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ABSTRACT

The characterization of RNA–protein complexes (RNPs) is a difficult but increasingly important problem in modern biology. By
combining the compact RNA Mango aptamer with a fluorogenic thiazole orange desthiobiotin (TO1-Dtb or TO3-Dtb) ligand,
we have created an RNA tagging system that simplifies the purification and subsequent characterization of endogenous RNPs.
Mango-tagged RNP complexes can be immobilized on a streptavidin solid support and recovered in their native state by the
addition of free biotin. Furthermore, Mango-based RNP purification can be adapted to different scales of RNP isolation
ranging from pull-down assays to the isolation of large amounts of biochemically defined cellular RNPs. We have incorporated
the Mango aptamer into the S. cerevisiae U1 small nuclear RNA (snRNA), shown that the Mango-snRNA is functional in cells,
and used the aptamer to pull down a U1 snRNA-associated protein. To demonstrate large-scale isolation of RNPs, we purified
and characterized bacterial RNA polymerase holoenzyme (HE) in complex with a Mango-containing 6S RNA. We were able to
use the combination of a red-shifted TO3-Dtb ligand and eGFP-tagged HE to follow the binding and release of the 6S RNA by
two-color native gel analysis as well as by single-molecule fluorescence cross-correlation spectroscopy. Together these
experiments demonstrate how the Mango aptamer in conjunction with simple derivatives of its flurophore ligands enables the
purification and characterization of endogenous cellular RNPs in vitro.
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INTRODUCTION

RNPs play essential roles in gene expression and regulation in
all domains of life (Wang and Chang 2011; Cech and Steitz
2014), yet many RNPs remain poorly characterized due to
the challenges inherent in their purification and subsequent
biochemical characterization. While protein-based tags can
be used for both purification (Lichty et al. 2005) and fluores-
cent labeling of RNPs (Cranfill et al. 2016), few options exist
that simultaneously facilitate affinity-based native purifica-
tion and fluorescent labeling of the RNA components of an
RNP complex (Panchapakesan et al. 2015). Small RNA
aptamer tags that are easy to insert into an RNA of interest
and that bind to derivatizable fluorophore tags offer a poten-
tial solution to this problem. To be effective, such an ap-
proach requires high-affinity aptamers able to bind their
fluorophore ligands so that the fluorescent aptamer/fluoro-
phore complex can also serve as a purification handle. A
key problem in this respect has been the difficulty in isolating

aptamer fluorophore–ligand pairs that have sufficiently high
binding affinity and brightness to serve as a dual use RNA tag.
The RNAMango aptamer binds with nanomolar affinity to

thiazole orange (TO) derivatives such as TO1-Biotin and can
increase their fluorescence by ∼1000-fold (Dolgosheina et al.
2014). Therefore, it appeared to be an ideal aptamer/fluoro-
phore system for native RNP purification and fluorescent
characterization. Our interest in this system was increased
by the recent finding that the Mango aptamer consists of a
compact 19-nt fluorophore binding G-quadruplex domain
that is physically connected to an arbitrary stem via a novel
GAA^A tetraloop-like motif ([^] indicates fluorophore
quadruplex binding domain insertion site, see Fig. 1A and
Trachman et al. 2017). Since many biological RNAs contain
GNRA tetraloops that are isosteric with a GAAA loop
(Uhlenbeck 1990), we reasoned that the Mango tag might
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be biologically well-tolerated if it was
used to replace preexisting stem–loops
whose sequences or structures are not
biologically essential.
To demonstrate the potential of the

Mango system to enrich and fluorescent-
ly characterize native RNP complexes
from both eukaryotic and prokaryotic
cell lysates, we synthesized two deriva-
tives of TO1-Biotin, TO1-Dtb, and the
significantly red-shifted TO3-Dtb (Fig.
1B) and used these ligands to analyze
RNPs at different purification scales.
Insertion of a single Mango tag into
stem–loop VII of the S. cerevisiae (yeast)
U1 small nuclear RNA (snRNA) main-
tained yeast viability and enabled the sin-
gle step pull-down of the U1 snRNP
using TO1-Dtb under native conditions.
Tagging a release-defective form of the
bacterial 6S RNA (Oviedo Ovando et al.
2014) with Mango (6SRDM) allowed the purification of the
6SRDM:RNA polymerase complex in two steps: the second
of which involved the use of TO1-Dtb fluorescence to track
RNP elution. Using Mango-tagged 6S RNA, eGFP-tagged
RNA polymerase, and TO3-Dtb, we could track the binding
and release of the 6S RNA from the RNP (Wassarman and
Storz 2000; Wassarman and Saecker 2006; Panchapakesan
and Unrau 2012) by an electrophoretic mobility shift assay
(EMSA). Finally, the tight binding of TO3-Dtb to the
Mango-tagged 6S RNA also enables single-molecule fluores-
cent cross-correlation spectroscopy of this complex. Thus in
both eukaryotic and prokaryotic contexts we demonstrate the
utility of Mango for pull-down, purification, and biophysical
characterization of RNPs.

RESULTS AND DISCUSSION

Mango tag insertion into yeast U1 snRNA maintains
biological viability

To study the utility of RNA Mango for eukaryotic RNP pull-
down experiments, we inserted the Mango motif into the
stem–loop VII of the 568-nt Saccharomyces cerevisiae (yeast)
U1 sRNA (U1M). The U1 snRNA is the highly conserved
RNA component of the U1 snRNP that initially recognizes
5′ splice sites of introns during spliceosome assembly
(Seraphin and Rosbash 1989) and is essential for eukaryotic
cell growth. This U1M gene, which replaces the 5-nt loop of
the U1 stem–loop VII with the Mango GAAA tetraloop-
like adapter and core sequence (Fig. 1A; Supplemental Fig.
1), also replaced the wild-type (WT) U1 snRNA allele in a
U1 deletion (snr19Δ strain) and was able to maintain yeast vi-
ability. The presence of the U1M gene and the absence of the
WT allele was confirmed by PCR and DNA sequencing

(Supplemental Fig. 2). The survival of U1M yeast construct
demonstrates that Mango can be incorporated into a non-
coding RNA essential for eukaryotic cell proliferation while
maintaining biological function.

RNP pull-down using Mango and TO1-Dtb

In order to enable native purification and characterization of
RNPs, we synthesized TO1-Desthiobiotin (TO1-Dtb, ex/em:
260, 510/535 nm) and the significantly red-shifted TO3-
Desthiobiotin (TO3-Dtb, ex/em: 260, 637/658 nm).
Desthiobiotin, having fivefold less affinity to streptavidin
than biotin (Magalhães et al. 2011), can be displaced from
streptavidin by the addition of free biotin (Hirsch et al.
2002). TO1-Dtb (Trachman et al. 2017) and TO3-Dtb bind
to the Mango tag with nanomolar affinity (Supplemental
Fig. 3), similar to what has been reported previously for other
TO1 derivatives (Dolgosheina et al. 2014). Using the TO1-
Dtb ligand, we developed a protocol for the native purifica-
tion of RNP complexes using the Mango tag (Fig. 1C).
Native extract containing the Mango-tagged RNP is first
bound to a TO1-Dtb saturated streptavidin solid support.
Binding can be performed either at RT or at 4°C, depending
upon the stability of the RNA:protein complex. The solid
support is then washed to remove nonspecific components
of the extract with the stringency of washing being dependent
upon the stability of the complex under study. After washing,
the complexes are eluted by the addition of excess free biotin
(see Materials and Methods).
We used Mango together with TO1-Dtb to pull down

the U1 snRNP complex in nondenaturing conditions. The
U1M snRNA was significantly enriched as judged by in vitro
solution hybridization (Fig. 2A) and primer extension

FIGURE 1. Native purification of RNP complexes using the fluorescent, high-affinity Mango
tool set. (A) RNA Mango aptamer core quadruplex and the GAA^A tetraloop-like connecting
motif sequence (in brown, [^] indicates site of core quadruplex insertion). N and N′ are comple-
mentary base pairs of arbitrary sequence forming a RNA duplex (Trachman et al. 2017). (B)
Structures of Dtb-derivatized TO1 (n = 1) or TO3 (n = 3) fluorophores. (C) General schematic
for purification of native RNP complexes using Mango.
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(Supplemental Fig. 4). A dual-labeled yeast strain containing
both U1M and a fast SNAP-tagged U1 snRNP protein (Snp1-
SNAPf) was also prepared in order to easily detect copurifica-
tion of snRNA and protein components of the U1 snRNP. As
expected, the U1M snRNA was enriched only in Mango-
tagged strains while another noncoding snRNA (U2) was
not, indicating that enrichment was specific for the Mango
tag (Fig. 2B). The Snp1-SNAPf tag could only be detected
in extract prepared from cells containing both the U1M and
Snp1-SNAPf, again suggesting the specific enrichment of
the U1 snRNP complex (Fig. 2C). Thus, not only is U1M vi-
able in yeast, but the Mango aptamer/TO1-Dtb system facil-
itates the pull-down of the U1 snRNP complex from yeast cell
extract. It is worthwhile to note that the Mango system en-
ables U1M pull-down of an RNP present in only a few hun-
dred molecules per cell and at nanomolar concentrations in
whole-cell extract (Riedel et al. 1986), suggesting that
Mango can be used to pull down and characterize low-abun-
dance RNPs.

Two-step Mango tag enrichment
of the 6SRDM:HE RNP complex

While the high affinity of the Mango
aptamer to its TO1-Dtb ligand facilitates
pull-down type experiments, we won-
dered whether the intrinsic fluorescent
properties of the biotin-eluted RNP com-
plex could be exploited for larger-scale
RNP purification. We tagged a release-
defective mutant of the 6S RNA (R9-
33) (Oviedo Ovando et al. 2014) with
Mango (6SRDM) (Supplemental Fig. 5)
and overexpressed 6SRDM in E. coli cells.
Cell lysate from the 6SRDM expressing
bacteria was then incubated with TO1-
Dtb derivatized streptavidin agarose
beads as before, washed, and the desthio-
biotin-bound material eluted by addition
of free biotin. Analysis of the recovered
RNA fraction showed considerable en-
richment in an RNA band of the expect-

ed size (Supplemental Fig. 6). LC–MS/MS analysis revealed
that this single-step purification yielded the four core RNA
polymerase proteins as the highest ranked polypeptides, con-
sistent with enrichment of intact HE (Table 1; Supplemental
Table 1). As this biotin-eluted RNP complex should still be
complexed to TO1-Dtb, we reasoned that the Mango-based
fluorescence of this complex could be used to follow the fur-
ther purification of the complex by size-exclusion chroma-
tography (SEC). Three TO1-Dtb dependent fluorescent
peaks were observed by SEC (Fig. 3). Loading in vitro synthe-
sized 6SRDM and free TO1-Dtb controls into the column re-
vealed that the second and third peaks corresponded to
6SRDM:TO1-Dtb and free TO1-Dtb, while the earliest-eluting
peak was consistent with the 6SRDM:HE RNP complex. MS
analysis of this peak yielded all five protein components of
the HE as high-ranking hits (Table 1; Supplemental Table
2). Thus, by using the binding and fluorescent properties of
TO1-Dtb, we could rapidly enrich in bacterial RNA polymer-
ase using the Mango-tagged 6S regulatory RNA.

FIGURE 2. Native purification of yeast U1 snRNP complex using RNAMango. (A) Solution hy-
bridization analysis of snRNAs present in native extract (NE) from U1M tagged yeast and follow-
ing Mango batch purification using TO1-Dtb (Biotin Eluate). The probed snRNAs are labeled on
the right and correspond to the number labels above each lane. U1M migrates as a doublet follow-
ing RNA deproteinization and denaturation, but as a single band uponMango-based purification.
(B) Primer extension analysis to detect U1M or U2 snRNAs following TO1-Dtb bead-based pu-
rification. (C) SDS-PAGE analysis of Snp1-SNAPf following Mango purification.

TABLE 1. Mass spectrometry analysis of the proteins enriched by 6SRDM-based purification

Mango 6SRDM TO1-Dtb pull-down (rank) Mango TO1-Dtb SEC purification (rank) Commercial RNAP (rank)

RNAP β 1 1 1
RNAP β′ 2 2 2
RNAP α 4 3 3
Sigma 70 3 4 4
GroEL 5 5 5
Thioredoxin 32 6 6
RNAP ω 38 7 8

Column one, analysis of biotin eluate pull-down. Column two, analysis of the 6SRDM:HE peak (Fig. 3). Samples were prepared as described in
the Materials and Methods section and submitted for LC–MS/MS identification. The rank order of the hits (see Supplemental Tables 1–3 for
further information) is presented. Commercial RNAP was analyzed in column three for comparison.
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Unexpectedly, two additional proteins were significantly
enriched together with the core components of HE: GroEL
and thioredoxin (Table 1). Throughout the purification of
the 6SRDM:HE complex we were able to detect GroEL by
LC–MS/MS, suggesting that a significant fraction of the
6SRDM:HE RNP complex may be associated with GroEL.
We also found that thioredoxin was significantly enriched af-
ter SEC, suggesting that it may also make stable interactions
with the 6SRDM:HE complex. To explore whether this was
potentially an artifactual result of the Mango-based purifica-
tion, we compared our results with an equivalent LC–MS/MS
analysis of RNAP obtained from a commercial source. The
GroEL and thioredoxin proteins were also present as high
scoring MS hits in the commercial RNAP (Table 1;
Supplemental Table 3), supporting the idea that they copurify
with RNAP even in the absence of the 6S RNA.

Two-color fluorescence gel-shift analysis of 6S RNP
assembly and disassembly using Mango

Next, we tested the functionality of the Mango system for
multiwavelength fluorescence imaging. We reasoned that
since the Mango:TO3-Dtb complex (Ex/Em 637/658 nm,
Fig. 1B) and enhanced GFP (eGFP, Ex/Em: 488/509 nm)
are spectrally distinct, this pair could be used to dual-label
RNP complexes. We combined the TO3-Dtb ligand with a
wild-type 6S RNA tagged with RNAMango (6SM) (Dolgosh-
eina et al. 2014) and prepared partially enrichedHE tagged on
the β′ subunit with eGFP (eGFP-HE) (Bratton et al. 2011).We
mixed eGFP-HE with the 6SM:TO3-Dtb complex and ana-
lyzed the assembly and pRNA-dependent release of 6SM

from the HE complex by native gel-shift analysis (Wassarman
and Saecker 2006). As little as 10 pmol of the 6SM:HE complex
could be clearly detected by dual-color fluorescence imaging.
Upon the addition of partially purified eGFP-HE, 6SM formed
a single, dual-labeledRNP complex (Fig. 4A). As expected, the
addition of NTPs and MgCl2 triggered release of 6SM RNA
from eGFP-HE and produced a faster mobility, fluorescent
6SM:pRNA band. As the release of the 6S RNA is rapid (∼30

sec) and still only partially understood (Panchapakesan
et al. 2015), the ability to dual label the 6S RNA:HE complex
promises to be beneficial for the further characterization of
the 6S RNA release process.

Single-molecule fluorescence cross-correlation
spectroscopy analysis of the 6S RNP

Finally, we set out to test the effectiveness of Mango for sin-
gle-molecule analysis of dual-labeled RNPs. Fluorescence
cross-correlation spectroscopy (FCCS) is a single-molecule
approach that can be used to study biomolecular interactions
in real-time (Bacia and Schwille 2007). Further, this can be
combined with two-photon excitation to minimize photo-
bleaching (Zipfel et al. 2003). We carried out a two-photon
FCCS analysis of RNPs containing in vitro synthesized
6SM bound to the TO3-Dtb ligand and reconstituted with
partially purified eGFP-HE. Analysis of the two-photon

FIGURE 3. SEC purification of 6SM:HE complex from E. coli cells. The
SEC elution profile represents the RNA Mango:TO1-Dtb fluorescence
observed in each fraction. The 6SRDM:HE peak fraction corresponds
to the sample analyzed by LC–MS/MS in Table 1.

FIGURE 4. Multiwavelength fluorescence characterization of the 6SM:
HE complex. (A) EMSA assay of the 6SM:eGFP-HE complex visualized
using eGFP-HE (green, top) and 6SM:TO3-Dtb (red, middle) fluores-
cence. The bottom panel is the composite of the green and red images.
Product RNA (pRNA) release was induced by the addition of NTPs
and MgCl2. (B) Fluorescence auto- and cross-correlation spectroscopy
of 6SM:TO3-Dtb (red) in the presence of 25.4 ± 0.3 nM free eGFP-HE
(green) and 1% 6SM:eGFP-HE complex (yellow, cross-correlation am-
plitude). (C) 6SM:TO3-Dtb (red) in the presence of 127.5 ± 0.9 nM
(right) free eGFP-HE (green) and 20% 6SM:eGFP-HE complex (yellow,
cross-correlation amplitude). Fluorescence intensity traces in thousands
of photon counts per second (kcps, both red and green channels) are
shown in the top panels. Residuals are shown in the middle panels.
Correlation functions are shown in the bottom panels.
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fluorescence excitation spectrum for 6SM:TO3-Dtb identified
a peak near∼840 nm (Supplemental Fig. 7). At this two-pho-
ton wavelength, we were able to determine the diffusion co-
efficient and molecular brightness of 6SM:TO3-Dtb (D6SM =
140 ± 8 µm2 sec−1) and eGFP-HE (DHE = 58 ± 2 µm2 sec−1)
in isolation (Supplemental Fig. 8; Supplemental Table 5).
Next, we added increasing amounts of eGFP-HE (green
channel) solution to the 6SM:TO3 (red channel) solution.
As expected, we observed cross-correlation (Kim et al.
2005) between the fluorescent signals in the red and green
channels upon the addition of holoenzyme (Fig. 4B,C), indi-
cating the detection of single molecular complexes contain-
ing both the eGFP and TO3 fluorophores. Further, the
abundance of these dual-labeled complexes, likely represent-
ing 6SM:HE complex, increased in proportion to the amount
of eGFP-HE added (see Materials and Methods and
Supplemental Information for further details). These results
demonstrate the ability of the RNAMango fluorescent system
to be used as a fluorescent partner with existing fluorescent
proteins to perform two-photon FCCS.

Conclusions

We have developed a multifunctional Mango fluorophore
system for the purification and biochemical analysis of cellu-
lar RNA and RNPs. The variety of applications demonstrated
here are made possible due to the unique combination of the
high affinity between TO derivatives and theMango aptamer,
the large fluorescence enhancement in TO that occurs upon
binding to RNA Mango, and the small size and biological
compatibility of the aptamer. It is likely that many RNAs in
addition to the U1 snRNA and the 6S RNA studied here con-
tain modifiable stem–loop structures or will permit insertion
of RNA Mango-containing stem–loop sequences. As com-
prehensive libraries of eGFP-tagged proteins already exist
for a range of organisms (Huh et al. 2003; Kitagawa et al.
2006; Buszczak et al. 2007), the Mango system should allow
the rapid and systematic study of RNPs via the utilization
of RNA-based pull-downs and RNA tagged, two-color fluo-
rescent analysis.

MATERIALS AND METHODS

Synthesis of desthiobiotin derivatives of thiazole
orange acetate

TO1 PEG4 desthiobiotin (TO1-Dtb) and TO3 PEG4 desthiobiotin
(TO3-Dtb) were synthesized using TO1-acetate andTO3-acetate, re-
spectively, together with EZ link amine PEG4 desthiobiotin (Thermo
Fisher) as precursors following an established protocol (Dolgosheina
et al. 2014; Trachman et al. 2017). Product identity was confirmed
by electrospray ionization–mass spectrometry in the positive
mode. Expected mass (in Da) for TO1-Dtb: C40H55N6O7S

+:
763.3847, obtained mass: 763.3855, and expected mass for TO3-
Dtb: C42H57N6O7S

+: 789.4003, obtained mass: 789.3999.

Preparation of TO1-Dtb derivatized streptavidin
agarose affinity resin

In all experiments, streptavidin agarose beads (Invitrogen) were
used for batch purification in either 1.7 mL or 5 mL tubes, as re-
quired, and solutions containing the beads were mixed using a rota-
tor. The beads (400 µL) were washed twice with 0.1 M NaOH and
0.05 M NaCl (Buffer A) as per the manufacturer’s protocol and
three times with 15 mM HEPES pH 7.5, 90 mM KCl (Buffer B).
TO1-Dtb was added (22.5 nmol) in 400 µL Buffer B and incubated
with the washed beads for 15 min at RT. The beads were then
washed once with 400 µL Buffer B to remove any unbound dye.

Yeast strain and extract preparation

The yeast U1M strain was prepared from the BJ2168 derivative
yAAH0441 (Mat a, prc1-407, prb1-1122, pep4-3, leu2, trp1, ura3-
52, his3::loxP gal2 snr19::loxP [pMKU1-7 URA CEN]), a kind gift
of Dr. Magda Konarska. The U1M gene along with 500 bp of up-
stream and 723 bp of downstream genomic DNA sequence was con-
structed by Genewiz, subcloned into the BamHI and NotI sites of
the pRS413 plasmid (HIS3 CEN6), and sequenced. The U1M plas-
mid was then transformed into yAAH0441. Transformants were se-
lected on dropout media, and single colonies were streaked onto
medium containing 5-fluoroorotic acid (5-FOA, 1 mg/mL) to select
for loss of the WT U1 URA3-marked plasmid. The presence of the
U1-Mango gene and the absence of the WT allele in the resulting
strain (yAAH1204) were confirmed by using PCR to amplify the
U1 gene and DNA sequencing (Supplemental Fig. 2). A double-
tagged strain containing both U1M and a SNAP-tagged Snp1 protein
(yAAH1362) was created by homologous recombination to insert
the SNAPf gene and a downstream hygromycin selection marker
as previously described (Hoskins et al. 2011). Transformants were
confirmed by PCR and by labeling of Snp1-SNAPf with fluorescent
SNAP ligands. Yeast whole-cell extracts were prepared from strains
yAAH1204 and yAAH1362 as previously described using the liquid
N2 method and a ball mill (Hoskins et al. 2011).

SNAP labeling of yeast whole-cell extract

Yeast whole-cell extracts (500 µL) were first fluorescently tagged
with the SNAP-Surface 549 tag (NEB) by incubating the extracts
with 1 U/µL Murine RNase inhibitor (NEB), Protease Inhibitors
(cOmplete mini at the recommended concentration, EDTA Free,
Sigma), 5 mM DTT together with 5 µM SNAP-Surface 549 tag in
Buffer B at RT for 30 min.

Pull-down of U1M-associated snRNPs

Yeast whole-cell extracts (500 µL of extract either with or without
SNAP label) were added to 200 µL of TO1-Dtb saturated agarose
beads and incubated at 4°C for 1 h in a rotator. The beads were
washed twice each with 5 mL Buffer B for 15 min at 4°C. The beads
were washed once more with buffer B at 30°C for 5 min. The snRNP
was then eluted by the addition of 200 µL Buffer B supplemented
with 20 mM biotin (Sigma-Aldrich) at 37°C for 30 min. For visual-
izing the fluorescent labeled SNAPf tag, 100 µL of the biotin eluate
was concentrated in a speed vac to 10 µL and loaded directly onto a
10% SDS PAGE gel. The gel was imaged using a Typhoon scanner
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using 532 nm excitation and 580 nm emission filter settings and
with PMT kept at 1000 V. The remaining 100 µL of the biotin eluate
was phenol extracted once, chloroform extracted twice, and ethanol
precipitated using 2 µg glycogen. The pellet was resuspended in 5.1
µL of water and analyzed by RT-primer extension assay.

RNA analysis by RT-primer extension and solution
hybridization

Either 1 µL of the precipitated RNA or 1 µg of total RNA isolated
from WT yeast extract was added to the corresponding 5′ [32P]-
labeled primers (Supplemental Table 4) and the reverse tran-
scription reaction was then carried out using the Maxima Reverse
Transcriptase (Thermo Fisher Scientific) at 45°C for 1 h.
Reactions were then loaded onto an 8% (19:1 acrylamide:bisacryla-
mide) denaturing polyacrylamide gel and run at 500 V at RT. For
solution hybridization, 5′ [32P]-labeled primers (Supplemental
Table 4) were added directly to the precipitated RNAs and incubat-
ed for 15 min at RT prior to loading onto a 5% (37.5:1 acrylamide:
bisacrylamide) native polyacrylamide gel and electrophoresis at 4°C
in 1× TBE at 350 V.

Construction of the p6SRDM_T7 plasmid

The 6SRDM plasmid was created as previously described
(Dolgosheina et al. 2014) but with point mutations corresponding
to the R9-33 construct (Oviedo Ovando et al. 2014). The 6SRDM

is flanked by a T7 promoter and lac operator at its 5′ end and an in-
trinsic terminator at its 3′ end and was cloned into the pEcoli-
Cterm-6xHN (Clontech) plasmid between the SgrAI and ClaI sites.
Refer to Supplemental Figure 5 for sequences.

Expression of the 6SRDM RNA in E. coli and extract
preparation

The 6SRDM RNA was expressed in E. coli BL21 (DE3) cells trans-
formed with the p6SRDM_T7 plasmid (Supplemental Fig. 5). E.
coli cells transformed with p6SRDM_T7 were grown overnight at
37°C in a shaking incubator in Luria-Bertani (LB) media contain-
ing 100 µg/mL ampicillin. A portion of the overnight culture (10
mL) was then used to inoculate 1 L of LB media containing 100
µg/mL ampicillin in a 4 L Erlenmeyer flask. The cells were then
grown at 37°C in a shaking incubator at 250 rpm until the
OD600 reached ∼1, at which point IPTG was added to a final con-
centration of 50 µM to induce 6SRDM RNA transcription. After 40
min of induction, cells were harvested by centrifugation at 3800g
for 10 min at 4°C and resuspended in 20 mL native extract buffer
(20 mM Tris pH 8, 150 mM KCl, 1 mM MgCl2, and 1 mM DTT).
The resuspended cells were then lysed by two passages through a
French press prechilled to 4°C and at 1000 psi. The lysate was cen-
trifuged at 12,000g for 10 min at 4°C to remove cell debris to yield
native extract (NE). This extract was then frozen in liquid N2 and
stored at −80°C.

Purification of 6S RNARDM RNP complexes

For the purification of 6SRDM associated RNPs, 3.8 mL of E. coli na-
tive extract, was made up to 5 mL final volume by the addition of 1

mL of 5× Buffer B and supplemented with final concentrations of
Heparin at 75 µg/mL and DTT at 0.75 mM. This solution was mixed
with the TO1-Dtb derivatized agarose beads for 15 min while incu-
bating at RT. The beads were washed twice withWB (15mMHEPES
pH 7.5, 90 mM KCl, 75 µg/mL Heparin and 0.75 mM DTT) at RT
for 2 min each prior to elution with 400 µL of WB containing 20
mM free biotin at 37°C for 20 min (called Biotin Eluate).

6SRDM RNP complex fractionation by size-exclusion
chromatography (SEC)

This biotin eluate (380 µL) was loaded onto a manually packed
Superdex 200 Prep Grade (GE Healthcare) column (30 × 1 cm)
and eluted with Buffer B using a flow rate of 0.1 mL/min.
Fractions (500 µL) were collected and TO1-Dtb fluorescence was
measured using a Spectramax M5 fluorescent plate reader (Ex/Em
495/535 nm, PMT at Medium) reading from the bottom of a 96-
well plate (Greiner Bio-one).

Mass spectrometry analysis of 6SRDM RNP complexes
and commercial RNAP

Samples were analyzed at the University of British Columbia
Proteomics Core Facility. LC–MS/MS analysis used a quadrupole–
time-of-flight mass spectrometer (Impact II; Bruker Daltonics) cou-
pled to an Easy nano LC 1000 HPLC precolumn (Thermo Fisher
Scientific). Analysis of mass spectrometry data was performed using
MaxQuant 1.5.1.0. The peptide search was performed against a da-
tabase comprised of the protein sequences from E. coli K12.
Commercial holoenzyme was from Epicentre.

Partial purification of eGFP-HE

E. coli eGFP-HE was partially purified from E. coli strain RL1314
which was a kind gift from Dr. Robert Landick, UW Madison
(Bratton et al. 2011). The partial purification was adapted from
the protocol of Burgess and Jendrisak (1975). Briefly, 1 L of
RL1314 E. coli cells at OD ∼1 were harvested and resuspended in
8 mL of 50 mM Tris pH 8, 5% (v/v) glycerol, 2 mM EDTA, 0.1
mM DTT, and 233 mM NaCl along with protease inhibitors
(cOmplete mini at the recommended concentration, EDTA Free,
Sigma) and lysed through a French press (prechilled to 4°C) at
1000 psi. The crude lysate was diluted with 8 mL of TGED Buffer
(10 mM Tris pH 8, 5% v/v glycerol, 0.1 mM EDTA, and 0.1 mM
DTT) supplemented with 0.2 M NaCl and was centrifuged at
12,000g for 45 min to remove cell debris. To this cleared lysate,
0.175 mL of 10% v/v Polymin P at pH 8 was added to 100 mL of
the cleared lysate and stirred for 5 min, before pelleting at 4300g
for 15 min. The resulting pellet was washed once for 10 min with
10 mL TGED + 0.5 M NaCl and repelleted at 4300g for 15 min.
The washed pellet was once again resuspended in 10 mL TGED +
1MNaCl and stirred for 10 min and the insoluble proteins were re-
moved by spinning at 4300g for 15 min. The resulting material was
precipitated with 50% saturated ammonium sulfate (35 g/100 mL)
and resuspended in 500 µL dialysis buffer (TGED + 0.1 M NaCl
but with 50% w/v glycerol) and was dialyzed overnight against 1 L
of dialysis buffer. All the above steps were done either at 4°C or
on ice.
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Two-color gel-imaging analysis of the Mango and eGFP-
tagged 6S:RNAP complex

In vitro synthesized 6SM RNA (1 µM) was added to 2 µM TO3-Dtb
and one-tenth of the reaction volume of the partially purified eGFP-
HE in 15mMHEPES pH 7.5, 90mMKCl, 0.75mMDTT and 75 µg/
mL heparin. This solution was then incubated at 37°C for 30 min to
formbound complex. To induce pRNA synthesis-dependent 6SM re-
lease, 500 µM NTPs and 5 mMMgCl2 were then added and incuba-
tion continued at 37°C. Samples were loaded into a 5% (37.5:1
acrylamide: bisacrylamide) native polyacrylamide gel using 15 mM
HEPES pH 7.5 and 90 mM KCl as both the gel and running buffer.
Electrophoresis was carried out for 90 min at 4°C at 100 V. The gel
was then imaged using a Typhoon Trio+ Variable Mode Imager
(GE LifeSciences) using a 488 nm laser and 526 BP filter for eGFP-
HE visualization and a 644 nm laser and 670 BP filter for imaging
TO3-Dtb:6SM complex. PMT settings were kept at 1000 V and
600 V for eGFP and Mango/TO3-Dtb, respectively. Image data
were analyzed and a composite image was made using ImageQuant
TV v8.1.0.0 (GE LifeSciences).

Two-photon spectrum and cross-correlation
experiments sample conditions

The two-photon spectrum of 6SM:TO3-Dtb was obtained by mea-
suring fluorescence intensity in photon/s over a range of two-pho-
ton excitation wavelengths. The solution contained 1 µM in vitro
transcribed 6SM, 1 µM TO3-Dtb, 15 mM HEPES pH 7.5, 90 mM
KCl, 0.75mMDTT, and 75 µg/mL heparin. Thewavelength was first
set to 800 nm, and then tuned to higher wavelengths at a constant
rate up to 900 nm. During this tuning, data were acquired in the
red channel at a rate of 100 Hz.

Fluorescence cross-correlation spectroscopy was performed by
adding increasing amounts of RNAP-eGFP extract to a fixed
amount of 6SM and TO3-Dtb. The starting mixture (128 µL) con-
tained 1 µM in vitro transcribed 6SM, 1 µM TO3-Dtb, 15 mM
HEPES pH 7.5, 90 mM KCl, 0.75 mMDTT, and 75 µg/mL heparin.
To this was added 12.5 µL of partially purified E. coli eGFP-HE (see
above), which was prediluted fivefold in 15 mM HEPES pH 7.5,
90 mM KCl, 0.75 mM DTT, and 75 µg/mL heparin. The sample
was mixed and cross-correlation spectroscopy was performed. This
was repeated for five sequential 12.5 µL additions, and two final
62.5 µL additions of the prediluted eGFP-HE. Themolecular bright-
ness of the 6SM:TO3-Dtb alone was determined by correlation
spectroscopy on the mixture prior to adding any eGFP-HE. The
molecular brightness of eGFP-HE alone was determined by adding
12.5 µL to 128 µL water and performing fluorescence correlation
spectroscopy. A mixture containing 6SM in 15 mM HEPES pH 7.5,
90 mM KCl, 0.75 mM DTT, and 75 µg/mL heparin, without TO3-
Dtb, was measured and showed no fluorescence above background.

Fluorescence cross-correlation spectroscopy was performed on
an ISS Alba microscope controlled using ISS Vista Vision 4.0
Software. Two-photon laser excitation was achieved using a
Titanium Sapphire laser (Spectra Physics, Tsunami) mode locked
at a median wavelength of 840 nm and a laser power of 45 mW un-
less otherwise specified. Light was collected using two PerkinElmer
SPCM-ARQ Avalanche Photodiodes. Laser light was filtered using a
780 nm short pass filter (Semrock) and split using a 561-nm-long
pass dichroic filter (Semrock) before directing the fluorescence
emission into the detectors. The excitation lasers were focused

onto the sample using a Nikon 60× water immersion objective
with a 1.2 numerical aperture. Data were acquired at 100 MHz for
100 sec using a 16-bit ISS FCS PCI card to transfer data between
the photodiodes and computer. Each measurement was repeated
three times, correlated and fit independently using Craig
Markwardt’s MPFIT library in IDL 8.3 (Exellis) using custom writ-
ten software.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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