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ABSTRACT

Recent methods for transcriptome-wide N6-methyladenosine (m6A) profiling have facilitated investigations into the RNA
methylome and established m6A as a dynamic modification that has critical regulatory roles in gene expression and may play a
role in human disease. However, bioinformatics resources available for the analysis of m6A sequencing data are still limited.
Here, we describe m6aViewer—a cross-platform application for analysis and visualization of m6A peaks from sequencing data.
m6aViewer implements a novel m6A peak-calling algorithm that identifies high-confidence methylated residues with more
precision than previously described approaches. The application enables data analysis through a graphical user interface, and
thus, in contrast to other currently available tools, does not require the user to be skilled in computer programming.
m6aViewer and test data can be downloaded here: http://dna2.leeds.ac.uk/m6a.
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INTRODUCTION

N6-methyladenosine (m6A) is one of the most abundant in-
ternal modifications in polyadenylated mRNAs, but much
remains to be learned about its biological roles. Reversible
m6A methylation may control many aspects of RNA life cy-
cle, affecting transcription, mRNA transport, splicing, stabil-
ity, transcript abundance, and translation (Meyer and Jaffrey
2014). Moreover, a significant proportion of m6A methyla-
tion sites are concentrated in the 3′UTR of transcripts, with
evidence to suggest that reversible m6Amethylation regulates
miRNA-related pathways (Alarcón et al. 2015; Chen et al.
2015a). Aberrant m6A modification patterns have also been
linked to diverse human diseases, including infertility, vari-
ous forms of cancer, alcoholism, obesity, diabetes, and
depression, among others (Zheng et al. 2013; Meyer and
Jaffrey 2014; Zhao et al. 2014; Du et al. 2015).
In order to explore further biological functions of m6A

methylation, it is necessary to define how the m6A landscape
changes in response to varying physiological conditions.

Until recently, however, detailed insights have proved elusive
due to the lack of scalable methods for transcriptome-wide
profiling of m6A residues. In 2012, a method based on affin-
ity-capture coupled with “next-generation” sequencing
(NGS) was proposed (Dominissini et al. 2012; Meyer et al.
2012). In brief, RNA is fragmented and sequences containing
methylated adenosines are recovered using an anti-m6A anti-
body. In addition to coverage biases (such as GC content)
seen in DNA sequencing, immunoprecipitated RNA read
coverage is also strongly affected by gene expression, and as
such, must be compared to a control. Consequently, immu-
noprecipitated fragments are sequenced together with a
matched RNA-seq control and aligned to the reference se-
quence. The position of a modified residue is indicated by
a peak in the coverage distribution of reads from the immu-
noprecipitated sample when compared to the control data;
this peak is expected to be roughly twice as wide at its base
as the sequenced fragment length (Fig. 1).
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Due to the requirement for a gene expression control as
well as the presence of splice-site spanning reads, m6A-seq
data cannot be readily analyzed by most of the methods
used for peak detection in ChIP-seq data, although a protocol
adapting the peak-calling software MACS2 (Zhang et al.
2008) does exist. Currently, dedicated software for the anal-
ysis of m6A data is largely limited to the R environment,
with exomePeak package (Meng et al. 2013) and its exten-
sions, HEPeak (Cui et al. 2015) and MeTPeak (Cui et al.
2016), although a number of different in-house approaches
to m6A peak-calling have been previously described (Domi-
nissini et al. 2012; Meyer et al. 2012; Li et al. 2013). These
methods rely on a principle of “binning,” wherein the tran-
scriptome is divided into small, equally sized regions, each
of which is tested for the alternative hypothesis that the num-
ber of reads in the immunoprecipitated sample is higher than
in the control RNA-seq sample. Approaches described by
Dominissini et al. (2012), Meyer et al. (2012), and Meng
et al. (2014) rely on individual statistical tests and subsequent
merging of significantly enriched consecutive bins into a larg-
er region, while HEPeak/MeTPeak (Cui et al. 2015, 2016)
models these bins using a hidden Markov model. However,
significantly enriched regions identified in this manner can
span several kilobases, which make pinpointing the methyl-
ated residue(s) a nontrivial task.

In addition, m6A-seq data are typically noisy, with a high
proportion of false-positive peak calls. For example, in the
data shown by Dominissini et al. (2012), in excess of

40,000 unique peaks were identified across three individual
replicates; however, only a minority (13,471) of these regions
was common to all three replicates. Although the poor repro-
ducibility in this example may also be largely due to the na-
scency of NGS technologies at the time of the experiment
(very short, single-end reads, low coverage), the high level
of noise in immunoprecipitated RNA-seq data may arise in-
dependently of sequencing platform, for example, from non-
specific antibody binding, DNA contamination, alignment
errors due to low complexity sequence regions, or sampling
effects due to heteroscedasticity in low expression transcripts.
To address these limitations, we have developed

m6aViewer—a Java application for the detection and visual-
ization of m6A peaks from sequencing data. m6aViewer pro-
vides a flexible m6A-seq data analysis and exploration
platform via a graphical user interface and aims to facilitate
detection of m6A sites at close to single-nucleotide resolu-
tion. As well as increasing the precision with which modified
bases can be identified, m6aViewer also provides methods for
reducing the high false-positive rate seen in the typical anal-
ysis. The software enables several ways to visualize the m6A-
seq data (Supplemental Fig. 1), including a peak browser
interface.

RESULTS AND DISCUSSION

Peak-calling performance

m6aViewer aims to facilitate identification of m6A residues at
finer resolution than can achieved by currently available soft-
ware. However, it is difficult to objectively evaluate the per-
formance of any algorithm, since there is no m6A-seq
testing data set within which the locations of all m6A residues
are known. Therefore, in order to assess the validity of our
approach, we have used multiple distinct test metrics.
The tight colocalization of m6A “RRACH” consensus mo-

tif with detected peak positions can confer confidence to the
peak-calling method, and distance to the nearest m6A con-
sensus has been previously used as an m6A peak-calling per-
formance metric (Meng et al. 2013). Furthermore, assuming
that the consensus sequence motifs are likely to coincide with
the actual sites of the methylated residues, the distance to the
nearest consensus can illustrate peak-calling precision.
Figure 2 and Supplemental Figure 4 compare the peak to

the nearest m6A consensus distances between peaks detected
by m6aViewer, exomePeak, MeTPeak,MACS2, and random-
ly selected transcriptomic or genomic control sites. Peaks de-
tected by m6aViewer show high levels of enrichment for
previously reported consensus motifs, with known motifs
appearing much more frequently near peak positions than
near randomly selected transcriptomic positions. The signif-
icance of this observation was confirmed by performing a
Kolmogorov–Smirnov test for the alternative hypothesis
that the cumulative distribution function of m6A peak dis-
tance to the nearest consensus lies above that obtained

FIGURE 1. Principle of transcriptome-wide m6A profiling using m6A-
seq. RNA is fragmented and fragments containing methylated adeno-
sines immunoprecipitated using an anti-m6A antibody. Fragments are
sequenced together with a matched RNA-seq control and all sequenced
reads are aligned to the reference transcriptome. Reads from the immu-
noprecipitated experiment pile up into distinct peaks that show enrich-
ment over RNA-seq control, indicating the presence of a methylated
adenosine residue.
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from randomly selected transcriptome positions (P < 2.2 ×
10−16, statistic D = 0.2474). Peaks detected by all algorithms
tested are overall closer to a “RRACH” consensus than the
control sites, withMACS2 andm6aViewer called peaks closer
to the m6A consensus than MeTPeak and exomePeak calls.
As MeTPeak and exomePeak output significantly enriched
regions, we have used the center of these intervals as the
peak position; thus, while these points are not entirely com-
parable to MACS2 or m6aViewer peaks, it nonetheless serves
to demonstrate the difference in peak-calling resolution
achieved by these methods.
In addition to exploring consensusmotif distributions near

detected peaks, we performed a comparison between
m6aViewer, exomePeak, MeTPeak, and MACS2 using data
from Linder et al. (2015) (Fig. 3). We found that peak
positions identified by m6aViewer were
overall slightly closer to the methylated
adenosine than those identified by
MACS2, with 32% of all peaks being
called within the distance of 10 nt from
the methylated residue by m6aViewer
and 25%byMACS2.However, we believe
this discrepancy is largely due to the dif-
ferent treatment of paired-end reads
and the overall peak-calling precision be-
tween MACS2 and m6aViewer is more
comparable. That is, the MACS2 version
used in our tests could not effectively
compute the fragment size of paired
reads, because a large proportion of
mate-pairs map to different exons several
kilobases apart, a feature not usually pre-
sented by ChIP-seq data. As expected,
center points of regions called by
exomePeak and MeTPeak are also overall
much further away fromm6Apositions in
this data set. Furthermore, it is worth not-
ing that any inaccuracies present in our

testing data setmay be reflected in the results. The residues re-
ported by Linder et al. (2015) are likely to contain some false
positives. Conversely, it is feasible that not all clustered m6A
residues are present in the correspondingly enriched m6A-
seq regions. However, currently no matched single-nucleo-
tide resolution m6A map and m6A-seq data sets are available.
We tried to use comparable peak-calling parameters with

exomePeak, MeTPeak, MACS2, and m6aViewer, but there
is considerable scope for modification of the analysis. As a re-
sult of these uncertainties, we consider it beyond the scope of
this work to attempt a more extensive comparison between
the different methods.

Peak deconvolution

Our results highlight that the called m6A-seq peak summits
very rarely precisely correspond to the actual site of methyl-
ation, a pattern also noted by Linder et al. (2015). This diffi-
culty can be further compounded by the presence of multiple
methylated sites in close proximity, which blurs the expected
peak signal. Here, we show that it is possible to improve the
precision with which m6A residues are called by modeling
each region as a mixture of fragment coverage distributions.
Our peak deconvolution approach correctly identified the
position of a methylated residue in 34% of cases tested, com-
pared to 1%–3% by methods (including default m6aViewer
setting) considering peak summits alone (Fig. 3). Further-
more, it is possible to identify multiple methylated residues
present in close proximity. For instance, Supplemental
Figure 2 shows two methylation sites reported by Linder
et al. (2015) giving rise to a single broad peak; using our prob-
abilistic model to cluster individual RNA fragments,

FIGURE 2. Cumulative frequency distribution of detected peak dis-
tance to nearest “RRACH” consensus sequence motif in peaks called
by different peak-calling software.

FIGURE 3. A comparison between m6A peak-calling resolutions of multiple m6A detection
tools. m6aViewer default running mode identifies peaks at a similar precision to MACS2, which
is expected as both methods aim to identify peak summits. The center point of regions called by
exomePeak and MeTPeak, however, are only rarely indicative of the precise m6A position.
m6aViewer’s peak deconvolution approach results in greatly increased peak-calling resolution.
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m6aViewer can correctly identify these sites as the most likely
to fit the observed data.

False-positive peak filter

As it has been demonstrated that false-positive peaks can
constitute a large proportion of all peaks detected in an
m6A-seq experiment, we have sought to see if we could iden-
tify and filter out these events without compromising the re-
call of genuine m6A sites.

Recently, a number of machine learning models for com-
putational identification of m6A sites from sequence features
were proposed. Zhou et al. (2016) implemented SRAMP, a
web server for m6A site prediction from transcript sequence
in a number of mammalian cell types. SRAMP combines
multiple random forest predictors trained on sequence fea-
tures from known m6A sites. A similar web tool implement-
ing a support vector machine predictor has been developed
for yeast data (Chen et al. 2015b).

Here, we implement a supervised learning filter that com-
bines an MTD RNA sequence model with a feature-based
Random Forest learner. Our combined model can distin-
guish genuine m6A sites with high accuracy, with 10-fold
cross-validation of our model achieving area under the re-
ceiver operating characteristic (ROC) curve (AUC) of up to
0.923. We show that our approach can be applied to different
tissue types (AUC = 0.95, independent A459 cell test set), as
well as different mammalian species (AUC = 0.913, indepen-
dent mouse fibroblast test set) (Fig. 4). However, similarly to
the work by Zhou et al. (2016), our approach is also unlikely
to generalize well to more distantly related species.

In contrast to the methods proposed by Zhou et al. (2016)
and Chen et al. (2015b), we use false-positive peaks as our
negative training examples, rather than randomly selected
transcriptomic positions. Despite our best efforts to obtain
a high-confidence training data set, it is likely that some in-
accuracies remain. While the training examples were ob-

tained from cell-type matched m6A-seq data sets to
minimize the effects of biological variation, it is likely that
a proportion of training instances is in fact mislabeled.
Additionally, while generally robust, methyltransferase
knockdown does not abolish the presence of m6A methyla-
tion completely; this is likely to also contribute to mislabeled
training instances. High classification accuracy, however,
suggests that our approach is resistant to noise in the training
data, with the positive and negative instances overall forming
sufficiently biologically distinct groups.
To assess how well m6aViewer’s false-positive filter com-

pares with sequence-based predictions of SRAMP, we have
used the SRAMP web server to predict m6A positions within
peak sequences from our A459 cell line testing data set.
SRAMP predicted m6A residues to be present in 72.14% of
all instances labeled as truepositivem6Apeak sequences,while
m6aViewer classified 91.14% of these sequences as such (Fig.
5). In the false-positive peak subset, SRAMP predictedm6A to
be present in nearly half the sequences, whilem6aViewermis-
classified these in 12.5% of total instances. As discussed previ-
ously, this discrepancy could be partially explained by
inaccuracies in our data set, where genuine m6A sites could
be mislabeled as false positives. Furthermore, SRAMP was
run with default settings—a running mode that is faster, but
does not consider predicted secondary RNA structure infor-
mation, which reportedly enhances classification perfor-
mance. These results, however, are not surprising, as SRAMP
effectively detects the potential form6Amethylation in a given
sequence,whereasm6aViewer aims to frame these predictions
in an experimental context by considering m6A-seq data
features. As such, some adenosines encompassed by our 200-
nt false-positive peak sequences could be potentially methy-
lated under certain conditions due to the dynamic nature of
m6A; thus, SRAMP’s predictions would be correct within the
designed scopeof the software. Indeed, thispotential formeth-
ylation may be a major contributing factor for the much
lower discriminatory power of our sequence-only model.
In order to further ascertain whether m6aViewer’s false-

positive filter provides biologically meaningful results, we
have performed peak-calling in an RNA demethylase FTO-
depleted and matched control m6A-seq data sets. From the
detected peaks, we selected those that could be considered
stable (detected in both FTO-depleted and control samples
and change in enrichment between FTO and KO is less
than 0.5-fold) or more enriched in the FTO-depleted sample
(detected in both FTO-depleted and control samples and IP
enrichment over INPUT at least twofold higher in the FTO-
depleted sample). These two groups of peaks were then clas-
sified into false positives and true positives using m6aViewer,
and a classifier score was assigned to each peak (0–0.5 indi-
cating likely false positives, 0.5–1.0 indicating true positives,
with increasing confidence as score approaches 1.0). We ob-
served that peaks that show an increase in enrichment in
FTO-depleted samples are more likely to be scored as true
positives by our classifier (Fig. 6). This observation is in

FIGURE 4. ROC analysis showing the performance of m6aViewer’s
false-positive filter classifier when assessed using 10-fold cross-valida-
tion of the training data set (AUC = 0.923, dark red), independent
A459 cell line testing data set (AUC = 0.95, blue), and independent
mouse fibroblast testing data set (AUC = 0.913, green).
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line with the hypothesis that genuine m6A peaks are more
likely to respond to RNA demethylase depletion treatment,
whereas peaks that appear in the data due to experimental ar-
tifacts are less likely to be thus affected.
The final classifier model is implemented as an optional

peak filter and allows the user to bias the false-positive filter
toward precision or recall. Our cost/benefit analysis
(Supplemental Fig. 3) suggests that using default settings,
m6aViewer can filter out 86.02% of false-positive peaks at
the cost of losing 9.23% genuine m6A sites.

Implementation and availability

m6aViewer is made available through a cross-platform
graphical user interface requiring Java 1.8 (or greater) to
run and thus requires no command-line or programming
knowledge to use. The basic peak-calling functions require
only indexed and sorted BAM files as input; however, the
user may provide a GTF annotation file and reference se-
quences in fasta format to take advantage of additional anal-
ysis and annotation options (for users unfamiliar with
command line interface, a number of services, such as
Galaxy [Goecks et al. 2010], exist that facilitate read align-
ment, sorting and indexing steps through a web-based inter-
face). Moreover, unlike exomePeak, our peak-calling method
is uncoupled from genomic annotations, and as such, can be
applied to sequencing data from organisms with poorly an-
notated genomes, or for peak detection in novel transcripts.
m6aViewer allows the user to comparatively visualize peaks
across multiple samples (Supplemental Fig. 1A). The peak
browser interface provides convenient, interactive visualiza-
tion of the peaks in the context of genome annotations and

nearest consensus motif sequences. The methylation land-
scape can be viewed at chromosome level using an ideogram
view (Supplemental Fig. 1B), which provides local mouse
zoom. Custom chromosomes can be drawn by providing a
cytoband data file in a tabular format (available from
UCSC). Additionally, multiple data summary statistics can
be plotted by m6aViewer, including peak distribution and
sample-to-sample peak overlap heat charts.
Peak-calling results can be easily exported to a tab-delim-

ited output text file. m6aViewer outputs one text file per sam-
ple containing positions, significance and enrichment values
of all detected peaks. Additionally, the file may also contain
gene annotation, nearest consensus motif annotation or
false-positive filter confidence score, depending on the
peak-calling settings used. In the case of multiple samples,
an additional file is output that contains pairwise peak com-
parisons between all samples. Each peak position is matched
across samples and peak data are collated to provide a conve-
nient output format for further analysis. For each pairwise
sample, log fold enrichment change is also computed to
aid quick identification of peaks exhibiting the biggest chang-
es in methylation.
m6aViewer is highly customizable; however, sensible de-

fault parameters are in place that can be readily used for

FIGURE 5. Comparison between m6A predictions made by web server
SRAMP and m6aViewer. SRAMP predicted m6A within peak sequences
from the true positive subset in 72.04% of cases, while m6aViewer clas-
sified these as true positives in 91.16% of cases. In the false-positive peak
subset, SRAMP predicted m6A residues in 49.5% of cases, while
m6aViewer classified 12.5% of these as true positives.

FIGURE 6. m6aViewer’s false-positive filter classifier score distribution
in peaks from two FTO-depleted andmatched control sample replicates.
Two subsets of peaks are compared, a “STABLE” (peaks that show no
change in enrichment between FTO-depleted and control samples) sub-
set and an “UP” (peaks that show at least a twofold increase in peak en-
richment in FTO-depleted samples over control samples) subset. In
replicate 1, 51.21% of stable peaks and 65.64% of up-regulated peaks
were scored 0.5 or higher; in replicate 2, the difference between score
distributions was more pronounced, with 47.87% of stable and
70.13% of up-regulated peaks scoring 0.5 or higher. At a lower threshold
of 0.4, in replicate 1, 71.26% of up-regulated peaks and 58.78% of stable
peaks are classified as true positives; in replicate 2, 54.28% of stable and
75.34% of up-regulated peaks are classified as true positives.
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most analyses. Extended details about software usage are pro-
vided in online application documentation. m6aViewer Java
application and test data can be downloaded at http://dna2.
leeds.ac.uk/m6a.

MATERIALS AND METHODS

Processing of sequence data

m6aViewer requires sorted and indexed BAM files as input; as such,
raw sequence data preprocessing and alignment steps are important.
Here, all sequence data were preprocessed using Cutadapt software
(Martin 2011) in order to remove sequencing adapter contamina-
tion and poor quality bases. Sequencing reads were then aligned
to the human hg19 or mouse mm10 reference genomes. Reference
gene annotation was downloaded from the UCSC Genome Browser
database using the table browser tool, while reference sequences
were downloaded from the UCSC ftp site (Kent et al. 2002; Karol-
chik et al. 2004). Processed reads were aligned using STAR (Dobin
et al. 2013), a splicing-aware aligner. The resulting alignments
were sorted and indexed using SAMtools (Li et al. 2009) in order
to obtain BAM files for downstream peak-calling.

Precise determination of sequenced RNA fragment coverage is es-
sential for m6A peak-calling; however, typical sequencing reads do
not always accurately represent the sequenced molecule. Single-
end reads are often shorter than the length of the immunoprecipi-
tated fragment, and thus can result in a shifted (stranded library
preparation protocol) or bimodal (nonstranded library preparation)
coverage distribution of reads. Similarly, paired-end reads may not
cover the center of the fragment, or may overlap, resulting in artifac-
tual inflation of coverage at certain positions. m6aViewer counts
fragment (rather than read) coverage distribution to account for
these biases. Since paired-end sequencing sequences each RNA frag-
ment from both ends, fragment length and position information can
be easily inferred. However, single-end reads are extended in the di-
rection of the 3′ end of the read up to a user-specified fragment size.
m6aViewer also takes into account split reads when calculating frag-
ment coverage distribution, and any read extensions will respect in-
tron–exon boundaries, provided a gene transfer format (GTF)
annotation file is imported. Improper treatment of paired-end
read mapping across multiple exons can be particularly problematic
when using ChIP-seq peak-calling software to call m6A peaks, since
gapped alignments are not the norm in DNA sequencing.

Sequenced reads can be optionally filtered to ensure that only the
highest quality alignments are used for subsequent peak-calling.
This includes skipping reads flagged as PCR/optical duplicates,
alignments below a certain mapping quality threshold, secondary
alignments, and in the case of paired-end sequencing, improper
read pairs. For further details on sequence data processing, see
Supplemental Methods.

m6A peak-calling

Base-level RNA fragment coverage counts are extracted from immu-
noprecipitated (IP) and matched control (INPUT) sample BAM
files, and coverage between IP and INPUT is scaled to library size.
The signal is smoothed using a sliding window approach and initial
candidate peak positions are identified by finding all the local max-

ima in the IP coverage distribution. The local maxima are detected
as a change in the coverage distribution gradient over the expected
peak width, where a position (or a run of positions at equal cover-
age) is considered a local maximum if preceding base coverage fol-
lows an increasing trend and successive base coverage is decreasing.
The expected peak width is estimated as twice the median sequenced
fragment length in the case of paired-end reads, or from a user sup-
plied fragment size (default: 100 nt) in the case of single-end reads.

Multiple m6A residues can exist in close proximity to one another
(Linder et al. 2015), resulting in fully or partially overlapping peaks
(Supplemental Fig. 1A). m6aViewer can identify these events by
identifying multiple local maxima in close proximity separated by
a local minimum in coverage distribution. While m6A residues
that produce a signal resulting in completely overlapping peaks can-
not be resolved by this approach, peaks that only partially overlap
can be identified, and are treated separately. This is in contrast to
binning-based approaches used by software such as exomePeak
(Meng et al. 2013), in which a single significant region can encom-
pass multiple distinct peaks.

As the number of replicates for m6A-seq experiments is typically
low, Fisher’s exact test is used to determine significantly enriched
peaks for each replicate individually. Each local maximum identified
is tested against the null hypothesis that the read distribution in the
immunoprecipitated sample is not higher than that in the control
using total fragment counts aligning to the peak region. The peak
region is defined as the region encompassing the number of bases
equal to the sequenced fragment/insert length to each side of the de-
tected maximum; in cases of peak overlap, the region boundary to
the overlapping side(s) of the peak is defined as a midpoint between
the two peaks. This allows the analysis to take into account the total
number of reads in IP and INPUT samples, providing a statistical
confidence level for each peak. To correct for the large number of
statistical tests carried out, m6aViewer implements several alterna-
tive ways of controlling false discovery rate (FDR). For further de-
tails, see Supplemental Methods.

In order to facilitate analyses that focus on detecting highest con-
fidence m6A peaks, in addition to P-value and FDR-based cutoffs,
m6aViewer also implements IP enrichment (default: twofold) and
coverage (default: 20 reads) filters to increase the specificity of
peak-calling. The former allows the elimination of peaks that
show only low levels of enrichment, while the latter filters out peaks
that are called from a low number of reads spanning the region (but
that are still statistically significant). The default values favor retain-
ing high-confidence peaks only, but can be freely adjusted using the
options menu. Additionally, an optional (default: off) reproducibil-
ity filter can be applied in cases where multiple sample replicates are
available. This compares all detected peaks within a replicate group,
retaining only those that are reproducible. This option requires sam-
ples to be grouped via the GUI menu prior to peak-calling.

Peak deconvolution

Peaks arising from multiple m6A sites in very close proximity can
often be visually indistinguishable from single sites, and thus such
cases cannot be identified using the approach described in the
“m6A peak-calling” section. Conversely, the summit of detected sin-
gle m6A peaks rarely precisely corresponds to the site of methyla-
tion. Here, we propose a mixture distribution-based approach to
deconvolute overlapping peaks and pinpoint m6A methylation sites
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with increased precision. The method is implemented as an alterna-
tive (slower) running mode for m6aViewer.
Briefly, the observed fragment coverage distribution in an en-

riched region can be thought of as a mixture of coverage distribu-
tions, each arising either from antibody binding to a methylated
residue or confounding “noise” reads that may arise from sources
such as sequencing/alignment errors or RNA molecules randomly
“sticking” to beads and other surfaces during NGS library prepara-
tion. Thus, for each such region, we try to find and fit a mixture of n
fragment coverage distributions that best explain the observed data.
We use an expectation maximization (EM) approach to iteratively
compute the likeliest m6A sites. During EM, we iteratively switch be-
tween computing the probability distribution of RNA fragments
“belonging” to each putative m6A position and reestimating said
m6A positions and corresponding mixture proportions, until con-
vergence. For further details on the expectation maximization algo-
rithm, see Do and Batzoglou (2008).
Initializing the EM algorithm to appropriate values is crucial to its

performance, and a number of initializing techniques have been
proposed (Maitra 2009; Melnykov and Melnykov 2012). Given
that all possible methylation sites can be obtained directly from
the reference sequence—that is, methylation in this context can
only occur at an adenosine residue (and is more likely to occur with-
in a consensus sequence)—we iteratively select a number of these
positions which account for the most mapped fragments in the re-
gion, akin to the method described in Melnykov and Melnykov
(2012). Similarly, mixture probabilities can be initialized as a nor-
malized proportion of fragments mapped to each initial position.
It is particularly important to estimate correctly how many peaks

should be fitted. While fitting a larger number of peaks will always
result in an increase in log-likelihood for the model, this will often
result in over-fitting. We use Bayesian information criterion (BIC)
to select the model with the likeliest number of peaks in order to ac-
count for both the likelihood and the complexity of the model
(Schwarz 1978). For further details on m6aViewer’s peak deconvo-
lution approach, see Supplemental Methods.

Identification of false-positive peaks

False-positive peaks can arise due to nonspecific antibody binding,
alignment errors, or even RNA/DNA contamination. These peaks
can constitute a large proportion of all detected peaks and are
problematic in the analysis of m6A-seq experiments. Here, we im-
plemented a supervised, ensemble learning filter to aid the distin-
guishing of true-positive m6A sites from false-positive peaks.
We downloaded human methyltransferase knockdown and

matched control m6A-seq data from the ArrayExpress archive (orig-
inal experiments: Schwartz et al. [2014], accession: E-GEOD-55572)
in order to obtain a set of true-positive and false-positive peaks for
use as training data. We used data from HEK293T cells to train and
assess our initial model using 10-fold cross-validation, while data
from human A549 cells and mouse fibroblast cells were used as in-
dependent testing data sets to assess how well our model generalizes
to different tissue types. For further validation of our model, we ad-
ditionally obtained m6A-seq data from RNA demethylase FTO-de-
pleted mouse 3T3-L1 cell lines.
In order to obtain a high quality training data set, peaks that could

be identified with high confidence as either m6A or nonspecific an-
tibody peaks were selected. A peak was considered as a high-confi-

dence m6A peak if it was not detected in the knockdown sample.
Similarly, a peak was considered to be a technical false positive
only if the change in the levels of enrichment between the knock-
down and the control was <0.5-fold. The final HEK293T data set
consisted of 2098 peaks, 1030 of which are false-positive training in-
stances and 1068 true-positive instances.
In order to see whether true positives could be distinguished from

false positives using RNA sequence information alone, we imple-
mented a mixture transition distribution (MTD) model (Raftery
1985) using RNA sequence surrounding each peak as training
data. Markov chains are well suited for representing RNA sequences
and have been applied to a wide range of DNA and RNA sequence
classification problems (Salzberg et al. 1998, 1999; Eddy 2004).
Higher order models often produce better results (Narlikar et al.
2013), but are computationally difficult to model because the num-
ber of required parameters grows exponentially. MTD allows ap-
proximation of high-order Markov chains in linear space by
considering the effect of each lag on the conditional probability of
observing each base in a sequence separately. Here, we represented
peaks as 200-nt sequences of A, T, G, C, and M (where M is the de-
tectedmethylated adenosine residue) and estimated transition prob-
ability matrices for false-positive and true-positive models from a set
of training sequences, comprising two-thirds of the entire data set.
Model parameters were optimized using the maximization of the
log-likelihood approach described by Berchtold and Raftery
(2002). This approach enables us to capture the sequential nature
of the data, an important aspect that can be lost in feature-based
classification. For further details on MTD, see Berchtold and
Raftery (2002) and Raftery (1985).
As our sequence-based model alone did not achieve practicable

precision and recall rates (AUC = 0.79), we opted to incorporate ad-
ditional data by combining our sequence-based model with a fea-
ture-based approach. We selected 61 features, including secondary
RNA structure (Lorenz et al. 2011), position and conservation status
of the nearest consensus sites (Karolchik et al. 2004; Siepel et al.
2005), information about putative miRNA binding sites (Kozomara
and Griffiths-Jones 2014), transcript-level information such as exon
length and whether the peak is within a coding or regulatory region,
kmer content and peak attributes (e.g., enrichment over INPUT
control) and used this information as a basis for a feature-based
model. We trained a Random Forest classifier—an ensembl of ran-
dom decision trees wherein the final classification is decided by the
majority vote—using an established Java machine learning library
Weka (Hall et al. 2009). The final model was built using 1000 ran-
dom trees, each considering six random features at each node. For
further details on Random Forest algorithm, see Breiman (2001).
We found that including predicted RNA secondary structure infor-
mation in our model—a feature used by Zhou et al. (2016)—did not
result in increased performance, thus these features were excluded
from the final model. This suggests that either the error rate in
RNA secondary structure prediction is too high, RNA secondary
structure is not important for RNA adenosinemethylation, or a sim-
ilar RNA secondary structure is present at nonspecific antibody
binding sites to that of actual m6A sites, which could also be an an-
tibody site recognition factor. For further details onm6aViewer’s se-
quence and random forest models, see Supplemental Methods.
Finally, we have opted to compare m6aViewer’s false-positive

classifier filter with m6A site predictions made by webserver
SRAMP (Zhou et al. 2016). As the SRAMP web interface does not
allow batch queries, we have automated SRAMP predictions using
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a custom program to construct HTTP POST queries at SRAMP de-
fault settings (no RNA secondary structure information, use all
tissues).

Performance assessment and comparison
with other tools

In order to validate our peak-calling approach, we have used
m6aViewer to detect peaks in multiple published m6A-seq data
sets. We compared the results with two otherm6A peak-calling algo-
rithms, exomePeak (Meng et al. 2013) and its recently described ex-
tensionMeTPeak (Cui et al. 2016), aswell as theChIP-seq calling tool
MACS2 (Zhang et al. 2008), using multiple distinct metrics.
exomePeak analysis was run in R using default parameters, while
m6aViewer, MACS2, and MeTPeak parameters were set to mirror
these defaultswherepossible (P-value:<0.05,minimumenrichment:
1.0, MACS2 command line option “—call-summits”). m6aViewer
was run without applying the false-positive filter, unless specifically
indicated. Benchmarks were performed using m6aViewer’s default
running mode, except in cases where peak deconvolution is
indicated.

For exomePeak and MeTPeak results, the center point of the re-
ported enriched regions was computed and used as the peak posi-
tion for all assessments. In contrast, ChIP-seq peak-calling
software MACS2 (Zhang et al. 2008) outputs a single peak position
corresponding to the detected peak summit. We investigated how
m6A peak-calling by these algorithms compares to m6aViewer.

As no m6A-seq data set exists wherein all m6A positions are
known, we use peak distance to nearest m6A consensus (RRACH)
as one measure of algorithm performance. As an expected back-
ground control, consensus distance to randomly selected (via ran-
dom number generator) genomic or transcriptomic positions was
computed. In order to increase the robustness of this evaluation,
the transcriptomic control positions were selected from peak-
matched transcript regions (either CDS, 5′UTR, 3′UTR, or intronic),
as randomly selected transcripts may not accurately capture the ex-
pected rate of m6A consensus occurrence. We applied this measure
to an m6A-seq data set from HepG2 cells (Dominissini et al. 2012).

Recently, Linder et al. (2015) described a mutation-based tech-
nique to obtain a single-nucleotide resolution map of m6A methyl-
ation sites in HEK293T cells. Here, we use this data to benchmark
m6A peak-calling resolution. As no matched m6A-seq data set is
available, we opted to use the HEK293T m6A-seq data set from
Schwartz et al. (2014). We intersected the HEK293T m6A-seq data
set with the m6A positions reported by Linder et al. (2015) and se-
lected the 1000 highest confidence residues identified in the muta-
tion map that also corresponded to an enriched region in the
m6A-seq data set. We performed peak-calling on the m6A-seq
data set using m6aViewer, MACS2, exomePeak, and MeTPeak
and compared the precision with which peaks were called.

Me-RIP data sets

Me-RIP data sets used for the development and performance assess-
ments of m6aViewer were downloaded from the ArrayExpress
(Kolesnikov et al. 2015) database. These are as follows: RNA meth-
yltransferase depleted and matched control 50-nt paired-end se-
quence data from HEK293T, A459 and mouse fibroblast cells
(accessions: E-GEOD-55575 and E-GEOD-55572); 36-nt single-

end read HepG2 cell line data (accession: E-GEOD-37005); FTO-
depleted mouse 3T3-L1 cell line data (accession: E-GEOD-53244);
50-nt single-end HIV-infected and control T-cell data (accession:
E-GEOD-74016); and 50-nt H1299 cell line data (accession: E-
GEOD-76367). All data were preprocessed as detailed in the
“Processing of sequence data” section.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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