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Abstract

Background—Immunofluorescence (IF) plays a major role in quantifying protein expression in 

situ and understanding cell function. It is widely applied in assessing disease mechanisms and in 

drug discovery research. Automation of IF analysis can transform studies using experimental cell 

models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, 

often subjected to low-throughput and prone to error, leading to low inter and intra-observer 

reproducibility. Human postmortem brain samples challenges neuroscientists because of the high 

level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering 

systematic analyses. We propose a method for automating cell counting and classification in IF 

microscopy of human postmortem brains. Our algorithm speeds up the quantification task while 

improving reproducibility.

New method—Dictionary learning and sparse coding allow for constructing improved cell 

representations using IF images. These models are input for detection and segmentation methods. 

Classification occurs by means of color distances between cells and a learned set.

Results—Our method successfully detected and classified cells in 49 human brain images. We 

evaluated our results regarding true positive, false positive, false negative, precision, recall, false 
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positive rate and F1 score metrics. We also measured user-experience and time saved compared to 

manual countings.

Comparison with existing methods—We compared our results to four open-access IF-based 

cell-counting tools available in the literature. Our method showed improved accuracy for all data 

samples.

Conclusion—The proposed method satisfactorily detects and classifies cells from human 

postmortem brain IF images, with potential to be generalized for applications in other counting 

tasks.

Keywords

dictionary learning; sparse models; image segmentation; immunofluorescence; postmortem human 
brain; microscopy

1. Introduction

Target validation and cell selection provide critical insights into mechanisms driving disease, 

particularly at the early steps in the drug discovery process. Immunofluorescence (IF) 

microscopy applies antibodies and other affinity reagents with fluorescent proteins on tissue 

and may unlock information into molecular cascades while preserving the tissue integrity. IF 

is particularly important in quantifying protein expression and understanding cell function. 

IF experiments often occur in big batches resulting in high amounts of data, making manual 

analysis very time-consuming and prone to error including high inter and intra-observer 

variability and low reproducibility [1].

Several authors developed algorithms to automate IF analysis using unsupervised methods, 

mostly based on deformable contours and region-based approaches [2, 3, 4, 5, 6, 7, 8] and 

fewer focused on signal processing [9, 10]. Despite a great deal of publications in cell 

analyses, most of the methods for detecting and segmenting cells in IF images have been 

tailored to work with images derived from cell cultures or experimental animals, in which 

several parameters can be controlled to render IF images with a rather smooth, clean 

background and high contrast. On the other hand, IF images derived from postmortem 

human brain present considerable autofluorescence, which gets more pronounced in aged 

brains, inherent to human brain tissue because of accumulation of lipofuscin pigment [11, 

12]. Autofluorescence reduces the signal-to-noise ratio of specific labeling [13], making 

identification of stained cells harder. Antigen masking caused by rather prolonged 

formaldehyde fixation compared to cell and experimental animals results in impoverished IF 

signals [14]. An additional challenge to IF analysis in human tissue is that quantification 

experiments based on stereological principles require thicker tissue slides (30–60μm, instead 

of 5–8μm) [15], increasing the amount of neuropil, which also contributes to background 

fluorescence [16]. This problem can be minimized with the use of confocal microscopes, 

however the size of the human brain, even for the analysis of small areas, would require a 

high amount of microscope time and data processing capabilities. Finally, as human brain 

histological sections usually have a much larger surface in proportion to its thickness, holes, 

folds, cell fragments and all kinds of clutter are commonplace, making the detection task 
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even more complex. As a result, available cell counting algorithms show a poor performance 

in analyzing IF images from postmortem human brains, precluding automating cell 

counting.

In this study, we propose a computer-based segmentation method suitable for handling IF 

microscopy from our thick postmortem human brain sections, aiming to improve user 

productivity by reducing the counting time and also reducing inter and intra-observer 

variability. Our proposal consists in applying dictionary learning and sparse coding for cell 

modeling. Dictionary learning is a cutting-edge method for learning signal representations 

that better fit underlying data, thus improving description [17], while sparsity allows better 

portrayal of salient image properties and produces features more likely to be separable, 

which is useful for machine learning [17, 18].

First, we present an introduction to the basic sparse coding and dictionary learning 

framework, together with an in-depth description of our method. Then we show the results 

obtained with our method tested with real data and data on user experience experiments 

using our implementation, followed by a comparison between our method with other open-

access cell counting methods found in literature. Finally, we discuss our approach when 

compared to other similar methods.

2. Materials and Methods

2.1. Tissue Acquisition and Preparation

Patients: Our methods examine IF digital images captured from 49 horizontal sections, 

from 21 human brainstem. The sections come from the Brain Bank of the Brazilian Aging 

Brain Study Group (BBBABSG) [19, 20] and the Neurodegenerative Disease Brain Bank 

(NDBB) from the University of California, San Francisco (UCSF). All subjects showed 

variable degree of Alzheimers disease pathology staged according to the new NIA-AA 

guidelines [21]. The institutional review boards of both participating institutions deemed this 

study non-human. All selected cases have a postmortem interval of less than 24h. The 

brainstems were fixed in 10% buffered formalin from 10 to 20 days.

Tissue Processing and Staining for Generating the Images Used in This Study: Tissue 

processing and staining protocols have been described previously [15]. In summary, each 

brainstem block was severed from the brain, fixed in 10% formalin, and embedded in 8% 

celloidin for subsequent sectioning [22]. Blocks were sectioned horizontally in serial sets, 

each one containing one 300μm thick and five 60μm thick sections [15]. Selected 60μm 
thick sections were autoclaved in citrate buffer retrieval solution for 5 min at 121°C, 

followed by 30 min incubation with 0.1% Sudan black B (Sigma-Aldrich) for blocking 

autofluorescence and 30 min incubation in protein blocking solution (5% milk in phosphate-

buffered saline with 0.05% Tween 20)at room temperature (RT). Sections were 

immunostained with an antibody against phospho-tau at Serine 202 antibody (CP-13, 1:500, 

monoclonal mouse, gift of Peter Davies, NY) to detect neurofibrillary tangles and active 

caspase-6 (aCasp-6, OAAF05316, 1:500, rabbit polyclonal, Aviva System Biology), an 

apoptosis marker [23, 24].
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Double immunostaining (CP-13/aCasp-6) was performed overnight at 4°C in PBS, followed 

by incubation with immunofluorescence species-specific secondary antibodies conjugated to 

Alexa Fluor 488 (aCasp-6) and 546 (CP-13) for 1h at RT (1:200 in PBS-T; A-11008 and 

A-11003 respectively, both by Invitrogen, CA). Neuronal cell bodies were labeled with a 

fluorescent Nissl stain for 30 min at RT (Neurotrace 435/455; 1:50 in PBS-T; Life 

Technologies, NY, USA). The sections were photographed with a Nikon 6D high-throughput 

wide-field epifluorescence microscope (Nikon, Tokyo, Japan). Regions of the dorsal raphe 

nucleus (DRN) were imaged at 10x magnification (Plan Apo 10x/0.45, Nikon, Japan. Pixel 

resolution was about 0.2μm.), and each image set covering the regions of interest (ROIs) was 

merged into a single composite using NIS-Elements 4.30 (Nikon, Japan). Figure 1(a) 

presents one IF image from our dataset, stained using the aforementioned method, and 

Figure 1(b) illustrates its respective full resolution image.

Manual Neuronal Counting and Creation of Ground-Truth Data: In each composite 

image, DRN boundaries come from traces based on cytoarchitectonic parameters, as 

proposed in Baker et al. [25] and Rub et al. [26]. Adobe Photoshop CS6’s built-in counting 

tool (Adobe, CA) was used for manual cell counting. Neurons were recognized by size, 

shape and the presence of Neurotrace positivity and classified into four groups: red (reactive 

to CP-13), green (reactive to aCasp-6), yellow (reactive to both CP-13 and aCasp-6) and 

none (not reactive to CP-13 or aCasp-6). The counting tool embedded in Photoshop tracked 

the number of markers per group. Counting was conducted on merged images and confirmed 

on single channel images, for precision. Care was taken to ensure that the counting marks 

were placed inside the cell boundaries. Users had to be careful during the manual counting 

to avoid counting cells that were out of focus (i.e. out of the imaging plane), as well as holes 

and debris. Magenta arrows in Figure 1(b) point to debris that are easily mistaken for cells 

by inexperienced observers and most computational tools. Blue arrows point to real cells. 

All counting results were stored in Photoshop file format.

Grayscale masks delimiting the DRN, cell bodies and background were manually created on 

top of cell counting files. These masks were used for training our segmentation method and 

constraining processing to the DRN region thus saving computation time, as described in-

depth in the following sections. Figure 1(c) shows a example of a manual mask, where the 

white region delimits the DRN, and all cells are painted in gray.

2.2. Computerized Cell Counting

We propose a semi-automatic method for assisting cell counting in IF images. Our method 

guides the users during the counting process by highlighting the detected cells, while 

allowing them to select the real cells and ignore debris and other mislabeled structures. Our 

method is based on dictionary learning and sparse coding for classification and is composed 

of two major stages: training, where dictionaries that best represent data are learned and 

color samples are computed; and segmentation-classification, where cells are detected using 

the trained dictionaries and classified into red (CP-13), green (aCasp-6) and yellow (CP-13 

and aCasp-6 overlap) using color samples as references. Figure 2 shows the outline of our 

method.
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2.2.1. The Dictionary Learning and Sparse Coding Framework—Traditional 

signal processing uses analytic bases, also known as dictionaries, such as Fourier [27], 

Wavelets [28] and Curvelets [29], to represent data. Those are popular for having closed 

mathematical formulations with well-known properties and allowing fast computations. 

Analytical bases are, nonetheless, one-fits-all methods that have the downside of poorly 

representing many types of signals [30]. Recently, a set of methods for learning dictionaries 

from the underlying data emerged and proved successful in fine tuning representations in a 

data-set specific way [31]; these methods are known as dictionary learning.

A dictionary contains a set of atoms (elementary signals or vectors) that can be used to 

decompose more complex signals. In mathematical terms, a dictionary D is the matrix D = 

[d1|d2| … |dL] ∈ ℝN×L where the columns d represent the atoms. A signal x ∈ ℝN can be 

represented as a linear combination of atoms in D:

(1)

If the atoms in D form a basis, signals can be uniquely represented by the equation 1. 

However, if L > N the dictionary is said to be overcomplete and the system in 1 is 

overdetermined. In that case, optimization methods are used to compute a by minimizing an 

objective function of the general form [30]:

(2)

where C(.) is a cost function that enforces particular encoding characteristics. When working 

with overcomplete dictionaries we want the cost function to enforce sparsity, meaning that 

the encoding will have few non-zero coefficients. Moreover, a good choice of C(.) will seek 

the most informative vectors. Thus, the problem is usually stated as:

(3)

where ||.||0 is the l0 pseudo-norm, where a norm lp is defined as:

(4)

l0 is basically the number of non-zero coefficients in a. It promotes sparsity by penalizing 

low value coefficients while tolerating large ones. Solving 3 is known as sparse coding, 

meaning that a signal is represented by a few number of atoms (k) in D. Ideally, k is much 

smaller than N. However, problem 3 is NP-hard [32] and is often replaced by a relaxed 

objective function that uses the l1 norm [33]:
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(5)

Here, the λ parameter balances the trade-off between reconstruction error and sparsity. The 

problem in 5 is convex and can be solved very efficiently. Moreover, the l1 norm is proved to 

promote sparsity and is more stable than l0 [33].

Sparse dictionary learning deals with the task of training such dictionaries ensuring that the 

final atoms enforce sparsity. Currently, there are two main methods for training sparse 

dictionaries, the MOD (methods of optimal directions)[34] and K-SVD (k-singular value 

decomposition)[31] algorithms. K-SVD became popular for being more efficient than MOD. 

In K-SVD, a dictionary of K atoms is learned by using the SVD (singular value 

decomposition) process to update an atom at a time. The objective function can be written 

as:

(6)

where ||.||F if the Frobenius norm, Y = [y1|…|yi] is a coefficient matrix and D = [d1|…|di] a 

dictionary. Ek is the residual matrix,  are rows of Y, and dk,  are the values being 

updated in the k-th iteration. These values are computed by minimizing 6 by finding a low-

rank approximation of Ek. The second term in 6 measures the number of non-zero 

coefficients in Y and sets a limit T thus enforcing sparsity. Notice that this method allows 

more flexibility to represent the data because it lacks constraints such as that the atoms 

(basis vectors) are orthogonal.

Dictionary learning and sparse coding have been successfully used in many signal and image 

processing task, such as denoising [35] and in painting [36]. More recently, it has also been 

successfully used in supervised and unsupervised classification tasks [37, 38].

The rationale behind using dictionaries for image classification is learning as many 

dictionaries as classes considered in the problem, each trained with data drawn from a 

particular class. These dictionaries are used to encode the data that needs to be classified, 

which in turn is reconstructed and compared to the original data-set. The smallest 

reconstruction error is obtained when the dictionary belonging to the correct class is used 

thus, we are able to predict the correct classes.

2.2.2. Training—Two dictionaries, one for foreground (Df) and one for background (Db), 

are learned in this stage. The learning task is guided by the grayscale masks built from the 

manual labeled ground-truth (GT) images (Figure 1(c)) that indicate the ROI regions (data 

outside the ROIs are not processed). All training images are converted to the LAB 

colorspace and normalize to the [0, 1] interval. The LAB colorspace is a color representation 

scheme designed to mimic the human visual color and brightness perception. The L 
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(luminance) channel values relates linearly to the human perception of brightness, while A 

and B carry the color information. Moreover, the Euclidean distance between colors in LAB 

corresponds to color difference perceived by human vision[42]. An 11-by-11 pixel sliding 

window is placed on top of every pixel of interest, on each channel, and used to extract the 

patches which form a training matrix. Df and Da are learned using the on-line dictionary 

learning algorithm described in Mairal et al. [39]. Our final dictionaries are composed of 256 

vectors, each.

A set of reference cell color samples, which are used during classification, is also computed 

along with the dictionary learning training. Here, 5×5 pixel windows are centralized on top 

of each cell in the mask and the mean LAB values are computed and stored.

2.2.3. Segmentation and Classification

Cell Detection: The use of dictionary learning and sparse coding in image classification 

relies on the fact that a signal is better represented by a dictionary learned on data drawn 

from its own class, which yields the decomposition with the smallest reconstruction error.

Our segmentation approach consists of encoding image patches using the background and 

foreground dictionaries and measuring the reconstruction error. Pixels whose patches are 

better represented by Df are marked as foreground.

More specifically, all images are converted to the LAB color space and normalized. An 11-

by-11 pixels sliding window is placed on top of every pixel of interest, on each channel, and 

used to extract the patches x. The computation is constrained to the ROI, in our case the 

DRN, indicated by the manually labeled masks. A patch x can be written as x = [xL|xA|xB]T 

where xL, xA, xB are vectors containing all pixels from the L,A and B channels. The 

encoding tasks can be written as:

(7)

(8)

Equations 7 and 8 are solved using the Lasso [40] algorithm. The results are two versions of 

patch x encoded by both dictionaries. The reconstruction error ℛ is measured by:

(9)
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(10)

where N is the number of atoms in D. A pixel is included in the segmentation mask if ℛf < 

ℛb.

One should note that atoms representing features common to both classes appear in both 

dictionaries and tend to have high coefficient values, thus reducing the error value. These 

atoms can be detected by computing  where most correlated atoms will have high 

inner product values [38]. Exclusion of these highly correlated atoms can sensibly improve 

discriminatory power [38]. Thus, Df and Db are thresholded to remove atoms whose inner 

products are equal or larger than 0.99. In our experience, ℛf and ℛb are highly separable 

when computed on pixels from cell regions, thus being a good method for detecting cells. 

On the other hand, ℛf and ℛb are more prone to ambiguity, having closer values when 

computed over background pixels. This means that DL segmentation alone can yield false 

positives and needs some kind of post-processing. Figure 3 shows examples of the 

dictionaries before and after threshold and discarded atoms. Visual inspection, especially on 

the discarded dictionaries, reveals that atoms very similar in both dictionaries are removed, 

together with repeated atoms. It is also interesting to note how the foreground dictionary 

captures mostly cell-like features while the background dictionary captures wide 

homogeneous spaces and debris-like features.

Segmentation Refinement and Post-processing: The initial segmentation may not separate 

cells that are touching. So, we used a watershed-based approach to refine its result. 

Watershed segmentation models images as a set of catchment basins (dark pixels) and ridges 

(bright pixels), where the latter is used to guide the actual segmentation task. Watershed is a 

computationally efficient but prone to over segmentation when directly applied to the 

original images. Thus, our strategy is to use the original IFs together with the DL 

segmentation mask to locate background and cell markers and impose those on the initial 

mask so that the watershed transform consistently segments the boundaries between cells. 

We provide a detailed explanation of our refinement methods in the following paragraphs. 

Figure 4 summarizes our strategy.

The first step (Figure 4:a) is contrast enhancement of fluorescence images using local 

histogram equalization (CLAHE [41]). CLAHE helps to locally improve the contrast of 

badly defined boundaries and enhances faded cell bodies that are mixing with background. 

Next, the newly enhanced images are eroded and, in parallel, are opened using a disk-shaped 

structuring element of 5 pixels radius which yields images sets Io and Ie. The eroded set is 

left with high intensity peaks while the opened set has a smoothed version of the images. In 

step d (Figure 4:d), Ie are used as markers and Io are used as masks for morphological 

opening-by-reconstruction [42]. Intuitively, this operation forces the peaks in Ie to spread, 

having Io as a template. It results in a smoothed image where the cells are bright and 

background is suppressed. These images are further refined in the opening-closing step that 
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operates on the image complement (Figure 4:e). The resulting image has its regional 

maximums computed [42] (Figure 4:f) resulting in Imax and, in parallel, it is thresholded 

using Otsu’s method [43] (Figure 4:g). Next, the distance transform is computed on the 

thresholded image (Figure 4:h) and the watershed transform is used to find its ridges (Figure 

4:i) resulting in image Imin. Meanwhile, the distance transform is also computed on the 

segmentation mask resulting in Imask. Step k (Figure 4:k) composes a map of regional 

maximums and minimums from Imax and Imin and uses it to impose local minimums on 

Imask. These minimums work as markers for watershed computation. Next, the watershed 

transform is computed on Imask and the resulting ridge lines are used to separate cells on the 

segmentation mask. Figure 5 shows step-by-step refinement results. Figure 5:a shows a 

segmented image after CLAHE enhancement. Figure 5:b shows the erosion result and 5:c 

opening result. Figure 5:d and 5:e show opening by reconstruction and opening-closing by 

reconstruction results respectively. Figure 5:f shows the regional maximums and 5:g the 

thresholded image. Figures 5:h and 5:h show the distance transform and its respective 

watershed. Figure 5:j show the distance transform computer over the segmentation mask, as 

described in Figure 4:j. Figure 5:k shows the imposed minimums, which work as seeds for 

the final watershed transform. Figure 5:l shows the watershed overlayed on the original 

images and 5:m the refined segmentation mask. Finally, the final segmentation is displayed 

in 5:n.

The DL-based segmentation may recognize artifacts such as debris, as real cells. Especially 

when they have the same color of actual cells. False positives may also occur during 

watershed refinement, where smaller parts of the segmentation mask may be broken into 

independent structures. Thus, we employ a set of computationally efficient filters to reduce 

the number of false positives and improve counting results. First, a color-wise filter removes 

structures whose color is closer to the background than to cells. A color difference map (ΔE) 

is computed between background pixels and the original image and thresholded. ΔE works 

as a distance map between a reference (here, the background) color and the rest of the 

image. Regions where the colors are similar (or closer) to the reference will be dark (small 

distance) while regions where colors are different will be bright (large distance - computing 

the ΔE is explained in details in the next section). Thresholding it removes most of the 

undesired structures. The segmentation mask obtained in the previous steps is used as a 

guide for drawing background samples. We set the threshold value to the 75th percentile 

value as ΔE does not follow a normal distribution. Second, an area-based threshold is 

performed to remove structures that have a smaller number of pixels than a particular set 

number. Here, we set the threshold to the 5th percentile of the area distribution. Finally, we 

perform a shape-wise filtering based on the solidity coefficient [?], which measures an 

object’s convexity. Solidity is computed as the ratio S = A/Ac where A in the number of 

pixels in the structure and Ac is the number of pixels in its convex hull, yielding a value 

between 0 and 1. The more convex the object is, the smaller is its solidity. In our images, 

cells are approximately round, thus convex structures are very likely to be debris that should 

be removed. We set our solidity threshold to the 10th percentile. It is noteworthy that more 

aggressive filtering would greatly reduce the number of false positives at the expense of 

missing more real cells.
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Classification: Finally, our method classifies cells in red (stained for CP-13), green (stained 

for aCasp-6) and yellow (stained for both markers). Inspection of our fluorescence images 

reveals bleed-through between channels, meaning that cell classification based on the color 

channels alone is inaccurate, as there is no pure color. Even cells considered red or green 

during manual labeling are composed of a mix of signals. In fact, the RGB scatter plot in 

Figure 6 show how mixed the cells are in the color space.

In order to circumvent this problem, instead of using thresholding, our approach consists in 

finding a cell mean color location in the LAB color space, which improves separation as 

shown in Figure 6, and computing its distance from red, green and yellow regions. The color 

samples extracted during the training step are used as LAB region references here.

Notice that the segmentation process lacks perfect boundaries results, often leaving some 

background around the cells. These extra pixels allow suitable visualizations but impair the 

classification, as their presence change the mean color values. We remove the offending 

pixels from each segmented cell individually, by computing the mean color difference (ΔE) 

map between background pixels and the original image, and thresholding it. First, we 

compute difference values Ldiff, Adiff, Bdiff from the pixels within each cell, as:

where LB, AB and BB are the background LAB channels, Lc, Ac, Bc are the IF image LAB 

channels and μ(.) the mean. ΔE is computed by:

(11)

Since background is the reference here, pixels whose color value is closer to it are dark in 

ΔE (smaller distance) while cell pixels, whose color are further away, are brighter (larger 

distance). This map is hard thresholded, yielding cells that are mostly free of background. In 

our experiments we empirically set the threshold to 0.2.

Classification is performed by computing the Mahalanobis distance [44] between each cell 

mean LAB values (μcell = [L|A|B]) and sample sets from red (μ1 =[L|A|B]), green (μ2 = [L|A|

B]) and yellow (μ3 = [L|A|B]) cells (computed in training). The cell is assigned to the class 

that has the smallest distance:

where ℳ(.) is the Mahalanobis distance. The cell class is defined as  is advantageous 

to use a distance metric, since it does not require that all classes are present in the image, 

unlike clustering methods that always expect a fixed number of classes. However, 

Mahalanobis does require that all classes are minimally represented in the training set, 
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otherwise it won’t be able to account for them during classification. Figure 7(e) shows an 

example of classified fluorescence image.

2.3. Experimental Design and Comparative Strategies

We tested our segmentation strategy using a common leave-one-out scheme [45], where for 

each iteration one image was left out of the training phase, which was performed with the 

remaining data. This image was then used in the test phase. Foreground and background 

dictionaries, together with the cell color samples, were trained during each training phase 

and used for testing. This process was repeated until all images were segmented. Post-

processing filter thresholds were the same for all images throughout the leave-one-out test. 

Segmentation results were saved as binary masks and cell classification results were saved as 

grayscale masks, where each class is color-coded as a specific intensity value, during each 

testing phase. Segmentation quality was assessed in terms of true positive (TP), false 

positive (FP), false negative (FN), precision, recall, false positive rate (FPR) and F1 score, 

where:

The scores were computed between the binary mask and respective ground truth (GT). 

Finally, cell classification quality was computed as the percentage of correct classification 

for green, red and yellow classes.

GT data was extracted from the Photoshop files (section 2) using a Javascript routine made 

for reading the cell markers coordinates and cell class information. We notice that the 

manual counting procedure can yield inadequate centered markers, thus a TP was identified 

as a segmented cell whose centroid was 19 pixels away from a marker in the GT data. 

Information regarding true negatives (TNs) was not available for our dataset, so we 

employed the strategy similar to Xu et al.[46] for computing an estimate of the number of 

TNs: we used a sliding window, as used in segmentation, to count the number of patches that 

could be extracted from the DRN without touching the cells, having the manual labeled 

masks as reference. That processes gave the approximate number of TNs.

2.3.1. Comparison with other methods—We compared our pipeline to four different 

cell segmentation systems found in the literature. These methods were chosen for being 

distributed as free software and having been used in other segmentation studies. None of the 

selected methods classified the cells, so we only compared the cell detection performance. 

For all methods, we saved the binary masks resulting from their segmentations and used 

them for comparison with our GT data, as described in the previous paragraph. TP, FP, FN, 

precision, recall, FPR, and F1 scores were computed for all methods. We also plotted the 

Precision-recall and ROC (receiver operating characteristic) graphs to compare performance 

between all methods and the precision and recall box-plots for all methods to show the 

results dispersions. It is important to note that our segmentation method outputs a discrete 
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binary classification instead of a class probability score, and this is also true for other 

methods compared in this manuscript. Thus, traditional ROC curves were discarded in 

detriment of other graphs. A discrete binary classifier yields only a (TPR, FPR) point in 

ROC space, so we used a discrete plot instead of a curve to show compare results, as 

described in Fawcett et al. [47?]. Moreover, the tested methods were unsupervised, so there 

was no need to perform cross-validation on them.

1. Automatic cell counting (AC)[48]: Here, the author proposes a basic cell 

segmentation scheme, where a fluorescence image is split in 3 channels (R,G,B), 

which are segmented by threshold followed by blob detection. Their method was 

implemented as ImageJ macros. We modified their macros to save the 

segmentations as binary masks, which were compared to our GT data as 

described above.

2. CellProfiler (CP)[49]: CellProfiler is a general purpose tool for cell image 

analysis. It works with pipelines that can be designed to drive the image 

processing according to the users needs. We assembled a CellProfiler pipeline 

suitable for processing fluorescence images and counting cells based on the 

studies in Padmanabhan et al. [50] and Soliman et al. [51]. Briefly, in our 

pipeline the input were the original color images. They were (a) resized to 15% 

of the size (to reduce memory footprint); (b) converted to grayscale; (c) the 

identify primary objects filter was used to detect cells in the green channel; (d) 

the identify primary objects filter was used to detect cells in the red channel; and 

(e) all detected cell coordinates were exported to a spreadsheet. The coordinates 

were then transformed to reflect the original image size. Here, TPs were 

identified as a cell whose (x, y) coordinate was 19 pixels away from a marker in 

the GT data.

3. Method proposed by Ushizima et al. (DU)[52]: the super-pixel Voronoi 

diagram (SPVD) method [52] was selected the best performing algorithm during 

the Overlapping Cervical Cytology Image Segmentation Challenge [52, 53]. We 

tested a modified version provided by the authors, tuned to work with 

fluorescence instead of bright field. It was implemented as a ImageJ macro.

This algorithm directly processes color images, yielding a binary mask for green 

and another for red channels. We combined all masks in a single binary mask 

that was compared to GT as previously described.

4. CellC (CC)[54]: CellC was developed for counting bacterial cells in microscopy 

images. Although it is capable of processing fluorescence images, it does not 

directly work with color information and the different fluorescence channels 

must be entered as grayscale images. For this test we split our images into red, 

green and blue channels and segmented the red and green channels separately. 

The results were combined in a single binary mask that was compared to GT as 

previously described.

2.3.2. User experience quantification—Our final test aimed at assessing how much 

actual user time would be saved by using our method instead of manual counting. In our 
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setup, six users without any previous experience in cell counting received a basic training for 

performing the counting task, following the same protocol applied for labeling GT data: The 

DRN ROI should first be traced using cyto-architectonic parameters based on Baker et al. 

for LC [25] and Rub et al. [26]. Adobe Photoshop CS6’s built-in counting tool was used for 

manual cell counting. Neurons were classified into 3 classes: Red, Green, and Yellow 

(overlap) and separated into three different groups inside Photoshop using the counting tool. 

Counting was conducted on the RGB images and confirmed on single channel images, for 

precision. Each file was saved in Photoshop file format.

After training, three users (referred to as user #1, user #2 and user #3) counted the original 

fluorescence images independently of each other. Each file was uninterruptedly counted and 

the necessary time for performing the task was measured with a stopwatch. Two other users 

(referred to as user #4, user #5 and use #6)) were presented with the same fluorescence 

images, but this time the detected cells were highlighted by thin boundaries. Again each file 

was uninterruptedly counted and the necessary time for performing the task was measured 

with a stopwatch. We assessed the resulting statistical significance using Student’s pair-wise 

t-test.

3. Results

Our segmentation method was implemented in Matlab (MathWorks Inc), and the dictionary 

learning and sparse coding functions come from the SPAMS Toolbox [39, 55]. Our 

experiments were performed in a Linux workstation with an Intel(R) Xeon(R) 6-core CPU 

2.40GHz E5-2620 and 16GB of RAM.

Figure 7 shows the segmentation result for an image from our dataset: (a) is the original IF 

image and (b) a zoomed in region. (c) shows the final segmentation results. Note that here 

we also show the classification results. Boundary colors indicate the class attributed to each 

cell. (d) is the ground truth from the manual counting, placed here for comparison. Is is 

possible to see that most cells were correctly segmented and classified, although some 

mistakes are visible.

For segmentation efficiency, we obtained a TP rate (recall) of approximately 0.78 (in [0, 1] 

interval, where 1 is best) while AC obtained 0.67, CP obtained 0.2, DU obtained 0.53 and 

CC, the tested method with highest TP, obtained 0.71. We obtained a modest precision score 

of 0.15 (in [0, 1] interval, where 1 is best), which was, nonetheless, one order of magnitude 

higher than 0.018 obtained by CC, 0.026 obtained by DU, 0.02 obtained by CP and 0.028 

obtained by AC. The precision scores were lowered by the number of FPs in all methods. 

Here, even though we have a set of post-processing filters to removes FPs, we avoided string 

filtering in order to keep FNs low. FPs also caused low F1 scores, since it measures the 

balance between precision and recall. Our method obtained a F1 score of 0.25 (in [0, 1] 

interval, where 1 is best) while CC obtained 0.027, DU obtained 0.028, CP obtained 0.008 

and AC obtained 0.038. On the other hand, we obtained a very low FNR of 0.22 (in [0, 1] 

interval, where 0 is best) while CC obtained 0.28, DU obtained 0.46, CP obtained 0.8 and 

AC obtained 0.32. As a practical example, the mean recall for algorithms from the literature 

was 0.53 while ours was 0.785, yielding a raw mean difference of about 0.25. It suggest that 
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our method was able to detect 25% more real cells than the other algorithms. Regarding cell 

numbers, we detected 277 more cells (our ground truth contained 1107 cells). Moreover, the 

algorithms from the literature obtained mean false negative rate of 0.47 while our method 

obtained 0.215, coincidentally yielding about 0.25 raw mean difference. It shows that our 

method yields 25% less false negatives among the detected cells (277 less undetected cells 

than other methods). Table 1 summarizes the scores obtained in our tests and Figure 8 shows 

true positive (TP) (a), false positive (FP) (b) and false negative (FN) (c) rates of our method 

(DL) in comparison to the automatic cell counting (AC), CellProfiler (CP), Ushizima et al. 

(DU) and CellC (CC) methods. As illustrated in these box-plots, our method outperformed 

the other cell counters, having the highest mean TP rate while keeping the number of FNs 

very low. The box-plots also reveal that our method had the lowest variability throughout the 

data set in regard to FP and FN rates. We used the precision-recall and ROC plots in Figure 

9 to aid in comparing our method to the others in literature. Since our method is based on 

discrete binary classification, we use discrete plots instead of curves. The same is true for 

the considered methods in literature, which output a binary mask instead of confidence 

values. In Figure 10 we have the precision and recall box-plots that show result scores 

dispersions for all considered methods. Finally, our average cell color correct classification 

rate was 0.71 (± 0.21).

Table 1 shows that we had a low precision rate, which was caused by the number of FPs. 

However, our method outperformed other cell counting methods in literature by far. This fact 

can also be note when analyzing the precision-recall and ROC graphs in Figure 9.

In a different experiment, we measured user time differences when counting the original 

images and pre-segmented images. We were interested in quantifying the improvement (if 

any) in user experience when using our cell detection tool for analyzing our IF images. 

Figure 1(a) exemplify an image used in this experiment. We were careful to keep the 

background of the segmented images in order to avoid confusing the users. All users counted 

a total of 49 images, each. Users #1, #2 and #3 counted the original images, while users #4, 

#5 and #6 counted the images with detected cells highlighted. Mean count time for original 

images was 318.02s (5.3 minutes) with 318s standard deviation. Mean count time for 

segmented images was 122.2s (2.03 minutes – 38% of the original counting time) with 

99.75s standard deviation. Computer-aided users were, on average, 2.6 times faster when 

using our methods. The mean time difference was statistically significant (pair-wise t-test 

yielded p-value ¡ 0.0001). Figure 11 shows the box-plot of the time distribution per user.

Finally, we measured the walltime (i.e. the total time a computer spent running a process) for 

the dictionary learning segmentation task together with watershed and filters post-

processing. Our method, on average, ran for (segmentation + watershed + post-processing 

time) 2.7 minutes per image (2.19 minutes), from which 2.47 minutes were used for running 

the segmentation and 14s (0.23 minutes) for post-processing. The computational time 

required by our method is way below the average 5.3 minutes required by manual counting. 

Also, while the user can modify the post-processing filters parameters, the DL-based 

segmentation, which is the most expensive part, does not require user interaction. Meaning 

that the main segmentation could easily run in batches and later be fine-tuned by the user.
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4. Discussion

This paper proposes a semi-automatic method for segmenting cells in IF images derived 

from postmortem human brain tissue, followed by their classification according to their 

markers. The method is appropriated for double-labeled IF and accounts for cells labeled by 

both markers. We used dictionary learning and sparse coding for performing the cell 

detection, which is a versatile technique that bypasses intricate data pre-processing and can 

be trained with small sample sets (when compared to other state-of-the-art machine learning 

methods, such as deep learning [56]).

We evaluated our results using manually counted images as GT (the gold-standard) and 

compared our results to four open-access cell counter systems available in literature. We 

obtained a high recall rate of approximately 0.78, meaning that our system was able to detect 

most of the cells in the image. However, we obtained a modest precision rate of 

approximately 0.15, meaning that among the detected cells there were many incorrect 

detections. This was caused by a high number of FPs, which in turn were caused by 

excessive amounts of debris and artifacts in our image backgrounds. We included a set of 

post-processing filters to reduce FPs. However, the same parameter were used for all images 

during the leave-v-out test and we chose conservative values to avoid too aggressive 

filtering. In a practical setup the user can easily change these parameters to better suite each 

images, thus considerably improving the final segmentations. Our method, nonetheless, 

outperformed all other tested cell counters. In Table 1 we can see that our precision score 

was one order of magnitude higher that the other tested methods. FPR was also an important 

problem for the other methods, as can be seen in Figure 8. They were actually much less 

sensitive and specific when tested with our images. We decided to keep a low amount of FNs 

in expense of having a high rate of FPs as those could be easily ignored by the user. 

However, we are aware that excessive amounts of FPs are detrimental, requiring a lot of 

effort to be removed. Conversely, our system yielded the lowest FNR when compared with 

the other considered methods, as can be seen in graphs in Figure 8. Our results show that 

cell counting was on average 2.6 times faster when the users were guided by our method 

compared to manual counting, meaning that the semi-automated counting proposed here 

required only 38% of the time needed by manual counting to complete the same task. 

Finally, instead of criticizing other methods, our comparisons show how challenging 

handling human brain IF images can be and why we needed a more versatile method tailored 

to this kind of imagery.

In fact, open-access published algorithms for IF imaging analysis have been rarely tested in 

postmortem human brain tissue. Moreover, the majority of published algorithms are based 

on unsupervised, region-based and deformable contour methods. For instance, Lin et al. [57] 

proposed a method based on watershed for segmenting cells in IF images and created a 

distance transform that considers both geometric information and image gradients. Their 

method was tested with rat brain IF images. Elter et al. [58] developed a graph-based 

approach for segmentation cells in IF images where the cells are modeled as oriented graphs. 

This model is very computationally efficient, running in linear time, but it requires the 

background to be smooth, thus not suitable for human brains. Dzyubachyk et al. [2] 

proposed a multiple levelset method for jointly segmenting and tracking cell in IF images. 
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This study obtained good results on images of HeLa cell cultures. However, their images 

were homogeneous with smooth backgrounds. Fish et al. [3] took on a slightly different 

goal: segmenting immunoreactive puncta in fluorescence images of synapses using multi-

scale morphology filtering. However, the authors propose a methodology that requires 

considerable manual interaction, rather than an algorithm per se. Their methodology was 

tested with synthetic and monkey brain images, yielding good quality masks. Srinavasa et al. 

[4] focused on segmenting specifically punctate patterns (i.e. bright dots distributed over a 

dark background) in IF images. The authors presented an active contours formulation that 

includes region-based and curvature-based forces. They tested their method with IF images 

of HeLa cell cultures, achieving good agreement with manual labeled GT. Bergeest et al. [5] 

also proposed the use of active contours for segmenting IF images and presented a new 

energy functional formulation. Their method was tested in several cell culture images and 

resulted in high colocalization (Dice coefficient) between ground truth masks and 

segmentation. Ouertani et al. [6] worked on segmenting and counting Leishmaniasis 

parasites in serum IF images. They proposed a segmentation pipeline that uses k-means 

clustering and Otsu thresholding for removing the background from their IF. They obtained 

mild results, having trouble with images with non-homogeneous gray intensities. Kong et al. 

[59], unlike most of the studies in this field, presented a 3D segmentation approach using 

gradient vector flow fields where the cells are located in the point where the vector converge. 

Their method was tested with human glioblastoma cell culture IF images and obtained high 

agreement with their manual GT. Finally, in a very recent article, Afshar et al. [8] proposed a 

distributed-memory algorithm for segmentation where each boundary pixel is modeled as a 

particle system that evolves in time. Authors showed good results in synthetic images and in 

cell culture IF images.

Despite the large variety, most computational techniques applied for this problem are 

unsupervised, meaning that they do not need to be trained nor require labeled data. 

Unsupervised methods seem attractive at first glance but have been highly outperformed by 

supervised learning in recent years [60], since the former is a one-fits-all solution while the 

latter is tuned to better represent underlying data. For this reason, we chose to use a 

supervised learning method in our segmentation. Dictionary learning has been used in 

general purpose image classification with good results [38, 61] in recent years. It is easy to 

train with modest amounts of samples and does not require extensive pre-processing. In 

addition to that, we designed our method tailored to human brain tissue images. In contrast 

to cell cultures and experimental animals that show clean background, postmortem human 

brain tissue, especially from older individuals naturally presents a high amount of 

background autofluorescence emitted by lipofuscin pigments that increases the noise. 

Treatment with Sudan Black reduces the problem, without eliminating it though [11, 14, 12, 

16]. Also, unpredictable periagonal conditions may increase the background. All these 

factors sum up to create a challenging image, full of cell debris and low contrast. These 

debris were often detected as cells by all other counting methods we tested, including ours. 

However, the use of supervised learning allowed us to reduce the number of FPs, since the 

DL algorithm learns most representative image features.

In future studies we also plan to include the unstained cells in our counting, as they are 

important for quantifying the total number of neurons in our IF images. A natural evolution 
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of our method would be the use of deep learning techniques, which have been presenting 

highly encouraging results for cell detection [62, 63] and histological diagnosis [64], in 

recent publications. One of our biggest challenges in incorporating deep learning in our 

studies would be the lack of enough samples for training deep learning neural networks. 

These models are large and complex, comprising a large number of parameters that need to 

be estimated, requiring an equally large number of training sets [65]. On the other hand, we 

could try to circumvent this problem by experimenting with data augmentation methods [66] 

and transfer learning [67].

In summary, we presented an alternative approach for automated cell counting in IF images 

that showed a better performance than other available methods. Our code will be available to 

other groups that may benefit from our method since it is trainable and suitable to work with 

a broad range of images.
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Highlights

• Our method detects and classifies cells in human brain fluorescence 

microscopy

• Dictionary learning and sparse coding learn to better represent cells in our 

images

• Segmented cells are automatically classified to speed up the cell counting 

process

• Our method outperforms several open-access methods in literature

• Efficient cell detection can be used in several fluorescence analysis tasks
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Figure 1. 
IF image and grayscale mask. (a) dorsal raphe nucleus (DRN) image stained for CP-13 and 

Casp6 (scalebar is 100μm); (b) respective 100% zoom view - the scalebar is 50μm (blue 

arrows point to real cells while magenta arrows point to debris that can be easily mistaken 

for cells); (c) respective grayscale mask used for training dictionaries, with white regions 

delimiting the DRN, while cells appear in gray.
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Figure 2. 
Proposed cell counting methodology.
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Figure 3. 
Trained dictionaries in LAB colorspace. (a) and (b) are examples of foreground and 

background dictionaries. (c) and (d) are the same dictionaries after thresholding most 

correlated atoms. (e) and (f) are the discarded atoms.
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Figure 4. 
Watershed-based segmentation refinement strategy
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Figure 5. 
Step-by-step watershed refinement results.
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Figure 6. 
Cell colors scatter plots in LAB (left) and RGB (right) color space.

Alegro et al. Page 27

J Neurosci Methods. Author manuscript; available in PMC 2018 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Example of a result obtained using our method. (a) test image (scalebar is 100μm); (b) zoom 

in view of (scalebar is 40 μm) (a); (c) final segmentation together with classification (the 

boundary color indicates predicted cell class); (d) ground truth.
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Figure 8. 
True positive, false positive and false negative scores obtained by our method (DL) in 

comparison to other cell counters (AC, CP, DU and CC). Red bar indicates the median (m) 

for each method (also in parenthesis). Red stars indicate files whose results were outliers.
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Figure 9. 
Precision-recall (left) and ROC (right) plots on the detection accuracy of our method (DL) 

compared to AC, CP, DU and CC
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Figure 10. 
Precision (left) and recall (right) box-plots of our method (DL) compared to AC, CP, DU 

and CC
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Figure 11. 
Counting time distribution per user in seconds. User #1, #2 and #3 counted the original 

images, while user #4, #5 and #6 counted the images with detected cells highlighted
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Table 1

Precision, recall, false negative rate (FNR - the percentage of non detected cell), and F1 score for all tested 

methods: Automatic Cell Counting (AC), CellProfiler (CP), Ushizima et al. (DU), CellC (CC), and Dictionary 

Learning (DL).

Methods Precision Recall FNR F1 score

AC 0.028 0.672 0.328 0.040

CP 0.020 0.199 0.801 0.008

DU 0.026 0.534 0.466 0.029

CC 0.018 0.716 0.284 0.028

DL 0.150 0.785 0.215 0.251
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