response estimates.

Functional properties of quadratic stimulus features

Because we were able to classify stimulus features as excitatory or suppressive, our results 

generalize the concept of inhibitory and excitatory sidebands of auditory cortical neurons. 

Inhibitory frequency sidebands represent regions outside the classical excitatory tuning 

curve that suppress responsiveness when pure tones are presented at the sideband 

frequencies (Calford and Semple, 1995, Brosch and Schreiner, 1997, Sutter et al., 1999, 

Brosch and Schreiner, 2000). These sidebands are experimentally recovered using pure tone, 

or carrier, stimuli. In our study, receptive fields are derived from the spectrotemporal 

envelope, which modulates a logarithmically spaced carrier structure. The suppressive 

stimulus features of the MNE model reduce the responsiveness of a neuron. Thus, 

suppression is not restricted to specific frequency regions and carrier-like stimuli, but occurs 

for general spectrotemporal envelope patterns.

By assessing the feature properties of stimulus dimensions, we found that for AI neurons the 

feature property depends on the feature type. Excitatory features encoded finer temporal and 

spectral details (shorter durations and bandwidths), while the suppressive features encoded 

larger-scale envelope variations (longer durations and larger bandwidths). These results align 

with the results from whole-cell patch recordings, where inhibition was found to be longer 

lasting and broader in frequency (Tan et al., 2004). For spiking neurons, this phenomenon 
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applies to both frequency integration and to specific spectrotemporal characteristics (Atencio 

and Schreiner, 2008, Wu et al., 2008).

How could the multiple excitatory and suppressive features enhance auditory processing? 

No experiment has addressed this question, but parallels to visual cortical cross-orientation 

suppression may provide clues. In visual cross-orientation suppression, responses to 

optimally oriented stimuli are suppressed by simultaneously presented stimuli that have an 

orientation 90 degrees from the optimal orientation (Bonds, 1989). Here the two stimuli 

overlap in space but differ in their orientations. Visual cortical spike-triggered covariance 

analyses hypothesized that excitatory and suppressive subunits may help explain the 

phenomenon due to the different orientation preferences of excitatory and suppressive 

features (Chen et al., 2007). In the auditory analogy, and if parallels between visual space 

and auditory spectrum can be maintained, auditory excitatory spectrotemporal stimulus 

features encode faster spectral modulations, while suppressive features encode slower 

spectral modulations and integrate over broader frequency regions. Our results predict that 

presenting both stimulus features simultaneously would lead to reductions in firing rate 

relative to presenting the excitatory, faster-modulated stimulus feature in isolation. Such a 

phenomenon would be useful in detecting foreground signals in the presence of background 

noise, since responses to noise that match the suppressive feature would be decreased 

(Sharpee et al., 2011).

How might the different context-sensitive spectrotemporal features be a reflection of cortical 

circuitry? The stimulus features that we recovered for AI neurons are likely a result of 

coherent subsets of inputs to each neuron. Pioneering two-photon imaging work has shown 

that auditory cortical neurons receive multiple synaptic inputs that may have different 

frequency response areas (Chen et al., 2011). Thus, our results may further generalize the 

two-photon results, since each spectrotemporal stimulus feature may represent a coherent set 

of functional inputs. A necessary further step is to characterize the spectrotemporal inputs at 

multiple synaptic sites, and compare the spiking spectrotemporal features to those that can 

be obtained using appropriate imaging technologies.

Receptive field dimensionality

We note that there is no stereotyped number of features for a cat auditory cortical neuron. 

While most neurons had multiple features, there was a broad distribution of feature numbers 

across the neural population. The number likely varies with the location of each neuron in 

the cortical microcircuit, and will be influenced by columnar, corticocortical, and thalamic 

inputs (Lee and Winer, 2011). The varying number of functional stimulus features for a 

given AI neuron finds an analog in the cat primary visual cortex. In cat V1, random stimuli 

allowed two features to be obtained (Touryan et al., 2002). When naturalistic stimuli were 

used, a broader set of features were recovered (Touryan et al., 2005). Thus, the stimulus 

statistics allowed different sets of features to be identified. A difference between the cat V1 

studies and our report is that our neurons had STAs, while the cat V1 studies examined 

complex cells, which have either weak or nonexistent STA (Rust et al., 2005, Touryan et al., 

2005, Chen et al., 2007, Fournier et al., 2011, Fournier et al., 2014).
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Stimulus context

Finally, stimulus context played an essential role in the types and numbers of stimulus 

features that we recovered. Different stimulus distributions enabled us to recover vastly 

different spectrotemporal stimulus features. The differences between features were not 

evident in the main mode of processing, represented by the linear feature; the linear feature 

was largely similar for DMR and RN stimuli. The differences were mainly noticeable when 

we examined the quadratic kernel, which accounts for pairwise stimulus correlations. Thus, 

the stimulus features reflect the stimulus correlation context, and describe how the 

functional inputs to AI neurons are engaged, and vary, with stimulus type. The 

spectrotemporal stimulus features show that local correlations engage AI neurons in a vastly 

different manner from unstructured stimuli. Thus, the types, varieties, and numbers of 

functional inputs to AI neurons that may be measured depends on the specific stimulus 

statistics of the stimulus ensemble (Woolley et al., 2005, David et al., 2009). Therefore, 

while stimulus context can affect receptive field estimation (Blake and Merzenich, 2002, 

Gourevitch et al., 2009), we have shown that such context-sensitivity is part of a more 

general phenomenon. It is reflected in the entire multidimensional nature of auditory cortical 

receptive fields.

Further considerations: anesthesia and stimulus context

Experimental preparation and stimulus type must also be considered to place our work in. 

We utilized an anesthetized cat preparation for all recordings. Anesthesia may act to increase 

response suppression (Cheung et al., 2001, Syka et al., 2005), though the ketamine 

preparation that we used mitigates some of these effects since it allows greater spontaneous 

rates and complex firing patterns (Walker et al., 2008, Campbell et al., 2010). Additionally, 

while thalamacortical oscillations and spindles may be present for short duration stimuli that 

have strong onsets, our stimuli were continuous, without sharp onsets, and have been shown 

to maintain auditory cortex in a relatively adapted state (Miller and Schreiner, 2000). 

Further, this type of stimulation has been shown to reduce spindles (Britvina and Eggermont, 

2008). While no study to date describes changes in auditory cortical multidimensional 

receptive fields under awake and anesthetized conditions, two reports from the visual cortex 

make it likely that our main conclusions will not be affected. When multidimensional 

receptive field analysis was performed in the awake and anesthetized macaque monkey, 

multiple excitatory and suppressive filters were found in both preparations (Rust et al., 2005, 

Chen et al., 2007).

Our results revealed clear differences between DMR and RN stimulus derived receptive 

fields. Stimulus context has been previously shown to influence the responsiveness of 

auditory cortical neurons (Rabinowitz et al., 2011). Ferret AI neurons modulate their gain as 

stimulus contrast changes (Rabinowitz et al., 2012). This may provide an explanation for the 

difference in firing rates in response to the DMR and RN stimuli. The decrease in firing rate 

is consistent with visual cortical work, which revealed increased sparseness for naturalistic 

stimulation (Vinje and Gallant, 2000, 2002, Haider et al., 2010). In the auditory cortex, 

while stimulus contrast may induce gain changes, these reports also showed that STRF 

structure was not affected by changes in stimulus contrast (Rabinowitz et al., 2012). Thus, 

stimulus contrast effects are unlikely to have affected our results. Additionally, by 
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construction, the envelope contrast of DMR and RN stimuli is similar, further decreasing the 

likelihood that contrast can account for filter differences.

Synaptic depression has also been found to provide an explanation for STRF stimulus 

context changes (David et al., 2009). Synaptic depression helped to explain why ferret AI 

STRFs varied for speech and short-duration ripple stimuli. The changes explained by 

synaptic depression occurred with respect to the linear STRF. By contrast, we showed that 

the linear filter in the MNE model was similar for both DMR and RN stimuli. Thus, stimulus 

context changed our receptive field model with respect to filters that are relatively 

unexamined in auditory cortical research. While at present it is unknown if a synaptic 

depression model may be helpful in explaining the DMR/RN multidimensional receptive 

field changes, it does not appear to be necessary with regard to linear STRF processing.

In summary, we found that under varying stimulus conditions, the linear filter, which is 

analogous to the STA, did not change. Instead, filters that are not normally examined, and 

indicate nonlinear stimulus interactions, did change their spectrotemporal properties. Thus, it 

may be necessary to examine multidimensional receptive fields to assess auditory cortical 

functional processing.
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AI receptive fields are composed of multiple stimulus features

Stimulus features may be excitatory or suppressive

Excitatory and suppressive features have different modulation preferences

Stimulus statistics affect the quantity and characteristics of the features

Atencio and Sharpee Page 17

Neuroscience. Author manuscript; available in PMC 2018 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
MNE model of a primary auditory cortical (AI) neuron. The model accounts for the linear 

and quadratic stimulus statistics that account for the response (analogous to the spike-

triggered average (STA) and spike-triggered covariance (STC) distributions, respectively). 

(A) Simplified cartoon showing the composition of the J matrix, which contains the 

quadratic stimulus interaction that account for the response. In this simplified case sound 

stimulus spectrograms have 2 frequencies and 2 time bins. (A,Top) The J matrix may be 

decomposed into a set of eigenvalues (L1, …,L4) and corresponding eigenvectors (Evec1, …, 

Atencio and Sharpee Page 18

Neuroscience. Author manuscript; available in PMC 2018 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Evec4). Numerals in the matrix and vectors indicate element numbers. Values in J indicate 

row/column pairs. Example: 32 represents the element at row 3, column 2 in J. (A,Bottom) 

Each eigenvector may be reshaped into a spectrotemporal stimulus feature. In this simplified 

example the eigenvector has four elements and is reshaped into a 2×2 matrix. The matrix 

values are color-mapped to display spectrotemporal structure. (B–F) MNE model for a 

primary auditory cortical neuron. (B) The linear feature has subfields oriented in frequency 

and time. (C) The J matrix was decomposed, and (D) five significant eigenvalues (p < 0.01, 

randomization test, red-line) were found, resulting in five spectrotemporal features that 

account for the neuron’s response. (E) Three excitatory spectrotemporal features (increase 

neural responsiveness). E1: most significant excitatory feature, E2: second-most significant 

feature, etc. (E) Two suppressive spectrotemporal features (decrease neural responsiveness).
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Figure 2. 
Example MNE model results for AI neuron. (A) The linear feature has circumscribed 

subfields. (B) The J matrix revealed (C) eight significant eigenvalues (p < 0.01, 

randomization test). (D) The significant eigenvalues corresponded to five excitatory stimulus 

features and four suppressive features.
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Figure 3. 
Number of spectrotemporal stimulus features. (A) AI neurons had between two and sixteen 

features, with the majority having four to ten. (B) Number of excitatory features. (C) 

Number of suppressive features. (D) The number of excitatory features was greater than the 

number of suppressive features.
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Figure 4. 
Modulation content of quadratic features. (A) Procedure for characterizing the modulation 

content of a feature. Each spectrotemporal feature is transformed to a ripple transfer function 

(RTF). The RTF is summed across spectral and temporal modulation frequency to obtain the 

temporal and spectral modulation transfer function (TMTF,SMTF), respectively. Best 

temporal and spectral modulation frequencies are noted in each plot. (B) Quadratic features 

for a single neuron. (C) TMTFs for the excitatory features in (B). (D) SMTFs for the 

excitatory features in (B). (E) TMTFs for the suppressive features. (F) SMTFs for the 

suppressive features.
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Figure 5. 
Best modulation frequency for excitatory and suppressive features. (A) Population 

distribution of best temporal modulation frequencies (TMFs) over all features and neurons. 

(B) Population distribution of best spectral modulation frequencies (SMFs) over all features 

and neurons. (C) Mean of best TMFs for excitatory features and suppressive features. Each 

point represents one neuron, and the value is the mean across all best TMFs. (D) Mean of 

best SMFs for excitatory and suppressive features.
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Figure 6. 
Stimulus distributions and linear stimulus features. Spectrotemporal envelope of (A) 

Dynamic moving ripple (DMR) and (B) Ripple Noise (RN) stimuli. Both stimuli were both 

presented to a subset of neurons. (C) Similarity, or correlation, between the linear features 

for DMR and RN stimuli were high. (D–G) Example linear features for neurons that 

received both DMR and RN stimulation. The features for each neuron were similar for the 

two types of stimuli. The similarity index (SI) values indicate the correlation between each 

pair of DMR and RN linear features.
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Figure 7. 
DMR and RN stimulation examples. Receptive field reconstruction for DMR and RN 

stimulation for two neurons. Top: DMR stimulation allowed 7 excitatory and 3 suppressive 

filters to be obtained. RN stimulation allowed 2 excitatory filters to be found. Bottom: DMR 

stimulation resulted in 6 excitatory filters and 1 suppressive filter. RN stimulation produced 

1 excitatory filter.
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Figure 8. 
Feature number for DMR and RN stimulation. Top row: for neurons where both DMR and 

RN stimuli were presented, (A) the total number of filters, (B) the number of excitatory 

filters, and (C) the number of suppressive filters, was higher for DMR stimulation. Bottom 

row: Across the population, DMR stimulation allowed (D) more total filters, (E) more 

excitatory filters, and (F) more suppressive filters, to be recovered.
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