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ABSTRACT

Increasing efforts have been done to figure out the association between lncRNAs 
and complex diseases. Many computational models construct various lncRNA similarity 
networks, disease similarity networks, along with known lncRNA-disease associations 
to infer novel associations. However, most of them neglect the structural difference 
between lncRNAs network and diseases network, hierarchical relationships between 
diseases and pattern of newly discovered associations. In this study, we developed a 
model that performs Bi-Random Walks to predict novel LncRNA-Disease Associations 
(BRWLDA in short). This model utilizes multiple heterogeneous data to construct the 
lncRNA functional similarity network, and Disease Ontology to construct a disease 
network. It then constructs a directed bi-relational network based on these two 
networks and available lncRNAs-disease associations. Next, it applies bi-random 
walks on the network to predict potential associations. BRWLDA achieves reliable and 
better performance than other comparing methods not only on experiment verified 
associations, but also on the simulated experiments with masked associations. Case 
studies further demonstrate the feasibility of BRWLDA in identifying new lncRNA-
disease associations.

INTRODUCTION

The central dogma of molecular biology assumes 
genetic information is stored in protein-coding genes. 
There are about 20000 human protein-coding genes, 
accounting for less than 2% of the human genome, and 
more than 98% of the genome does not encode proteins 
[1–5] but produces tens of thousands of non-coding 
RNAs (ncRNAs). RNAs are intermediary molecules 
between a DNA sequence and its encoded proteins 
[6]. Among heterogeneous subtypes of ncRNAs, long 
ncRNAs (lncRNAs), are similar to mRNAs in gene 
structure, with length greater than 200nt [7]. Rapid influx 
of biological and medical evidences show that lncRNAs 
play fundamental and critical roles in various biological 
processes, such as cell proliferation, differentiation, 

chromatin remodeling, epigenetic regulation, genomic 
splicing, transcription, translation [7–12]. Particularly, 
more and more literature reports that the alterations 
and dysregulations of lncRNAs are associated with the 
development and progression of various complex diseases. 
For example, lncRNA HOTAIR (HOX antisense intergenic 
RNA) has 100 to approximately 2000-fold expression 
levels in breast cancer metastases based on quantitative 
PCR. It controls the pattern of histone modifications and 
regulates gene expression by binding to histone modifiers, 
PRC2 and LSD1 complexes [13, 14]. HOTAIR is viewed 
as a potential biomarker in various types of cancers. 
By down-regulating H19, an lncRNA confirmed more 
than 20 years ago [15], the breast and lung cancer cell 
clonogenicity and anchorage-independent growth can be 
significantly decreased [16]. In fact, H19 is involved with 
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various diseases and can be used as a potential prognostic 
biomarker for the early recurrence of bladder cancer [17].

From these concrete associations between lncRNAs 
and diseases, we can find that it is necessary and 
promising to collect lncRNA-disease associations as many 
as possible. However, although experimentally confirmed 
lncRNA-disease associations have been increasing, 
the number is still rather small, compared with a large 
number of lncRNAs and diseases [18–21]. Furthermore, 
determining the associations between lncRNAs and 
diseases by wet-lab experiments is very expensive and 
time consuming. Given that, accurately identifying 
lncRNA-disease associations by computational models 
can not only benefit the further biological experiments by 
saving cost and time, but also assist disease biomarkers 
detection for disease diagnosis, treatment, prognosis 
and prevention. In addition, these correctly identified 
associations can speed up our pace on understanding life 
process at RNA level.

Some data mining based models have been 
applied to predict lncRNA-disease associations in large 
scale. Chen et al. [22] assumed that functionally similar 
lncRNAs tend to interact with similar diseases, and 
introduced a Laplacian Regularized Least Squares for 
LncRNA-Disease Association (LRLSLDA) method to 
infer novel human lncRNA-disease associations based 
on lncRNA expression profiles. LRLSLDA computes 
Gaussian interaction profile kernel similarity for both 
disease and lncRNAs from known lncRNA-disease 
associations and lncRNA expression profiles, and then 
applies the framework of Laplacian Regularized Least 
Squares to identify potential associations. However, 
LRLSLDA is suffered from choosing suitable parameters 
and effectively combining two classifiers. Based on the 
assumption that functionally related lncRNAs are likely 
to be associated with phenotypically similar diseases, 
Sun et al. [23] proposed a global network-based method 
called RWRlncD to predict lncRNA-disease associations. 
RWRlncD firstly constructs the lncRNA functional 
similarity network, disease similarity network and 
lncRNA-disease association network, and then performs 
random walk with restart [24] on lncRNA functional 
network to infer potential associations between lncRNAs 
and diseases. RWRlncD only takes into account lncRNAs 
already associated with diseases. For an lncRNA currently 
not associated with any disease, its association with 
candidate diseases cannot be inferred. Yang et al. [25] 
investigated lncRNA-disease associations from a network 
view to study the connections between lncRNAs and 
complex diseases. Particularly, based on the fact that 
both protein coding genes and lncRNAs are associated 
with human diseases, they constructed a coding-non-
coding gene-disease bipartite network, composed with 
an lncRNA-implicated disease network and a disease-
associated lncRNA network, from the available lncRNA-
disease associations, and then applied a label propagation 

algorithm to predict novel lncRNA-disease associations. 
Obviously, their method asks for sufficient information 
of non-coding genes, protein coding genes interactions 
and lncRNAs functional annotations, all of them are 
incomplete and rather difficult to collect.

These aforementioned methods make use of 
all verified lncRNA-disease associations in network 
construction. But in the leave-one-out cross-validation 
(LOOCV), the test association is treated as unknown for 
prediction. Given that, the validation is biased toward the 
test association. In practice, although various types of 
biological data related to lncRNAs have been accumulated 
and stored in the public databases (i.e., starBase [26], 
lncRNAdb [27], NERD [28] and NONCODE [29]), 
lncRNAs reported to be associated with diseases are still 
rather limited.

Some efforts moved toward predicting novel 
lncRNA-disease associations without referring to known 
associations. Liu et al. [30] predicted potential lncRNA-
disease association by integrating known gene-disease 
associations and gene-lncRNA co-expression relationship. 
But for a disease temporarily with no related genes, their 
method cannot predict its associated lncRNAs. Li et al. 
[31] identified potential associations between lncRNAs 
and vascular disease based on genome location to 
globally screen relevant lncRNAs. This genomic location 
based method has restricted application scope, since 
not all the lncRNAs have neighborhood genes. Even if 
an lncRNA has neighborhood genes, this lncRNA may 
be not functionally related with these neighborhood 
genes. Zhou et al. [32] assumed that lncRNAs sharing 
significantly enriched interacting miRNAs tend to be 
involved with similar diseases and have more functionally 
related gene sets, and introduced a method called 
RWRHLD. RWRHLD integrates three networks (miRNA-
associated lncRNA-lncRNA crosstalk network, disease-
disease similarity network and known lncRNA-disease 
association network) into a heterogeneous network and 
applies random walk with restart on this heterogeneous 
network to predict novel lncRNA-disease associations. 
Chen [33] proposed a model called HGLDA to predict 
lncRNA-disease associations by using miRNA-disease 
interactions and lncRNA-miRNA interactions. HGLDA 
applies hypergeometric distribution test for each lncRNA-
disease pair, and takes the pair sharing common interacting 
miRNAs as a candidate association. Both RWRLDA and 
HGLDA are independent from the prior lncRNA-disease 
associations, and achieve reliable predictions. However, 
they cannot be applied to lncRNAs without any known 
miRNA interaction partners.

With the rapidly accumulated biological data, it 
is possible and necessary to integrate multiple sources 
of biological data to infer lncRNA-disease associations. 
Each source provides an incomplete view of the complex 
mechanism between diseases and biological molecules 
(including lncRNAs, miRNAs and genes), and integrating 
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multiple related data sources helps to reach a more 
comprehensive view of the mechanism. Given that, 
integrating multiple biological data has been one of the 
most important and attractive topics in the lncRNAs-
diseases analysis, and also in many other bioinformatics 
domains [11, 12, 34–42]. Chen et al. [43] proposed a data 
integration based method called KATZLDA. KATZLDA 
integrates known lncRNA-disease associations, lncRNA 
expression profiles, lncRNA functional similarity, disease 
semantic similarity and Guassian interaction profiles kernel 
similarity to predict lncRNA-disease associations. Lan et 
al. [44] integrated lncRNA sequences, lncRNA-disease 
associations to construct an lncRNA-lncRNA similarity 
matrix, and combined lncRNA-disease associations, 
disease associated genes, protein-protein interactions 
and Gene Ontology [45] to construct a disease-disease 
similarity matrix, and then used Karcher mean [46] to fuse 
these two matrices to predict lncRNA-disease associations 
based on bagging support vector machine. Chen et al. [47] 
proposed an Improved Random Walk with Restart for 
LncRNA-Disease Association prediction (IRWRLDA), 
which takes advantage of lncRNA-miRNA interactions, 
miRNA-disease associations, disease semantic similarity 
from disease MeSH descriptors, lincRNA expression 
profiles and lncRNA-disease associations to predict 
potential lncRNA-disease associations. Deng et al. [48], 
applied a flow propagation algorithm on a network 
consisted of lncRNA-lncRNA network, protein-protein 
interactions network, disease similarity network and the 
associations between each pair of them to predict novel 
lncRNA-disease associations. These methods achieve 
significantly improved results than previous methods (i.e., 
LRLSLDA and RWRlncD). Besides, some other methods 
(i.e., ILNCSIM and FMLNCSIM [49, 50]) targeted at 
constructing lncRNA-lncRNA functional network by 
fusing similarities derived from multiple data sources 
[43, 47, 49, 50], and predicted potential lncRNA-disease 
associations based on the functional network. These 
methods also got improved results than using one (or 
several) of these data sources alone.

All these network-based or data integration based 
methods, either do not take into account the structural 
difference between the network of lncRNAs and that of 
diseases, or ignore the hierarchical relationship between 
diseases and pattern of newly discovered associations. To 
address these issues, in this paper, we presented a new 
method called Bi-Random Walk on directed bi-relational 
graph to predict novel lncRNA-disease associations 
(BRWLDA in short). BRWLDA firstly utilizes lncRNA-
miRNA interactions, miRNA-disease associations and 
lncRNA-gene functional associations to define the 
lncRNA-lncRNA similarity. The first two datasets are 
obtained from starBase v2.0 [26] and HMDD [51], and 
the last one is derived from Gene Reference into Function 
(GeneRIFs) [52]. Next, BRWLDA constructs a directed 
bi-relational network between lncRNAs and diseases 

by viewing each lncRNA (or disease) as a node of that 
network, and initializes edges between lncRNAs based on 
the lncRNA-lncRNA similarity, directed edges between 
diseases based on the Disease Ontology (DO) hierarchy 
[53] and the edges between lncRNAs and diseases 
based on lncRNA-disease associations collected from 
GeneRIFs and LncRNADisease [18]. To account for 
structural difference between the subnetwork composed 
with lncRNA nodes and that composed with disease 
nodes, BRWLDA applies a bi-random (asynchronous) 
walks [54] on the directed bi-relational network to 
predict novel lncRNA-disease associations. BRWLDA 
achieves reliable predictions (with AUC=0.7952 and 
AUC=0.7940) on disease-oriented and lncRNA-oriented 
LOOCV, and outperforms previously proposed LRLSLDA 
[22], RWRlncD [23], RWRHLD [32], ILNCSIM [49] 
and IRWRLDA [48]. In the simulated experiments with 
masked associations between lncRNAs and diseases, 
BRWLDA also obtains higher AUC than these state-
of-the-art solutions. In addition, by manually literature 
mining, 19 lncRNAs in top 20 predictions of BRWLDA 
are confirmed being associated with three cancers (Breast, 
Colon and Lung) of wide interests. These examples 
further demonstrate the effectiveness and potential 
value of BRWLDA in identifying novel lncRNA-disease 
associations.

RESULTS

Experimental protocols

To quantitatively study the performance of the 
proposed method and that of other related comparing 
methods, two different orientations of LOOCV are 
implemented on experimentally verified lncRNA-
disease associations collected from GeneRIFs [52] and 
LncRNADisease [18]. For disease oriented LOOCV, each 
disease’s association with lncRNAs is left out in turn as the 
test sample for prediction. For lncRNA oriented LOOCV, 
each lncRNA’s association with diseases is left out in turn 
to be predicted. These test samples are then evaluated with 
respect to all the diseases or lncRNAs. Particularly, test 
samples whose predicted ranks above a given threshold 
are considered as successful predictions, while those with 
predicted ranks lower than the threshold are considered 
as unsuccessful predictions. By varying the threshold, 
true positive rate (TPR, sensitivity) and false positive rate 
(FPR, 1-specificity) can be obtained. Sensitivity denotes the 
percentage of predictions ranking higher than the threshold, 
and specificity describes the percentage of predictions 
ranking lower than the threshold. Receiver-operating 
characteristics (ROC) curve can be drawn by plotting TPR 
versus FPR at different thresholds, and the area under 
ROC curve (AUC) is calculated to quantify the prediction 
performance. The larger the AUC value, the better the 
performance is, and AUC=0.5equals to random guess.
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To comparatively study the performance of 
BRWLDA, we compare BRWLDA with other related 
methods (LRLSLDA [22], RWRlncD [23], RWRHLD 
[32], ILNCSIM [49] and IRWRLDA [48]) in disease-
oriented and lncRNA-oriented LOOCVs, respectively. 
Next, we simulate the situation of predicting more 
detailed associations between diseases and lncRNAs. 
Particularly, if an lncRNA is associated with several 
diseases (see Figure 1), based on the DO hierarchy, we 

randomly mask the deepest (specific) diseases (i.e., DO: 
1612 and DO: 1793 in Figure 1) in the hierarchy, and 
then recursively succeed to ancestor diseases (i.e., DO: 
5093). This simulated experiment setting is quite different 
from the widely-used LOOCV, it can assess the ability 
of BRWLDA in predicting specific diseases (or subtypes 
of a cancer) associated with lncRNAs. These specific 
associations may provide more valuable directional clues 
for complex disease analysis and precise treatments. These 

Figure 1: An illustration of hierarchically structured diseases associated with LINC-ROR.
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clues are also of great interests to medical scientists. In 
the end, case study with respect to three cancers (Breast, 
Colon and Lung) of wide interests is performed to validate 
the effectiveness of BRWLDA.

Parameter sensitivity analysis

Different from other random walk based approaches 
[23, 24, 48] that use two parameters (t and α) to control the 
steps of global random walks and the restart probability, 
BRWLDA utilizes two parameters (tl and td) to control 
the steps of a directed random walker starting from the 
lncRNA subnetwork and then residing in the disease 
subnetwork, and the steps of a random walker starting 
from the disease subnetwork and then stopping in the 
lncRNA subnetwork. To investigate the influence of these 
parameters, we increase tl and td from 0 to 16 with step 
size as 2 in lncRNA (or disease) oriented LOOCV with α 
fixed as 0.3. We vary α from 0 to 1 with step size 0.1 and 
fix both tl and td as 4. The AUC values of BRWLDA under 
different combinations of tl and td are reported in Figure 

2A (lncRNA oriented) and Figure 2B (disease oriented), 
and the AUC of BRWLDA under different input values of 
α is plotted in Figure 2C.

Obviously, BRWLDA obtains relatively stable AUC 
when both tl and td are larger than 2. In contrast, its AUC is 
sharply reduced with tl = 0 (or td = 0),. Another interesting 
observation is that in the lncRNA oriented LOOCV, 
BRWLDA gets better AUC when td ≥ 2, and in the disease 
oriented LOOCV, BRWLDA also has good AUC when tl 
≥ 2. That is principally because td ≥ 2 (or tl ≥ 2) enables a 
walker to move from lncRNA (or disease) nodes to disease 
(lncRNA) nodes. In this way, potential associations can be 
predicted. This observation also indicates the necessity of 
fusing the predicted lncRNA-disease associations started 
from lncRNAs and those started from diseases. Based on 
the results in Figure 2A and Figure 2B, in the following 
experiments, we set tl = td = 4.

In Figure 2C, we can see the AUC with α = 0 is the 
lowest, since no new lncRNA-disease associations can be 
predicted in this case. When α is increasing from 0.4 to 
1, AUC of the lncRNA oriented and that of the disease 

Figure 2: Sensitivity analysis of parameters (tl , td and α) of bi-random walks with restart in terms of AUC. (A) LOOCV 
for lncRNA (B) LOOCV for disease (C) AUC vs. α (D) AUC vs. we tl (td) control the number of steps for a walk jumping from the lncRNA 
(disease) subnetwork to disease (lncRNA) subnetwork, α controls the restart probability of a random walker. we controls the semantic 
contribution of hierarchically linked disease in the disease similarity computation.
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oriented LOOCV both show decreasing trends, but they 
show different trends when α is increasing from 0.1 to 0.4. 
This fact indicates two random walkers on the directed 
bi-relational network should be specified with different 
restart probabilities and also indicates the rationality of 
applying bi-random walks on the bi-relational network, 
instead of the global random walks. Given the two 
oriented LOOCVs have comparable and high AUC around 
α = 0.3, we fix α = 0.3 in the following experiments.

We also investigate the parameter we in the 
disease similarity calculation, we represents the semantic 
contribution of links between disease terms in the Disease 

Ontology. We vary we from 0 to 1 with step size 0.1 and 
reveal the results in Figure 2D. From this figure, we can 
see that when we = 0 both lncRNA and disease-oriented 
LOOCV have the lowest AUC. That is because diseases 
are treated as isolated nodes of DO hierarchy and the 
similarity between diseases are zeros in this extreme 
setting (we = 0). When we = 1, the corresponding AUCs are 
also lower than those when we ϵ (0, 1). That is because the 
semantic contribution between each pair of disease terms 
differs, a node in a direct acyclic graph (DAG) always 
gets more contributed information from its directly linked 
nodes than indirect ones. AUC seems steady when we is 

Figure 3: Performance comparison between BRWLDA, RWRHLD, RWRlncD, LRLSLDA, ILNCSIM and IRWRLDA 
in terms of ROC curve and AUC.  (A) LOOCV for lncRNA (B) LOOCV for disease. The left figure is (A) and the right figure is 
(B) BRWLDA obtains AUCs of 0.7952 and 0.7940 in lncRNA oriented LOOCV and disease oriented LOOCV, respectively. BRWLDA 
significantly outperforms all the comparing methods and demonstrates its effectiveness in predicting lncRNA-disease associations.

Figure 4: (A) Performance of comparing methods under the same input networks. (B) Contribution of different data used 
by BRWLDA. (A) RWRHLD, RWRlncD and LRLSLDA all use the same lncRNA similarity network and disease similarity network 
constructed by BRWLDA. (B) BRWLDA-FS only uses the functional similarity derived from GO annotations of lncRNAs, BRWLDA-
MDS only utilizes the similarity derived from lncRNA-miRNA interactions and miRNA-disease associations, and BRWLDA takes 
advantage of these two types of similarities.
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increasing from 0.1 to 0.9. This trend can be contributed 
to that the known lncRNA-disease associations are still 
limited. Based on these observations, to make the semantic 
contribution differs smoothly, we adopt we = 0.9 to 
measure the similarity between disease terms.

Results of LOOCV on lncRNA-disease 
associations

BRWLDA and other comparing methods are 
applied on the experimentally verified lncRNA-
disease associations collected from GeneRIFs [52] 
and LncRNADisease [18] databases in the framework 
of LOOCV. Figure 3 plots the ROC curves of these 
comparing methods and their corresponding AUCs. From 
this figure, we can clearly see that BRWLDA almost 
always gets higher true positive rates under the same 
false negative rates, and achieves higher AUC than these 
comparing methods. In the lncRNA oriented LOOCV, 

AUC of BRWLDA is 0.7952, and those of RWRHLD, 
RWRlncD, LRLSLDA, ILNCSIM and IRWRLDA are 
0.6505, 0.4960, 0.5454, 0.6936 and 0.7630, respectively. 
In the disease oriented LOOCV, AUC of BRWLDA is 
0.7940, whereas AUCs of these comparing methods are 
0.7188, 0.5012, 5322, 0.7535 and 6018, respectively.

Although RWRHLD utilizes a heterogeneous 
network similar as the bi-relational network to predict 
novel associations, it ignores the structural difference 
between different subnetworks. Given that, RWRHLD 
is outperformed by BRWLDA. RWRlncD depends on 
known lncRNA-disease associations to calculate the 
similarity between lncRNAs. It does not pay attention 
to the interrelationship between diseases and cannot be 
applied to lncRNAs (or diseases) without any known 
lncRNA-disease associations. For this reason, it gets 
lower AUC than other methods, and even obtains lower 
AUC than random guess. Both LRLSLDA and ILNCSIM 
suffer from combining results from two classifiers and 

Figure 5: Diseases associated with lncRNA H19. Diseases in the blue rectangles were associated with H19 before 2005, whereas 
diseases in the orange rectangles are discovered to be associated with H19 after 2005. Particularly, lung cancer (DO:1324) was in 2006, 
liver cancer (DO:3571) was in 2011 and gastric cancer (DO:10534) was in 2014. The hierarchy is adopted from Disease Ontology.
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selecting the optimal parameter. Furthermore, ILNCSIM 
overestimates the similarity between lncRNAs, since each 
left out test association is already utilized to compute the 
similarity between lncRNAs before LOOCV. ILNCSIM 
and IRWRLDA generally obtain better ROC curves 
and larger AUCs than other comparing methods (except 
BRWLDA). That is because they construct the lncRNA 
functional network by integrating various data sources, 
including disease MeSH descriptors, hierarchical 
structure between disease terms in DO, disease-miRNA 
associations, lncRNA-miRNA interactions and lncRNA 
expression profiles. This fact shows that integrating 
multiple relevant data sources can improve the reliability 
of lncRNA-disease association prediction.

Since RWRHLD, RWRlncD and LRLSLDA 
compute the similarity between lncRNAs before 
lncRNA oriented LOOCV, they are suffered from the 
overestimation problem in the lncRNA oriented LOOCV. 
In other words, the left out associations are already 
used before testing. To reach a comprehensive and 
fair evaluation of the effectiveness of BRWLDA and 
of these comparing methods, we use the same lncRNA 
similarity and disease similarity computed by BRWLDA 
as the input of these methods, and report the results in 
Figure 4A. By referring to Figure 3A, we also find that, 

by fusing multiple data sources, RWRHLD improves the 
AUC from 0.6505 to 0.7675, RWRlncD increases from 
0.496 to 0.7276, and LRLSLDA improves from 0.5454 to 
0.7301. These improvements show the potential of data 
fusion in identifying novel lncRNA-disease associations. 
In addition, we can also find BRWLDA gets the best ROC 
curves among these comparing methods and its AUC is 
larger than the second best RWRHLD. These results again 
support the advantage of applying bi-random walks on 
the directed bi-relational network for predicting potential 
lncRNA-disease associations.

We further investigate the contribution of two 
components of lncRNAs’ similarity. For this investigation, 
we introduce two variants of BRWLDA: i) BRWLDA-
FS only employs functional similarity derived from GO 
annotations of lncRNAs; and ii) BRWLDA-MDS only 
utilizes the similarity derived from lncRNA-miRNA 
interactions and miRNA-disease associations. Figure 4B 
reports the results of these two variants and BRWLDA. 
We can observe that BRWLDA generally achieves better 
performance than these variants. From the results in 
Figure 4B, we can conclude that integrating GO annotations 
of lncRNAs and related miRNAs helps to build a more 
functional-coherent lncRNA-lncRNA network than using 
single data source alone. The improvement of BRWLDA 

Figure 6: Flowchart of lncRNA similarity measurement. Three different biological data related to lncRNAs are used to measure 
lncRNA-lncRNA similarity.
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to BRWLDA-MDS is more prominent than to BRWLDA-
FS. That is possible because GO terms are overlapped 
with DO terms in certain extent and using GO annotations 
of lncRNAs can more accurately reflect the functional 
similarity between lncRNAs than miRNA-disease 
associations and lncRNA-miRNA interactions.

Result of masked lncRNA-disease associations

In this section, we setup a more realistic 
experimental scenario to investigate the performance of 
BRWLDA and that of other comparing methods. DO and 
lncRNA-disease associations are continuously updated, 
and newly appended associations with an lncRNA often 
correspond to descendants of the diseases in the DO 
hierarchy that are already associated with this lncRNA. In 
Figure 5, we provide an example of H19 about how it was 
sequentially associated with descendant diseases. In 2005, 
H19 was reported to be associated with breast cancer 
(DO:1612), bladder cancer (DO:11054) and colon cancer 
(DO:219). In 2006, it was reported to be associated with 
lung cancer (DO:1324), in 2011 it was recognized to be 
associated with liver cancer (DO:3571), and in 2014 it was 
reported to be associated with gastric cancer (DO:10534) 

[16, 55, 56], these newly discovered associations 
correspond to descendants of the diseases already 
associated with H19. From the pattern of newly associated 
diseases of H19, we can find the DO hierarchy should be 
used to identify new diseases associated with lncRNAs. 
In other words, these newly appended associations depict 
more specific complex diseases (or subtypes of a cancer) 
associated with lncRNAs. Accurately predicting these 
specific associations is more interesting and helpful for 
precise diagnosis and treatment.

Motivated by this viewpoint, we assume currently 
available disease associations of lncRNAs are complete. 
For a direct acyclic graph (DAG) constructed by a 
particular lncRNA’s associated diseases, we randomly 
and recursively mask the diseases corresponding to leaf 
nodes in the DAG of an lncRNA. We regard these masked 
diseases as newly discovered associations and evaluate the 
performance of these comparing methods on predicting 
these associations. In the experiment, we use k to denote 
the number of masked associations of each lncRNA. For 
example, k = 3 indicates 3 diseases associated with an 
lncRNA are masked. If the number of associated diseases 
of an lncRNA is less than k, we do not mask all the 
diseases, but keep at least one disease unmasked. To reduce 

Table 1: AUC of BRWLDA, RWRHLD, RWRlncD, ILNCSIM and LRLSLDA on predicting masked lncRNA-
disease associations

k

1 3 5

BRWLDA 0.9888±0.0004 0.9548±0.0003 0.9275±0.0005

RWRHLD 0.9830±0.0010 0.9414±0.0011 0.7801±0.0008

RWRlncD 0.9817±0.0008 0.9444±0.0008 0.9004±0.0025

ILNCSIM 0.9417±0.0009 0.9058±0.0013 0.8528±0.0015

IRWRLDA 0.9405±0.0005 0.9321±0.0019 0.9001±0.0015

LRLSLDA 0.7871±0.0012 0.7619±0.0005 0.7447±0.0027

Table 2: The numbers of the confirmed lncRNA-disease associations predicted by BRWLDA, ILNCSIM and 
RWRHLD under Top k rank

Disease name Number of known 
associated lncRNAs(k)

methods

BRWLDA ILNCSIM RWRHLD

breast cancer 26 14 12 9

colon cancer 6 4 3 3

bladder cancer 13 9 7 5

liver cancer 31 20 21 13

lung cancer 25 16 16 12

stomach cancer 14 7 6 4

total 115 70 65 46
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random effect, we repeat each comparing method under 
each k (1, 3, 5) for 10 independent rounds and report the 
average result and standard deviation in Table 1. Results 

in boldface are significantly superior to other results in 
the same setting, with statistical significance is checked 
by pairwise t-test at 95% significance level.

Table 3: Breast, colon and lung cancers associated lncRNAs in the top 20 ranking lists of BRWLDA and the 
corresponding evidences

Cancer type lncRNA Evidence(PMID) Rank

Breast H19 16707459;14729626;12419837;22996375 1

Breast HOTAIR 24721780;24531795;24829860 2

Breast MALAT1 22492512;22996375;24499465 3

Breast MEG3 14602737; 4

Breast CDKN2B-AS1 17440112;20956613 5

Breast PVT1 17908964; 7

Breast NEAT1 2541770;23825647 11

Colon HOTAIR 24667321; 1

Colon MALAT1 22996375; 3

Colon H19 21874233;22996375 4

Colon MEG3 14602737 6

Colon CCAT1 23416875 14

Lung MALAT1 24499465;24757675;24817925 1

Lung HOTAIR 24757675 2

Lung H19 16707459;24499465;22996375 3

Lung MEG3 14602737; 5

Lung NEAT1 25818739; 10

Lung BCYRN1 9422992; 14

Lung TUG1 24853421; 15

Figure 7: An illustrative example of directed bi-relational network.  Directed edges between disease nodes describe the 
hierarchical relationship between diseases, undirect edges between lncRNAs describe the functional similarity (reflected by line width) 
between lncRNAs, and undirect edges between diseases and lncRNAs indicate the known lncRNA-disease associations, and the dashed 
edges between lncRNAs and diseases indicate the novel associations.
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From Table 1, we can clearly find that BRWLDA 
outperforms these comparing methods across different 
input values of k. ILNCSIM takes LRLSLDA as its 
classifier, since it not only utilizes disease Gaussian 
interaction profile kernel similarity, but also the DO 
hierarchical structure to measure the similarity between 
diseases, so it achieves better results than the latter. 
However, ILNCSIM does not take into account the DO 
hierarchy in the training and prediction process, it is 
always outperformed by BRWLDA. For the same reason, 
IRWRLDA is also outperformed by BRWLDA. Although 
RWRHLD constructs a heterogeneous network, which 
is similar as the directed bi-relational network used by 
BRWLDA, its AUC is comparable with BRWLDA when 
k = 1. However as k increasing, the performance margin 
between BRWLDA and RWRHLD quickly increases. That 
is because RWRHLD neither takes into account the DO 
hierarchy, nor the structural difference between lncRNA 
subnetwork and disease subnetwork. In fact, it applies 
global random walk with restart on the heterogeneous 
network. RWRlncD calculates the similarity between 
lncRNAs by referring to disease structural similarity, 
and applies random walk with restart only on lncRNA 
functional similarity network, it initially obtains similar 
AUC as BRWLDA and latter gets much lower AUC than 
BRWLDA. The reason is that RWRlncD also neglects the 
DO hierarchy. These observations again corroborate the 
advantage of bi-random walks on the directed bi-relational 
network in predicting lncRNA-disease associations, and 
also suggest that DO hierarchy should be utilized in 
predicting potential lncRNA-disease associations.

To further study whether an association prediction 
method has the ability to predict novel lncRNAs 
associated with a disease that currently is not associated 
with any lncRNA. To compare the performance in this 
regard, we apply BRWLDA, ILNCSIM and RWRHLD for 
6 critical cancers, including breast cancer, colon cancer, 
bladder cancer, lung cancer and stomach cancer. These 
three methods are adopted since they work better than 
other comparing methods in disease oriented

LOOCV. For a disease d, we remove all its related 
lncRNAs to simulate the case, and then we apply these 
methods to predict lncRNAs associated with this disease. 
Next, we count the number of confirmed lncRNAs in Top 
k ranks for each disease, and k equals to the number of 
removed lncRNAs of this disease.

From Table 2, we can find that BRWLDA outperforms 
ILNCSIM and RWRHLD in identifying lncRNAs 
associated with these diseases, whose associated lncRNAs 
are completely unknown. Although ILNCSIM identifies one 
more confirmed lncRNA than BRWLDA for liver cancer, 
the latter always correctly identifies more related lncRNAs 
of other cancers than the former and RWRHLD. This global 
observation indicates that BRWLDA can more accurately 
identify lncRNAs associated with the diseases, whose 
related lncRNAs are completely unknown.

Case study on breast, lung and colon cancers

We conduct experiments on three very important 
and common cancers, including Breast, Colon and Lung, 
to further study the ability of our proposed BRWLDA in 
predicting potential lncRNA-disease associations. Here, 
all known lncRNAs associated with the disease of interests 
are taken as seeds, and all candidate lncRNAs are ranked 
by BRWLDA according to their predicted probabilities 
(from high to low). For each type of cancer, we take the 
top 20 most plausible lncRNAs as candidates associated 
with this cancer. Next, we manually check these lncRNAs 
by mining biomedical literature from NCBI database 
(PMID IDs) and list the confirmed associations in Table 3.

Breast cancer is the second leading cause of 
female cancer death, comprises 22% of all cancers in 
women [57, 58]. Researchers state that some lncRNAs 
are strongly associated with the formation of breast 
cancer [59]. We apply BRWLDA to identify potential 
lncRNAs associated with breast cancer and seven of 
the top 20 ranks are verified by biomedical literature as 
the most potential candidates. Colon cancer is the third 
most common cancer worldwide and the most common 
human malignancies in western countries, its prevalence 
rate has been rapidly increasing [60]. Some critical 
mutations underlying the pathogenic mechanism of colon 
cancer are already confirmed. Especially mutations and 
dysregulations of some lncRNAs have close connection 
with the development of colon cancer [61]. BRWLDA 
correctly identified 5 colon cancer related lncRNAs. 
Lung cancer results in about 1.8 million deaths each 
year and its five years survival rate is approximately 
15%, much lower than other cancer types [62, 63]. 
Recent data show that the risk of lung cancer mortality 
is even larger than the combination of the next three most 
common cancers (colon, breast and prostate) [64]. Recent 
researches have shown that lncRNAs play an important 
role in development and progression of lung cancer 
[64]. We make use of BRWLDA to identify the potential 
lung cancer-related lncRNAs, and seven lncRNAs are 
confirmed by biomedical literature. From these case 
studies, we can conclude that BRWLDA is powerful for 
predicting lncRNA-disease associations with a high level 
of reliability.

MATERIALS AND METHODS

LncRNA-disease associations

GeneRIFs [52] provides brief (up to 255 
characters) functional descriptions of genes, miRNAs 
and lncRNAs in the NCBI database and contains gene 
specific information. The functional descriptions of 
these molecules could be annotated with controlled 
vocabularies, such as Disease Ontology [53] and 
Gene Ontology [45]. We downloaded the recent 
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GeneRIF (access date: 2016-12-05) data and used an 
online tool named Open Biomedical Annotator [65, 
66], which provides an ontology based web service 
to annotate public datasets with biomedical ontology 
concepts based on their textual metadata, to obtain the 
lncRNA-disease associations and lncRNA-GO terms 
associations. To avoid the limitation of single data 
source, we also collected lncRNA-disease associations 
from LncRNADisease database (access date: 2016-12-
05). By integrating these two datasets, we obtained 837 
lncRNA-disease associations between 240 lncRNAs 
and 232 diseases. If an lncRNA is associated with a 
disease term, this lncRNA is also associated with the 
ancestor diseases of that disease. By applying this 
expanding rule, we finally collected 2379 lncRNA-
disease associations between 240 lncRNAs and 404 
diseases for experiments.

Disease semantic network constructed by disease 
ontology

We use Disease Ontology (DO) [53] hierarchy to 
construct the disease subnetwork of the bi-relational 
network, since DO is larger and provides greater 
coverage than MeSH (Medical Subject Headings) and 
OMIM (Online Mendelian Inheritance in Man) [67]. DO 
is a manually curated and disease-focused comprehensive 
subset of Unified Medical Language System. Similar to 
the Gene Ontology (GO) [45], DO organizes disease 
terms via a directed acyclic graph (DAG). Figure 5 
shows an example of partial structure of DO, where 
each DOID represents a disease, direct edges encode the 
hierarchical relationship between diseases. Descendant 
DOIDs describe more specific diseases than their 
ancestor DOIDs. For example, ‘DO:1612’ (breast cancer) 
is a subtype of ‘DO:5093’ (thoracic cancer), which is the 
descendant of ‘DOID:0050686’ (organ system cancer). 
From Figure 5, we can find a new disease association 
of an lncRNA often corresponds to descendants of the 
diseases already associated with that lncRNA, because 
of the further rephrased relationship, accumulated 
biological data and knowledge. From this perspective, 
correctly identifying these new associations not only 
facilitates our understanding of disease mechanism in 
RNA level, but also boosts the pace of precise diagnosis 
and treatment.

Based on the DO hierarchical structure, we adopt a 
widely used method suggested by Wang et al. [68] to 
measure the semantic similarity between diseases. 
Suppose disease d’ is an ancestor of disease d (or d’ = d), 
the recursive definition of the contribution of d’ to d is as 
follows:

where we is fixed as 0.9. The semantic similarity 
between two disease terms d1 and d2 is calculated as 
follows:
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where anc(d1) includes the ancestors of disease d1 
and itself, SV(d1) is the total semantic contribution of the 
term d1 and it is calculated as:
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Suppose G ϵ ! D×D (D is the number of diseases 
of interests) be the adjacency matrix of the DO DAG. 
If d is a direct child of d’, then G(d’, d) = 1, otherwise 
G(d’, d) = 0. As DS measures the hierarchical semantic 
similarity between any two diseases, to simulate random 
walk on the DAG, we initialize the transitional probability 
matrix WDD ϵ ! D×D on G as follows:

( )= ×W d d DS d d G d d( ', ) ( ', ) ( ', ) 4DD  		   ( )= ×W d d DS d d G d d( ', ) ( ', ) ( ', ) 4DD

From the above initialization, it is clear that a 
random walker can jump from d’ to d in the first step only 
if d’ and d have the parent-child relationship in the disease 
subnetwork. In this way, we can infer the more specific 
diseases of an lncRNA based on the diseases already 
associated with this lncRNA and hierarchical relationship 
between diseases.

LncRNA similarity network constructed by 
multiple data sources

lncRNAs with similar functions are often associated 
with similar diseases. Many methods have been proposed 
to infer lncRNA-disease associations based on lncRNA 
similarity network [32, 43, 47–50]. These methods are 
either limited to single dataset, or biased the similarity 
since each testing association is already used to construct 
the lncRNA similarity network before the validation. 
Given that, we quantify the similarity between lncRNAs 
based on the collected lncRNA-miRNA interactions, 
miRNA-disease associations and lncRNA-gene function 
associations. Clearly, the similarity between lncRNAs 
is completely independent from lncRNA-disease 
associations. A flowchart of the lncRNA similarity 
measurement is shown in Figure 6.

The similarity between lncRNAs l1 and l2 is 
calculated as follows:
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where FS(l1,l2) and MDS(l1,l2) represent the 
similarity derived from functional associations and 
miRNA-disease associations, respectively.

We use the Open Biomedical Annotator tool [65, 
66] to parse geneRIFs and obtain 3406 associations 
between 240 lncRNAs and 582 GO terms. Since these 
associations are not strictly divided into three GO sub-
ontologies and rather sparse compared with GO term 
space, it is inappropriate to use structure based algorithms 
to calculate the similarity between lncRNAs. Here, we 
utilize a Bayesian prior probability based method to 
simply measure the lncRNAs functional similarity. Let +Tl1  
and +Tl l1 2

 represent the GO annotation set of lncRNA l1 and 
the common annotation set of l1 and l2, respectively. Then, 
the value of FS(l1, l2) is given as follows:
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MDS(l1, l2) considers the similarity of lncRNA-
associated miRNA groups. It has been proven that 
some lncRNAs act as competing endogenous RNAs in 
the regulation of gene expression [69]. The functional 
interactions between miRNAs and lncRNAs, and the crucial 
roles of miRNAs in various biological processes (including 
the affinity with genetic transcription and diseases) [70, 
71] drive us to measure the lncRNA similarity based on 
lncRNA-miRNA associations. The similarity between two 
miRNAs (m1 and m2) is defined as follows:

( )= ∩MS m m D m D m( , ) | ( ) ( ) | 71 2 1 2  		   ( )= ∩MS m m D m D m( , ) | ( ) ( ) | 71 2 1 2

where D(m1) and D(m2) indicate the disease sets 
related to m1 and m2, respectively.

Suppose M(l1) and M(l2) are the known sets of 
miRNAs associated with lncRNAs l1 and l2, respectively, 
and MDS(l1, l2) can be computed as follows:
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Where 


= ∈MS m M MS m m( , ) max { ( , )}m M ii
. By sum-

ming up FS(l1, l2) and MDS(l1, l2), we can get the similarity 
between lncRNAs. To ensure the similarity between 
pairwise lncRNAs between 0 and 1, we normalize LS as 
follows:
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Where DL ϵ ! N×N (N is the number of lncRNAs) is 
a diagonal matrix with ∑= =

D l l LS l l( , ) ( , )L i i i jj

N

1
.

Bi-Random walk with restart on bi-relational 
network

Based on the directed disease subnetwork, 
lncRNA functional subnetwork and collected lncRNA-
disease associations, we construct a directed bi-
relational network, which includes two types of nodes 
(lncRNAs and DO terms) and three types of edges 
between them. An illustrative example of this bi-
relational network is shown in Figure 7. In this figure, 
each rectangle indicates a DO term, each circular 
indicates an lncRNA. Direct edges represent the 
hierarchical relationship between diseases, undirected 
edges between lncRNAs denote the similarity between 
lncRNAs with the thickness representing the strength 
of similarity, undirected solid edges encode the 
known associations between diseases and lncRNAs, 
while dashed edges marked with question mark (?) 
represent the potential lncRNA-disease associations. 
lncRNAs (i.e., l3, l4 and l5) currently are not associated 
with any disease term but they can be associated with 
some disease terms. For example, there is a missing 
association between l4 and DO4. To avoid making 
Figure 7 too busy, we only show the direct associations 
between lncRNAs and diseases. In fact, ancestor 
diseases of directly associated diseases are also 
inherently associated with these lncRNAs. For example, 
l1 is not only associated with DO4, but also DO2 and 
DO1, since the latter two are ancestors of DO4.

From Figures 5 and 7, we find that newly 
associated diseases with an lncRNA often correspond 
to descendants of the diseases already associated 
with this lncRNA. For a disease already associated 
with some lncRNAs, we can identify other lncRNAs 
also associated this disease based on the functional 
relationship between lncRNAs. From Figure 7, we 
can see that the lncRNA subnetwork is an undirect 
one and the disease subnetwork is a directed one. To 
account for the structural difference between these two 
subnetworks, and to identify new diseases (or lncRNAs) 
associated with lncRNAs (or diseases), we perform bi-
random walks with restart on the directed bi-relational 
network illustrated in Figure 7.

Let ALD ϵ ! N×D store the known lncRNA-disease 
associations between N lncRNAs and D diseases. If an 
lncRNA is associated with disease d or its descendants, 
ALD(l,d) = 1; otherwise ALD(l,d) = 0. Suppose ‘DO4’ 
should be associated with l2 and its parental ‘DO2’ is 
already associated with the same lncRNA, we can take l2 
as the starting node for a random walker, which jumps to 
‘DO2’ and then downward to ‘DO4’ along the edges of bi-
relational network. As a result, we can get the probabilistic 
association between l2 and ‘DO4’, and thus to estimate 
the credibility of this association. To realize this process, 
we apply random walks with restart by taking diseases 
already associated with an lncRNA as intermediate nodes 
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to predict new diseases associated with the same lncRNA 
as follows:
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Where par(d) includes the direct parent diseases of 
d, WDD ϵ ℝD×D stores the transitional probabilities between 
D diseases and it is initialized by Eq. (4), F l d( , )D

t  is the 
predicted relevance between lncRNA l and disease d in 
the t-th iteration, =F AD LD

0 , α is a parameter to control 
the restart probability for a random walker, and td is the 
specified maximal steps for a random walker jumping in 
the disease subnetwork. If t > td, the walker will not jump 
in the subnetwork consisted with diseases, and =F FD

t
D
td

. In fact, the above equation is also motivated by the 
observations that semantically related diseases tend to 
be associated with the same lncRNAs [20]. We want to 
remark that although a disease’s associated lncRNAs are 
completely unknown, the above equation can still identify 
some lncRNAs, which are probably associated with this 
disease.

A random walker can also jump from DO4 to l1 and 
then to l4. In this way, we can infer diseases associated 
with l4, even if the associated diseases of l4 are temporarily 
completely unknown. To mimic this process, we apply 
random walks with restart on the lncRNA subnetwork as 
follows:
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Where tl is the specified maximal step for a random 
walker jumping in the lncRNA subnetwork, F l d( , )L

t  is the 
predicted relevance between lncRNA l and disease d in the 
t-th iteration, =F AL LD

0 . Similarly, the random walker will 
stop jumping when t > tl, and =F FL

t
L
tl.

After the bi-random walks in the disease subnetwork 
and in the lncRNA subnetwork in the t-th step, BRWLDA 
further combines FL

t and FD
t  into F t as follows:
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By iteratively applying Eq. (9), Eq. (10) and 
Eq. (11), we can obtain the potential lncRNA-disease 
associations among N lncRNAs and D diseases. Obviously, 
the larger the value of F t(l, d), the more probable lncRNA l 
associated with disease d is.

DISCUSSION

Increasing evidences show that lncRNAs play 
essential roles in various biological processes and 
they have association with various complex human 
diseases [7–12]. Researchers have been attempting to 
identify lncRNAs associated with diseases by biological 
experiments and some identified lncRNAs are already 
used as biomarkers for clinical diagnosis, prognosis and 
treatment [13–17]. However, the wet-lab experiment 
based identification is too expensive, time consuming, 
and low throughput. These identified lncRNAs and 
accumulated various biological data enable to develop 
computational models to predict additional lncRNA-
disease associations in large scale, which could boost the 
pace of follow-up wet-lab experimental verification and 
save resources. We propose a computational model called 
BRWLDA to predict lncRNA-disease associations by bi-
random walks on a directed bi-relational network. The 
bi-relational network is built up with two subnetworks, 
namely lncRNA-lncRNA functional similarity network 
derived from various biological data, and disease-disease 
similarity network derived from the ontological structure 
between diseases, and inter-connections between these 
two subnetworks setup by available lncRNA-disease 
associations. Compared with five state-of-the-art related 
computational models [22, 23, 32, 49, 48], BRWLDA 
achieves the highest AUCs of 0.7952 and 0.7940 in the 
lncRNA and disease oriented LOOCV. In the recursively 
masked experiment, a more challenging and rarely 
studied experimental protocol, BRWLDA again obtains 
the highest AUCs of 0.9888, 0.9548, 0.9275, with 1, 3, 5 
diseases masked for an lncRNA. Case study on 6 critical 
cancers (including Breast, Colon, Bladder, Liver, Lung 
and Stomach), whose related lncRNAs are completely 
masked (or unknown), shows that BRWLDA also obtains 
more related lncRNAs than other comparing methods. 
In addition, manually literature mining also confirms 
that, many of the top-20 plausible lncRNAs predicted by 
BRWLDA are indeed associated with Breast, Colon and 
Lung cancers. These comparative experiments suggest 
that BRWLDA would greatly boost the identification of 
lncRNA-disease associations.

Several components contribute to the high predictive 
performance of BRWLDA. First, multiple biological 
datasets, including lncRNA-miRNA associations, 
miRNA-disease associations and lncRNA-gene function 
associations, are utilized to establish a more functional 
coherent lncRNA-lncRNA network. Second, BRWLDA 
not only employs the knowledge that functional similar 
lncRNAs are associated with semantic similar diseases, 
and vice versa, but also uses the pattern that newly 
discovered diseases associated with an lncRNA usually 
correspond to descendants of the diseases that are already 
associated with this lncRNA. BRWLDA employs this 
pattern by directed random walks with restart on the 
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disease hierarchical network. In practice, some comparing 
methods (i.e., RWRHLD, IRWRLDA) also take advantage 
of the same semantic measure between diseases and a 
similar heterogeneous network as the directed bi-relational 
network adopted by BRWLDA. But they apply global 
random walk with restart on the whole network. They 
neither concretely employ the ontological structure in the 
prediction process, nor the pattern of newly discovered 
diseases associated with lncRNAs. Third, BRWLDA can 
make predictions for new diseases (lncRNAs) whose 
associated lncRNAs (diseases) are completely unknown, 
since it does not solely depend on available lncRNA-
disease associations. This feature greatly improves 
the practicability and reliability of BRWLDA. These 
predictions can be either made via a random walker 
jumping from lncRNA-lncRNA subnetwork to disease-
disease hierarchical subnetwork, and vice versa. Fourth, 
BRWLDA provides options for user to prioritize diseases 
associated with lncRNAs, or prioritize lncRNAs associated 
with diseases, and the prioritization can be separately 
controlled by the maximum steps of bi-random walk. Last 
but not least, BRWLDA can easily work together with 
more biological information (i.e., lncRNA or miRNA-
related interactions, disease phenotypic profiles and gene-
disease associations) to identify candidate lncRNAs (or 
diseases) for all diseases (or lncRNAs) of interests, and 
its performance can be further improved by fusing these 
biological information.

There are several avenues to improve the 
performance of BRWLDA. For examples, there are still 
many other important data could be utilized, such as amino 
acid sequences and transcription information [72]. The 
collected lncRNA-miRNA associations, miRNA-disease 
associations and lncRNA-gene function associations are 
sparse and far from complete; they may also include some 
noisy associations. Incomplete and noisy associations 
heavily impact the performance of BRWLDA. Although 
we integrate heterogeneous data to remedy this issue, the 
performance of BRWLDA can be improved with more 
reliable associations available. The transitional probability 
between diseases is only empirically estimated, more 
accurate estimation and the mature of DO hierarchy can 
also enhance the ability of BRWLDA in identifying new 
lncRNAs associated with diseases. Complex diseases 
are not only related to lncRNAs, but also related to other 
biological molecules (i.e., miRNAs, genes and proteins), 
modelling all these related molecules in a complex 
network could vividly unveil the mechanism of complex 
diseases.
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