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Analysis of centrosome and DNA damage response in
PLK4 associated Seckel syndrome

Tuba Dinçer1, Gülden Yorgancıoğlu-Budak2, Akgün Ölmez3, İdris Er2, Yavuz Dodurga4, Özmert MA Özdemir5,
Bayram Toraman1, Adem Yıldırım2, Nuran Sabir6, Nurten A Akarsu7, C Nur Semerci8 and Ersan Kalay*,1

Microcephalic primordial dwarfism (MPD) is a group of autosomal recessive inherited single-gene disorders with intrauterine and

postnatal global growth failure. Seckel syndrome is the most common form of the MPD. Ten genes are known with Seckel

syndrome. Using genome-wide SNP genotyping and homozygosity mapping we mapped a Seckel syndrome gene to chromosomal

region 4q28.1-q28.3 in a Turkish family. Direct sequencing of PLK4 (polo-like kinase 4) revealed a homozygous splicing

acceptor site transition (c.31-3 A4G) that results in a premature translation termination (p.[= ,Asp11Profs*14]) causing deletion

of all known functional domains of the protein. PLK4 is a master regulator of centriole biogenesis and its deficiency has recently

been associated with Seckel syndrome. However, the role of PLK4 in genomic stability and the DNA damage response is

unclear. Evaluation of the PLK4-Seckel fibroblasts obtained from patient revealed the expected impaired centriole biogenesis,

disrupted mitotic morphology, G2/M delay, and extended cell doubling time. Analysis of the PLK4-Seckel cells indicated that

PLK4 is also essential for genomic stability and DNA damage response. These findings provide mechanistic insight into the

pathogenesis of the severe growth failure associated with PLK4-deficiency.
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INTRODUCTION

Organismal growth is determined mainly by cell number which is
under the control of extracellular and intracellular signals that regulate
the homeostasis between cell proliferation and death.1 Recent studies
proposed microcephalic primordial dwarfism (MPD) as a model
disease to understand the molecular mechanism of growth.2 MPD is
a group of rare single-gene disease with severe growth failure
encompassing Seckel syndrome (OMIM:210600),3 microcephalic
osteodysplastic primordial dwarfism types I or III (OMIM:210710),
microcephalic osteodysplastic primordial dwarfism II
(OMIM:210720),4,5 and Meier–Gorlin syndrome (OMIM:224690).6

Seckel syndrome is an autosomal recessive disorder characterized by
intellectual disability, severe prenatal and proportionate postnatal
growth failure, microcephaly with a ‘bird-headed’ profile with receding
forehead, large and beaked nose, micrognathia, large eyes and a
narrow face. Commonly associated skeletal anomalies are dislocation
of the head of the radius and fifth finger clinodactyly. Additional
phenotypic features such as delayed bone age, eleven pairs of ribs,
strabismus, microphthalmia, optic nerve hypoplasia, high-arched
palate, enamel hypoplasia, and hypodontia or oligodontia have been
reported.3,7–9

Seckel syndrome is a genetically heterogeneous condition and a total
of ten genes including ATR,10 RBBP8 (CtlP),11 CEP152 (ref. 7), CENPJ
(CPAP),12 CEP63 (ref. 13), DNA2 (ref. 14), ATRIP,15 Ninein (NIN),16

PLK4 (Polo-like kinase 4)8,9 and CDK5RAP2 (ref. 17) have hitherto been
found to be associated with it. Functional evaluation of these genes to

identify the cellular pathogenesis underlying Seckel syndrome showed
that these genes have critical roles in fundamental cellular processes
including centriole biogenesis and centrosome related functions
(CEP152, CENPJ, CEP63, NIN and CDK5RAP2), and maintenance
of genomic stability (ATR, RBBP8, ATRIP and DNA2). It is suggested
that deficiency of these genes can disrupt the homeostasis toward cell
proliferation leading to reduced global body mass as seen in
MPD.7,10,18

In this study, we present the identification of a homozygous PLK4
splice site variant in a consanguineous Turkish family leading to Seckel
syndrome. PLK4 was recently associated with Seckel syndrome and
abnormalities of cell cycle progression.8,9 We analyzed the fibroblasts
obtained from a PLK4-Seckel patient and show that PLK4 has a critical
role in genomic stability, in addition to its well-characterized function
in centriole biogenesis and cell cycle progression.

MATERIALS AND METHODS

Patients
In this study, seven individuals of a Turkish family, of which two were affected

with Seckel syndrome were evaluated (Figure 1). Genomic DNA was extracted

using standard protocols from peripheral blood of the affected individuals and

other available family members. A skin biopsy was obtained from the affected

individual VIII:2. The study protocol was approved by the Ethics Committee of

Karadeniz Technical University, Faculty of Medicine (approval number: 2013-

/73). The study was conducted in accordance with the Declaration of Helsinki

and written informed consent was obtained from the participants.
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Genotyping and homozygosity mapping
Genome-wide SNP genotyping was carried out by using Illumina Cyto-SNP12

300 K BeadChip platform. To find out the homozygously inherited genomic

segments co-segregating with disease in two patients, VIGENOS Plus (Visual

Genome Studio Plus) program (Hemosoft, Ankara, Turkey) was used.

Homozygosity was confirmed by subsequent microsatellite marker genotyping

of all family members.

Mutation analysis
Upon evaluating the functions of the genes located in critical interval, a

candidate gene was selected for mutation analyses. The entire exons and exon-

intron boundaries of PLK4 (NM_014264.4 and NG_041821.1) were amplified

via PCR with primers that were designed by using Primer3 web software

(Supplementary Table S1). PCR products were directly sequenced at ABI

PRISM 3130 DNA analyzer (Applied Biosystems, Foster City, CA, USA).

Screening of the identified sequence variations within the family and ancestrally

matched control were carried out via amplification refractory mutation system

with allele-specific primers (Supplementary Table S2).

Karyotyping and sister chromatid exchange analysis
Heparinized peripheral blood samples were obtained from patient VIII:2 and a

sex and age matched control. Karyotyping and mitomycin-C (MMC)-induced

sister chromatid exchange (SCE) analyses were performed as previously
described.7

RT-PCR and qPCR analyses
The effects of identified splicing acceptor site variation on splicing of intron 1
were evaluated via RT-PCR. Total RNA was obtained from venous blood
samples of patient VIII:2 and her parents and a control by using TRI Reagent
(Sigma, St Louis, MO, USA). Synthesis of cDNA was performed with the First-
Strand cDNA Synthesis Kit (MBI Fermentas, Vilnius, Lithuania). Subsequently,
amplification of cDNA was carried out with PLK4 specific primers designed for
sequences corresponding to exons 1 and 3 (Supplementary Table S3). To
evaluate the effect of variation on splicing of intron 1, amplicons were extracted
from agarose gel and sequenced. Quantitation of wild-type PLK4 transcript in
patient’s cDNA was determined with real-time PCR using wild type and mutant
transcript specific primers. GAPDH was used as internal control
(Supplementary Table S4).

Cell culture and DNA-damaging agents treatment
Primary fibroblast cell culture was established from skin biopsies obtained from
patient VIII:2 and an age matched control in Dulbecco's modified Eagle
medium (DMEM) supplemented with 5% fetal bovine serum (FBS), (Gibco,
Grand Island, NY, USA). Passaging of cells was performed every 3–4 days. To
analyze the DNA damage response, exponentially growing PLK4-Seckel and
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Figure 1 Phenotype of PLK4-Seckel patient and mutation analysis. (a–b) Frontal and lateral view of the patient VIII:2. (c) T1 weighted axial image of the
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controls cells were treated with 2 mM final concentration of hydroxyurea (HU)
(Sigma-Aldrich, St Louis, MO, USA) in DMEM without serum and antibiotics
for 4 h. In order to analyze the effect of DNA-damaging agents to basal and
activated Chk1 and Chk2 protein level along with p53, PLK4-Seckel cells were
treated with 5 and 10 ng/ml concentration of MMC in DMEM supplemented
with 5% FBS and antibiotics for 24 h.

Immunofluorescence detection
Fibroblasts were seeded on cover slips with about 50% confluence. Following
overnight incubation, fixation and permeabilization were carried out with 4%
paraformaldehyde in PBS for 10 min and 0.1% Triton X-100 in PBS for 5 min,
respectively. Before and after permeabilization cover slips were rinsed five times
with PBS. Blocking was carried out with 3% bovine serum albumin in PBS for
1 h. Appropriate primary and secondary antibodies diluted in blocking solution
were used. Cover slips were rinsed five times with PBS after primary and
secondary antibody incubations. As primary antibodies; anti-PLK4 (ab137398),
anti-pericentrin (ab28144), anti-α-tubulin (ab15246), anti-γ-H2AX (phospho
S139) (ab26350), anti-centrin-1 (ab11257) and anti-γ-tubulin (ab27074)
(Abcam, Cambridge, UK) were used. Alexa flour 488 goat anti-rabbit IgG
(ab96899), and goat anti-mouse IgG (ab150117) and Cy3 conjugated goat anti-
rabbit IgG (ab6939) (Abcam) were used as secondary antibodies. Slides were
counterstained with DABCO mounting media with DAPI (Life Technologies,
Eugene, OR, USA). Samples were analyzed with fluorescence microscope
(Nikon eclipse E800, Tokyo, Japan).

Protein isolation and western blotting
Cells were lysed with ice cold RIPA lysis buffer (Santa Cruz, Dallas, TX, USA)
supplemented with protease and phosphatase inhibitors (Sigma-Aldrich).
Protein concentration was determined by BCA Protein Assay Kit (Thermo-
Fisher Scientific, Rockford, IL, USA) and 25 μg of protein from each samples
were loaded on SDS polyacrylamide gel. After SDS-gel electrophoresis, proteins
were transferred to PVDF membrane (Bio-Rad, Hercules, CA, USA). As
blocking reagent 5% BSA in PBS was used. Primary and secondary antibodies
were applied according to manufacturer’s instructions. Membranes were rinsed
five times with PBS with 0.05% Tween 20 after primary and secondary
antibodies incubations. As primary antibodies; anti-PLK4 (ab137398), anti-α-
tubulin (ab15246), anti-Chk1 (ab47574), anti-Chk1-pS345 (ab58567), anti-
Chk2 (ab8108), anti-Chk2-pT68 (ab38461), anti-γ-H2AX (phospho S139)
(ab26350) (Abcam) and anti-p53 (#9282) (Cell Signaling, Beverly, MA,
USA) were used along with following horseradish peroxidase conjugated goat
anti-mouse IgG (Bio-Rad, 170-5047) and goat anti-rabbit IgG (Bio-Rad, 170-
5045) secondary antibodies (Bio-Rad, Hercules, CA, USA). After the membrane
was treated with ECL Plus Western blotting detection kit (Bio-Rad), proteins
were visualized and analyzed by ChemiDoc MP Imaging System (Bio-Rad).

Cell cycle and doubling time analysis
PLK4-Seckel and control fibroblasts were seeded into T25 flasks with a density
of 5 × 104 cells, and were incubated at 37 °C in humidified 5% CO2 incubator
while replenishing the growth medium every 24 h. For cell cycle analysis, after
48 h cells were collected and PI staining was done with Cycletest Plus DNA
Reagent Kit (Becton Dickinson, Franklin Lakes, NJ, USA). Cells were analyzed
with Accuri C6 flow cytometry (Becton Dickinson, Ann Arbor, MI, USA). For
each sample 3 × 104 cells were counted and obtained flow cytometric data were
analyzed with software ModFit v4.1. to determine the distribution of cells in
G1/G0, S and G2/M phases. Mitotic cell percentage in G2/M phase fraction was
determined by using anti-phospho Histone H3-Ser28 (pHH3-Ser28) labeling
(for details see Supplementary Method S1). In order to analyze the effect of
DNA-damaging agent on cell cycle progression PLK4-Seckel cells were treated
with MMC (for details see the Supplementary Method S2). The experiment was
repeated six times, averages and standard deviation (SD) were calculated
accordingly. To determine the doubling times, PLK4-Seckel and control
fibroblast cells were collected in every 24 h for 6 days and counted by flow
cytometer. Calculation of doubling times were carried out by using a software
freely available (Roth V. 2006 http://www.doubling-time.com/compute.php).

Doubling time experiments were repeated three times and averages and SD
were calculated accordingly.

Tunel assay
PLK4-Seckel and healthy control fibroblast cells were seeded into T25 flasks and
incubated overnight. The cells were treated with hydrogen peroxide (H2O2) at
500 μM final concentration in DMEM for 6 h. Apoptotic cells were analyzed by
using APO-BrdU TUNEL Assay Kit (Life Technologies). Tunel positive cells
were analyzed by flow cytometer.

RESULTS

Clinical description
We evaluated a seven-generation Turkish family in which three cases
(VII:1, VII:2 and VIII:2) were born with Seckel syndrome (Figure 1).
According to the information obtained from family members during
the interview the family pedigree was constructed. Case VII:1 died
within a few months after birth and could not be included in the
study. Patient VIII:2 was admitted to the medical genetic department
because of microcephaly and growth retardation when she was 45 days
old (Figures 1a and b). She was born to consanguineous parents after
an uneventful pregnancy at 37 weeks with normal spontaneous vaginal
delivery. Her phenotypic features and radiological findings are shown
in Table 1 and Figures 1c–e. Her developmental milestones were
significantly delayed. She was able to sit without support at 16 months,
crawled at 17 months and started walking independently at 31 months.
She could say only ‘dad’ and ‘mom’ since 1 year of age but could
understand and obey simple commands. Ocular examination showed
normal eye size and normal lens, and fundus findings. Audiological,
routine laboratory examinations, abdominal ultrasonography and
echocardiography were seen to be normal. Karyotype showed 46,
XX with 13.3% aneuploidy (data not shown).

Homozygosity mapping and mutation analyses
Two affected individuals (VII:2 and VIII:2) and the parents of patient
VIII:2 (VI:3 and VII:4) were genotyped using the Illumina Cyto-
SNP12 300 K BeadChip platform. Haplotype analyses revealed only
one homozygous segment that co-segregates with the disease on
chromosome 4q28.1-q28.3 (Figure 1f). Subsequently, microsatellite
marker genotyping confirmed the co-segregation of critical region
with disease (Figure 1g). PLK4 was selected as the most promising
candidate gene from the critical interval because it was previously
shown to be master regulator of centriole biogenesis. Moreover, PLK4
was reported to interact with CEP152 which was previously associated
with Seckel syndrome.19 Sequence analyses of PLK4 showed a novel
homozygous c.31-3 A4G transition on conserved splice acceptor site
of first intron of the gene (Figure 1h and Figure 2a). The variation
c.31-3 A4G was found to be fully segregated with the disease in the
family (Figure 1i) and was not seen in 350 ancestrally matched control
and 1000 Genomes Project database. RT-PCR analyses showed that
c.31-3 A4G substitution disrupts the splicing of the first intron and
leads to transfer of 63 nucleotides from acceptor site of intron 1 to
mature mRNA (r.[= , 30_31ins31-63_31-4;31-3_31-1delinsgag]) and
result in frameshift and subsequent premature translation termination
p.[= , Asp11Profs*14] (Figures 2b, c and e). This novel PLK4 variation
was submitted to the Leiden Open Variation Database (individual ID:
00081828). Quantitation of both PLK4 transcripts in patient’s cDNA
with Real-time PCR showed that only 8% of the transcripts are wild
type and the rest was mutant (Figure 2d). Consistent with transcript
level, western blot analysis showed remarkable decrease of PLK4 in
PLK4-Seckel cells (Figure 2f). When subcellular localization of PLK4
was analyzed in PLK4-Seckel fibroblasts by immunofluorescence,
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obvious difference was not detected in terms of PLK4 levels and
cellular localization compared to control cells (Figure 2g).

Disrupted centriole biogenesis and mitotic morphology
The effect of the described PLK4 variant on centriole biogenesis was
evaluated in prophase and prometaphase of asynchronously growing
PLK4-Seckel and control fibroblasts by immunofluorescence staining
of centrioles using centriole specific proteins γ-tubulin and centrin-1.
According to immunofluorescence results while the number of cells
with four centrioles was found to be decreased, the number of
cells with two or three centriole significantly increased in PLK4-Seckel
cells compared to control fibroblasts (Supplementary Figure 1a, b).
In order to determine the functional effect of PLK4 deficiency on

mitotic morphology, asynchronously growing PLK4-Seckel fibroblasts
were analyzed. Binuclear cells with one centrosome were occasionally
observed in interphase of PLK4-Seckel cells (Figure 3e). Frequent

abnormalities in metaphase cells included monopolar spindle and
improperly aligned chromosomes with irregular central spindle,
whereas triple spindles were observed rarely (Figures 3f–i). Cells in
telophase showed delayed cleavage furrow with irregular spindle
alignment (Figure 3j) and extended telophase bridge (Figures 3k
and l). In total, 54% of PLK4-Seckel cells were found to have significant
cell division abnormalities compared to normal cells (Figure 3m).

Impaired cell cycle and doubling time of PLK4-Seckel fibroblast
Cell cycle analyses of asynchronously growing PLK4-Seckel cells by
flow cytometry showed accumulation in G2/M phases (Figure 3n,
Supplementary Figure S3). Further evaluation of G2/M fraction by
using mitotic marker pHH3 (Ser28) revealed accumulation of PLK4-
Seckel cells particularly in G2 phase (Supplementary Figure S2). On
the other hand, induction of the PLK4-Seckel fibroblasts with 10 ng/
ml final concentration of MMC slightly increased the accumulation of
cells in G2/M phases. However, when MMC concentration increased
10-fold PLK4-Seckel cells showed reduced accumulation in G2/M
compared to control (Supplementary Figure S3). The doubling time
which was 25 h in normal cells, was found to be about 35 h in PLK4-
Seckel fibroblasts (Figure 3o).

DNA damage response and apoptosis in PLK4-Seckel fibroblasts
Sister chromatid exchange frequencies were determined in MMC
treated PLK4-Seckel lymphocytes and a significant increase of SCE was
found in PLK4-Seckel lymphocytes compared to control lymphocytes
cells (Figure 4a, Supplementary Figure S4). The response of PLK4-
Seckel cells to DNA damage was also analyzed and a remarkable
accumulation of phosphorylated H2AX (γ-H2AX) was found after HU
treatment compared to control (Figures 4b and c). Moreover,
phosphorylated forms of Chk1 and Chk2 along with steady state
levels were found to be remarkably, especially Chk1, decreased in
PLK4-Seckel cells compared to wild type cells and treatment of cells
with MMC did not make an obvious difference (Figure 4e). Phos-
phorylated forms of Chk1 and Chk2 in control cells increased in
response to MMC, whereas in PLK4-Seckel cells they did not change
(Figure 4e). As p53 is a well-known target of activated Chk1 and
Chk2, MMC-induced p53 stability was analyzed and in contrast to
control cells, it was not accumulated (Figure 4e). In addition, an
increased rate of apoptosis was seen in H2O2 treated PLK4-Seckel
fibroblasts (Figure 4d).

DISCUSSION

In this study, genome-wide homozygosity mapping and subsequent
mutation analyses revealed a homozygous hypomorphic variant (c.31-
3 A4G) in the first intron of the PLK4 in a Turkish family with Seckel
syndrome (Figures 1 and 2). This variant disrupts the splice acceptor
site of the first intron in about 92% of transcript and leads to a frame-
shift and subsequent premature translation termination p.[= ,
Asp11Profs*14]). The human PLK4 encodes five different splicing
variants and all isoforms have an N-terminal kinase domain followed
by three PEST domain and a cryptic polo box domain preceding the
C-terminal polo-box domain.20 All transcripts include intron one, the
splicing of which is disrupted by the present variant. Loss of all
functional domains of PLK4 as a result of p.Asp11Profs*14 in protein
supports the pathologic nature of the described variant (Figure 2e).
Co-segregation of the variant with disease in the family and its absence
in the dbSNP databases as well as in Turkish controls provides further
evidence that supports its disease causing nature.
Plk4 (Sak), the mouse ortholog of human PLK4, was originally

identified in mouse and its expression was shown to be required for
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cell proliferation.21 PLK4 localizes to the centrioles throughout the cell
cycle and was shown to be necessary for centriole duplication and
progression of mitosis.22,23 Homozygous Plk4 knock-out mice die at
E7.5 day of development with remarkably increased mitotic and
apoptotic cells, whereas heterozygous mutant mice were reported to
be phenotypically normal.24 Recently, two PLK4 variants were
associated with ten Seckel patients in four families.8,9 In these patients
some ophthalmological anomalies (microcornea, cataract, micro-
phthalmia, retinopathy and optic nerve hypoplasia) that have not
been associated with Seckel syndrome previously were reported in
more than one patient expanding the phenotype associated with Seckel
syndrome (Table 1). The patients we presented here have a char-
acteristic Seckel syndrome phenotype. Ophthalmologic examination of
patient VIII:2 was performed when she was 3 years old and her eye
size, cornea and optic nerve and retina were found normal (Table 1).
Different ocular findings between previously described PLK4-Seckel

patients and the patient we presented here can be explained with the
type of the variant and the reflected amount of wild-type PLK4
product because of hypomorphic nature of variant.
In animal cells, centrosomes have an important function in

organizing the cytoskeleton and the mitotic spindles.25 In dividing
cells, each centriole duplicates once every cell cycle to conserve
centriole number. Successful centriole duplication is indispensable
for animal cell division and its failure promotes abnormal spindle
formation and subsequent cell division errors that lead to chromo-
some missegregation and genomic instability.26 As depletion of PLK4
was shown to cause inhibition of centriole biogenesis the most
remarkable characteristic feature of PLK4-depleted cell was described
as monopolar spindles with single centriole at the center.23,27,28

Therefore, to determine whether the variant that we presented here
disrupts centriole biogenesis and mitotic morphology, we analyzed
PLK4-Seckel fibroblasts obtained from the patient. In agreement with
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a previous report, a significant decrease in the number of centrioles
was seen in prophase cells of PLK4-Seckel fibroblasts reflecting
disrupted centriole biogenesis (Supplementary Figure 1a, b).8 More-
over, improperly aligned chromosomes, uneven spindle assembly and
subsequent disrupted mitotic morphology in about 50% of the cells
were detected as the characteristic features of the PLK4-Seckel
fibroblasts (Figures 3e–m). In accordance with impaired spindle
morphology, increased aneuploidy was seen in peripheral blood cells
of a PLK4-Seckel patient suggesting impaired chromosome segregation
(data not shown). For proper cell cycle progression spatial and
temporal organization of mitotic spindles have an indispensable
role.29 As expected, PLK4-Seckel fibroblasts displayed an increase in
the number of cells in G2/M (Figure 3n). Disrupted centriole
biogenesis causes mitotic delay followed by increase in apoptosis
and cell doubling time.30 On the other hand, heterozygous Plk4
murine embryonic fibroblasts were also shown to exhibit growth delay
compared to wild type counterparts.31 These reports raised the
question whether cells obtained from patients proliferate slower than
control cells. As expected, doubling time was found to be extended to
35 h in PLK4-Seckel fibroblast compared to 24 h seen in control cells
(Figure 3o). Prolonged cell cycle in mammals can cause decrease in
progenitor cell proliferation rate.32,33 Therefore, extended doubling
time can be considered as one of the critical mechanisms leading to
global developmental failure that causes microcephaly and dwarfism in
PLK4-Seckel patients.
In correlation with extended doubling time, accumulation of PLK4-

Seckel cells in G2/M phase (Figure 3n, Supplementary Figure S3),
particularly in G2 phase (Supplementary Figure S2) showed the G2/M
checkpoint activation and raised a question about the possible role of
PLK4 in DNA damage response. Despite the well-known role of PLK4
in centriole biogenesis, its contribution to DNA damage response is
inconclusive. However, previously described Seckel syndrome genes
including ATR, CEP152, ATRIP, CtIP (RBBP8) and DNA2 were
shown to contribute to DNA damage response and deficiency of these

genes causes developmental failure.7,10,11,14,34 In order to determine
whether PLK4 has a role in DNA repair mechanism, we investigate the
MMC-induced SCE frequency and observed a significantly increased
SCE showing chromosome instability in PLK4-deficient lymphocytes
(Figure 4a and Supplementary Figure S4). Furthermore, considerably
strong hydroxyurea-induced H2AX phosphorylation in PLK4-Seckel
cells (Figures 4b and c) showed accumulated DNA breaks and
subsequent increased activation of DNA damage response.35 In
response to DNA damage, downstream signal transducers of DNA
damage response such as Chk1, Chk2 and p53 are activated and
trigger the cell cycle arrest to provide time for DNA repair.36 However,
extended genotoxic stress in response to many types of DNA damage
leads to proteasomal degradation of Chk1, although there are some
conflicting results regarding to Chk2.37,38 In consistent with this,
inhibition of Chk1 allows cell cycle progression into premature and
abnormal mitosis with high levels of DNA damage followed by mitotic
catastrophe.39–41 Reduction of both basal and activated Chk1 and
Chk2 in PLK4-Seckel cells (Figure 4e), therefore, emphasize the
involvement of PLK4 directly in DNA damage response or regulation
of Chk1 and Chk2 basal turnover rates through modulating protea-
somal degradation machinery. In accordance with decreased Chk1 and
Chk2 levels, decreased accumulation of p53 in response to MMC
treatment (Figure 4e) also provide further evidence showing extended
DNA damage response in PLK4-Seckel cells. On the other hand,
reduced G2/M fraction and increased G1 in PLK4-Seckel cells
compared to control after high concentration of MMC
(Supplementary Figure S3) suggests mitotic catastrophe which might
lead to slippage of mitosis and relative increase of G1 in the
subsequent cell cycle following reduction of Chk1 and Chk2 levels.42

In agreement with our result, Chk2 and its downstream target
elements Cdc25C and p53 were shown to be substrates of
Plk4.20,43,44 Moreover, in mammals, in addition to prolonged cell
cycle, genomic instability leads to apoptosis.45 However, apoptosis
was not reported by Martin et al.8 in PLK4 deficient cells. In line with
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this report, we have not detected increased apoptosis in untreated
PLK4-Seckel fibroblasts as well. Interestingly, in our study, hydrogen
peroxide treatment of PLK4-seckel cells increased cell death. Together
with the results of enhanced SCE and activated H2AX, this obvious
increase in apoptosis upon oxidative stress reflects increased sensitivity
to genotoxic stress due to unrepaired DNA lesions in PLK4-Seckel cells
(Figure 4d). Taken together, these findings indicate that deficiency of
PLK4 causes impaired DNA damage response.
In summary, we describe a novel variant in the PLK4 gene that has

recently been associated with Seckel syndrome. Our results show that
PLK4 deficiency causes impaired centriole biogenesis, genomic
instability and subsequent increased apoptosis correlated with
expanded cell doubling time. Together these might lead to insufficient
cell proliferation and explain the subsequent global growth failure.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank all the family members that participated in this study and Dr Ahmet

Alver for his kind contribution for statistical analyses. We thank Prof. Dr Han

G. Brunner for critical reading and comments. This study was supported by the

Karadeniz Technical University Research Fund (grant KTÜ-BAP-10121 and

1061 to E.K.) and Teaching Staff Training Program of Turkish Council of

Higher Education in which Gülden Yorgancıoğlu-Budak’s master thesis

program is enrolled.

1 Conlon I, Raff M: Size control in animal development. Cell 1999; 96: 235–244.
2 Klingseisen A, Jackson AP: Mechanisms and pathways of growth failure in primordial

dwarfism. Genes Dev 2011; 25: 2011–2024.
3 Majewski F, Goecke T: Studies of microcephalic primordial dwarfism I: approach to a

delineation of the Seckel syndrome. Am J Med. Genet. 1982; 12: 7–21.
4 Majewski F, Ranke M, Schinzel A: Studies of microcephalic primordial dwarfism II: the

osteodysplastic type II of primordial dwarfism. Am J Med Genet 1982; 12: 23–35.
5 Majewski F, Stoeckenius M, Kemperdick H: Studies of microcephalic primordial

dwarfism III: an intrauterine dwarf with platyspondyly and anomalies of pelvis and
clavicles–osteodysplastic primordial dwarfism type III. Am J Med Genet 1982; 12:
37–42.

6 Gorlin RJ, Cervenka J, Moller K, Horrobin M, Witkop CJJr.: Malformation syndromes.
A selected miscellany. Birth Defects Orig Artic Ser 1975; 11: 39–50.

7 Kalay E, Yigit G, Aslan Y et al: CEP152 is a genome maintenance protein disrupted in
Seckel syndrome. Nat. Genet. 2011; 43: 23–26.

8 Martin CA, Ahmad I, Klingseisen A et al: Mutations in PLK4, encoding a master
regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy.
Nat. Genet. 2014; 46: 1283–1292.

9 Shaheen R, Al Tala S, Almoisheer A, Alkuraya FS: Mutation in PLK4, encoding a master
regulator of centriole formation, defines a novel locus for primordial dwarfism. J Med
Genet 2014; 51: 814–816.

10 O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA: A splicing mutation
affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in
Seckel syndrome. Nat Genet 2003; 33: 497–501.

11 Qvist P, Huertas P, Jimeno S et al: CtIP mutations cause Seckel and Jawad syndromes.
PLoS Genet 2011; 7: e1002310.

12 Al-Dosari MS, Shaheen R, Colak D, Alkuraya FS: Novel CENPJ mutation causes Seckel
syndrome. J Med Genet 2010; 47: 411–414.

13 Sir JH, Barr AR, Nicholas AK et al: A primary microcephaly protein complex forms a
ring around parental centrioles. Nat Genet 2011; 43: 1147–1153.

14 Shaheen R, Faqeih E, Ansari S et al: Genomic analysis of primordial dwarfism reveals
novel disease genes. Genome Res 2014; 24: 291–299.

15 Ogi T, Walker S, Stiff T et al: Identification of the first ATRIP-deficient patient and novel
mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome. PLoS
Genet 2012; 8: e1002945.

16 Dauber A, Lafranchi SH, Maliga Z et al: Novel microcephalic primordial dwarfism
disorder associated with variants in the centrosomal protein ninein. J Clin Endocrinol
Metab 2012; 97: E2140–E2151.

17 Yigit G, Brown KE, Kayserili H et al: Mutations in CDK5RAP2 cause Seckel syndrome.
Mol Genet Genomic Med 2015; 3: 467–480.

18 Alderton GK, Joenje H, Varon R, Borglum AD, Jeggo PA, O'Driscoll M: Seckel syndrome
exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum
Mol Genet 2004; 13: 3127–3138.

19 Cizmecioglu O, Arnold M, Bahtz R et al: Cep152 acts as a scaffold for recruitment of
Plk4 and CPAP to the centrosome. J Cell Biol 2010; 191: 731–739.

20 Swallow CJ, Ko MA, Siddiqui NU, Hudson JW, Dennis JW: Sak/Plk4 and mitotic
fidelity. Oncogene 2005; 24: 306–312.

21 Fode C, Motro B, Yousefi S, Heffernan M, Dennis JW: Sak, a murine protein-serine/
threonine kinase that is related to the Drosophila polo kinase and involved in cell
proliferation. Proc Natl Acad Sci USA 1994; 91: 6388–6392.

22 Leung GC, Hudson JW, Kozarova A, Davidson A, Dennis JW, Sicheri F: The Sak polo-
box comprises a structural domain sufficient for mitotic subcellular localization. Nat
Struct Biol 2002; 9: 719–724.

23 Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA: The Polo kinase Plk4 functions in
centriole duplication. Nat Cell Biol 2005; 7: 1140–1146.

24 Hudson JW, Kozarova A, Cheung P et al: Late mitotic failure in mice lacking Sak, a
polo-like kinase. Curr Biol 2001; 11: 441–446.

25 Loncarek J, Khodjakov A: Ab ovo or de novo? Mechanisms of centriole duplication. Mol
Cell 2009; 27: 135–142.

26 Holland AJ, Cleveland DW: Boveri revisited: chromosomal instability, aneuploidy and
tumorigenesis. Nat Rev 2009; 10: 478–487.

27 Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL: The SCF Slimb ubiquitin
ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 2009; 184:
225–239.

28 Sillibourne JE, Tack F, Vloemans N et al: Autophosphorylation of polo-like kinase 4 and
its role in centriole duplication. Mol Biol Cell 2010; 21: 547–561.

29 Noatynska A, Gotta M, Meraldi P: Mitotic spindle (DIS)orientation and DISease: cause
or consequence? J Cell Biol 2012; 199: 1025–1035.

30 Sir JH, Putz M, Daly O et al: Loss of centrioles causes chromosomal instability in
vertebrate somatic cells. J Cell Biol 2013; 203: 747–756.

31 Ko MA, Rosario CO, Hudson JW et al: Plk4 haploinsufficiency causes mitotic infidelity
and carcinogenesis. Nat Genet 2005; 37: 883–888.

32 Pilaz LJ, McMahon JJ, Miller EE et al: Prolonged mitosis of neural progenitors alters cell
fate in the developing brain. Neuron 2016; 89: 83–99.

33 Mokrani-Benhelli H, Gaillard L, Biasutto P et al: Primary microcephaly, impaired DNA
replication, and genomic instability caused by compound heterozygous ATR mutations.
Hum Mutat 2013; 34: 374–384.

34 Sartori AA, Lukas C, Coates J et al: Human CtIP promotes DNA end resection. Nature
2007; 450: 509–514.

35 Kinner A, Wu W, Staudt C, Iliakis G: Gamma-H2AX in recognition and signaling of DNA
double-strand breaks in the context of chromatin. Nucleic Acids Res 2008; 36:
5678–5694.

36 Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S: Molecular mechanisms of
mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004;
73: 39–85.

37 Zhang YW, Otterness DM, Chiang GG et al: Genotoxic stress targets human Chk1 for
degradation by the ubiquitin-proteasome pathway. Mol Cell 2005; 19: 607–618.

38 Zannini L, Delia D, Buscemi G: CHK2 kinase in the DNA damage response and beyond.
J Mol Cell Biol 2014; 6: 442–457.

39 Xiao Z, Xue J, Sowin TJ, Rosenberg SH, Zhang H: A novel mechanism of checkpoint
abrogation conferred by Chk1 downregulation. Oncogene 2005; 24: 1403–1411.

40 Poehlmann A, Habold C, Walluscheck D et al: Cutting edge: Chk1 directs senescence
and mitotic catastrophe in recovery from G(2) checkpoint arrest. J Cell Mol Med 2011;
15: 1528–1541.

41 Del Nagro CJ, Choi J, Xiao Y et al: Chk1 inhibition in p53-deficient cell lines drives
rapid chromosome fragmentation followed by caspase-independent cell death. Cell
Cycle 2014; 13: 303–314.

42 Mc Gee MM: Targeting the mitotic catastrophe signaling pathway in cancer. Mediators
Inflamm 2015; 2015: 146282.

43 Petrinac S, Ganuelas ML, Bonni S, Nantais J, Hudson JW: Polo-like kinase 4
phosphorylates Chk2. Cell Cycle 2009; 8: 327–329.

44 Bonni S, Ganuelas ML, Petrinac S, Hudson JW: Human Plk4 phosphorylates Cdc25C.
Cell Cycle 2008; 7: 545–547.

45 Zhou BB, Bartek J: Targeting the checkpoint kinases: chemosensitization versus
chemoprotection. Nat Rev Cancer 2004; 4: 216–225.

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

DNA damage response in PLK4-Seckel cells
T Dinçer et al

1125

European Journal of Human Genetics


	Analysis of centrosome and DNA damage response in PLK4 associated Seckel syndrome
	Introduction
	Materials and Methods
	Patients
	Genotyping and homozygosity mapping
	Mutation analysis
	Karyotyping and sister chromatid exchange analysis
	RT-PCR and qPCR analyses
	Cell culture and DNA-damaging agents treatment

	Figure 1 Phenotype of PLK4-Seckel patient and mutation analysis.
	Table 1 Phenotypic features of the Seckel patients with PLK4 variations
	Immunofluorescence detection
	Protein isolation and western blotting
	Cell cycle and doubling time analysis
	Tunel assay

	Results
	Clinical description
	Homozygosity mapping and mutation analyses
	Disrupted centriole biogenesis and mitotic morphology
	Impaired cell cycle and doubling time of PLK4-Seckel fibroblast
	DNA damage response and apoptosis in PLK4-Seckel fibroblasts

	Discussion
	Figure 2 Expression analysis of PLK4.
	Figure 3 Mitotic morphology, cell cycle and doubling time analyses of PLK4-Seckel fibroblast cells.
	Figure 4 DNA-damage response and increased sensitivity to oxidative stress in PLK4-Seckel fibroblasts.
	We thank all the family members that participated in this study and Dr Ahmet Alver for his kind contribution for statistical analyses. We thank Prof. Dr Han G. Brunner for critical reading and comments. This study was supported by the Karadeniz Technical 
	ACKNOWLEDGEMENTS




