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miRNA-34c inhibits myoblasts proliferation by targeting YY1
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ABSTRACT

miRNAs are increasingly being implicated as key regulators of cell proliferation, apoptosis, and
differentiation. miRNA-34c appears to play a crucial role in cancer pathogenesis wherein it exerts its effect
as a tumor suppressor. However, the role of miR-34c in myoblast proliferation remains poorly understood.
Here, we found that overexpression miR-34c inhibited myoblasts proliferation by reducing the protein and
mRNA expression of cell cycle genes. In contrast, blocking the function of miR-34c promoted myoblasts
proliferation and increased the protein and mRNA expression of cell cycle genes. Moreover, miR-34c

ARTICLE HISTORY
Received 19 October 2016
Revised 7 December 2016
Accepted 5 January 2017

KEYWORDS
cell cycle; miR-34c; myoblast;
proliferation; YY1

directly targeted YY1 and inhibited its expression. Similar to overexpression miR-34c, knockdown of YY1
by siRNA suppressed myoblasts proliferation. Our study provides novel evidence for a role of miR-34c in
inhibiting myoblasts proliferation by repressing YY1. Thus, miR-34c has the potential to be used to

enhance skeletal muscle development and regeneration.

Introduction

Myoblasts are derived from multipotent precursor cells and
play a critical role in myogenesis."* It is a highly orchestrated
process during which myoblasts proliferate, subsequently with-
draw from the cell cycle, enter terminal differentiation and fuse
into large multinucleated myotubes.> Increasing evidence sug-
gest that miRNAs have been implicated in myoblasts prolifera-
tion and differentiation.® miR-1, miR-206, miR-29, miR-26a,
and miR-148a are upregulated during myoblast differentiation,
where they inhibit myoblast proliferation and promote this
process.” "> However, many miRNAs that regulate myoblast
proliferation and differentiation are yet undiscovered.

miR-34c is known as a tumor suppressor.'* It can inhibit the
development of various cancers including osteosarcoma, lung
cancer, uveal melanoma, prostate cancer, laryngeal carcinoma,
breast cancer, and gastric cancer.'>*' Previous studies show
that sperm-borne miR-34c is important for the first cleavage
division by Bcl2.** It also modulates male germ cell develop-
ment.”"*> Furthermore, miR-34c inhibits osteoblast prolifera-
tion and differentiation and regulates bone development
through the Notch pathway by targeting SATB2.>%*” However,
the functions of miR-34c in myoblasts proliferation and differ-
entiation are still unknown.

YY1 is a ubiquitous transcription factor and plays an impor-
tant role in many biological processes. YY1 is an essential factor
for embryo development, and homozygosity of a mutated YY1
allele results in embryonic lethality in mice.”® During mouse
spermatogenesis, loss of YY1 impacts the heterochromatic state
and meiotic double-strand breaks.”> Skeletal-muscle-specific
YY1 knockout resulted in significant aberrations in mitochon-
drial morphology with severely defective oxidative function

that were associated with exercise intolerance.”® During skeletal
muscle development, YY1 is stimulated by NF-«B and acts as a
repressor in myogenesis.”' It binds to the enhancer or promoter
of myofibrillar genes and recruits PcG member Ezh2 as well as
the histone deacetylase protein HDACI to inhibit the expres-
sion of these genes.”’ ** Recent studies show that, miR-29 and
miR-1 promote myogenic differentiation by targeting YY1,
meanwhile YY1 can downregulate the expression of these
miRNAs. '

Given the role of other miRNAs in myogenesis and the lack
of information regarding the role of miR-34c in this process,
we hypothesized that this miRNA in myoblast proliferation
and differentiation. In this study, we found that miR-34c is
upregulated during myogenesis. We demonstrated that
miR-34c could inhibit myoblast proliferation through targeting
YY1. Our study provides novel evidence for the role of miR-
34c in muscle development.

Results

miR-34c exhibited low expression in proliferating
myoblasts and were upregulated during skeletal muscle
regeneration

To investigate the roles of miR-34c in myoblasts, we assessed
the expression of miR-34c during C2C12 myogenesis by using
qPCR. The results indicated that miR-34c was maintained at a
low level in proliferating C2C12 myoblasts and was upregulated
during differentiation (Fig. 1A and B). We next analyzed the
expression of miR-34c during skeletal muscle regeneration. We
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Figure 1. miR-34c exhibited low expression in proliferating myoblasts and were upregulated during skeletal muscle regeneration. (A) miR-34 expression was determined
by qPCR from C2C12 myoblasts cultured in growth medium and differentiation medium for 1-5 d. (B) Immunoblotting was performed to detect MyHC protein expression
as an indication of the differentiation status at the indicated times. (C) miR-34c was upregulated on days 1-21 post-CTX injury based on g-PCR analysis. miR-34c expres-
sion in skeletal muscle before CTX injection was set to 1.0. The results are expressed as the mean =+ SD of 3 replicates.

injected cardiotoxin (CTX) into the mouse tibialis anterior
muscle to induced skeletal muscle damage and regeneration,
the expression of miR-34c was sharply increased following 1-
21 d post injection of CTX (Fig. 1C).

miR-34c inhibited C2C12 myoblasts proliferation

To observe the function of miR-34c in myoblast prolifera-
tion, we transfected myoblasts cultured in growth medium
(GM) with miR-34c mimics or negative control (NC)
mimics (Fig. 2A). Flow cytometry results revealed that the
proportion of cells arrested in GO/G1 phase was signifi-
cantly higher in cells transfected with miR-34c mimics than
in those transfected with NC mimics (Fig. 2B). Further-
more, EdU staining also demonstrated that the EdU™ cells
of miR-34c transfected cells were significantly reduced com-
pared with that of the control cells (Fig. 2C). In addition,
with overexpression of miR-34c, the mRNA and protein
expression levels of cell cycle genes, specifically CCNDI,
CDK6, CCNEI, and CDK2, were reduced (Fig. 2D and E).
Moreover, we decreased the expression of miR-34c in
C2C12 cells by transfecting them with miR-34c inhibitor

(Fig. 2F). Subsequently, the proportion of cells in the G0/G1
phase was reduced (Fig. 2G), EdU" cells were increased
(Fig. 2H), and the mRNA and protein levels of cell cycle genes
were upregulated (Fig. 2I and J]). Together, the data demon-
strated that miR-34c can repress C2C12 myoblast proliferation
and induce GO/G1 arrest.

miR-34c inhibited primary myoblasts proliferation

In addition, we assessed the function of miR-34c in primary
myoblasts. We overexpressed miR-34c in primary myoblasts
by transfecting miR-34c mimics (Fig. 3A). As similar with
C2C12 myoblasts, the number of EdU™ cells was decreased
(Fig. 3B) and the mRNA and protein expression levels of
cell cycle genes were reduced (Fig. 3C and D). Conversely,
we downregulated the expression of miR-34c in primary
myoblasts by transfecting miR-34c inhibitor (Fig. 3E). With
this treatment, the proportion of EdU" cells was increased
(Fig. 3F) and the protein expression levels of cell cycle
genes were enhanced (Fig. 3G). Therefore, these results
demonstrated that miR-34c can repress primary myoblast
proliferation.



CELLCYCLE (&) 1663

cell cycle phase
A B 120 Y p D - NC mimics
2 2500 - S 100 _ _ miR-34¢ mimics
£ 2000 5 380 u
E 1 k= e g
2 150 g 60 2 &
& = 40 2
g 2 51 &
5 o
&) 1 20
=
& 0 0
& & NC mimics miR-34¢ mimics
& &
& &
S A GO/Gl mS =G2/M
: P
o iR-34
NC miR-34c¢
C E D
HOChﬁSl mimics mimics
connt N —
8 _ Fold 1 0.53
£ E
-2 3
% 2 CDK6 R S
wl
3 Fold 1 0.42
=7
E 2
E Fold 1 0.86
2
o
o
g
Fold 1 0.82
GAPDI G
F G I
cell cycle phase B NC Inhibitor
120 miR-34c¢ Inhibitor
o
= = 100 = -
= Z 80 = "
E 2 =
S 2 60 s
cn = - ® f
5 g 40 | = g
5 a 20 ‘ ] [
Pt 0

NC inhibitor miR-34c inhibitor

=G0/Gl =S =G2/M

o

NC miR-34c
inhibitor  inhibitor

ccND1

Hochest

g
z _ Fold 1 1.68
= =
ot o
g j=. CDKE ~ “——
g
5 Fold 1 1.88
: o
2 g CCNEL s -
= 2
H = Fold 1 215
&
= CDK2
s - —
Fold 1 1.51

GAPDH -.

Figure 2. miR-34c inhibited C2C12 myoblasts proliferation. (A) After transfection 24 h, miR-34c expression was determined by qPCR in C2C12 myoblasts transfected with
miR-34c mimics or negative control (NC) mimics. (B) C2C12 myoblasts were collected for cell cycle analysis. Flow cytometry was used to identify the percentage of cells in
GO/G1, S, and G2 phases. (C) C2C12 cells were stained with EdU. The scale bar represents 200 um. The percentage of EdU™ C2C12 cells was quantified (right). (D) The
mRNA expression of cell cycle genes was detected by gPCR. (E) The protein expression of cell cycle genes was detected by western blotting. (F) After transfection 36 h,
miR-34c expression was determined by gPCR in C2C12 myoblasts transfected with miR-34c inhibitor or NC inhibitor. (G) C2C12 myoblasts were collected for cell cycle
analysis. Flow cytometry was used to determine the percentage of cells in GO/G1, S, and G2 phases. (H) C2C12 cells were stained with EdU. The scale bar represents
200 pum. The percentage of EdU™ C2C12 cells was quantified (right). (I) The mRNA expression of cell cycle genes was detected by qPCR. (J) The protein expression of cell
cycle genes was detected by western blotting. All of the results are expressed as the mean & SD *P < 0.05; **P < 0.01.
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Figure 3. miR-34c inhibited primary myoblasts proliferation. (A) After transfection 24 h, miR-34c expression was determined by qPCR in primary myoblasts transfected
with miR-34c mimics or negative control (NC) mimics. (B) Primary myoblasts cells were stained with EdU. The scale bar represents 200 um. The percentage of EdU™ pri-
mary myoblasts cells was quantified (right). (C) The mRNA expression of cell cycle genes was detected by gPCR. (D) The protein expression of cell cycle genes was
detected by western blotting. (E) After transfection 36 h, miR-34c expression was determined by gPCR in primary myoblasts transfected with miR-34c inhibitor or NC
inhibitor. (F) Primary myoblasts cells were stained with EdU. The scale bar represents 200 um. The percentage of EdU™ C2C12 cells was quantified (right). (G) The protein
expression of cell cycle genes was detected by western blotting. All of the results are expressed as the mean =+ SD *P < 0.05; “*P < 0.01.



miR-34c promoted C2C12 myoblasts differentiation

Cell cycle arrest in GO/G1 phase is a critical step during myo-
blasts differentiation, therefore, we also tested the effect of
miR-34c on myoblasts differentiation. C2C12 myoblasts were
transfected with the miR-34c mimics or NC mimics. Twenty-
four hours after transfection, the GM was replaced with differ-
entiation medium (DM) to induce myoblast differentiation
(Fig. 4A). The mRNA and protein expression of MyoG were
significantly upregulated at DM 1 day (Fig. 4B and C). More-
over, overexpression of miR-34c increased the number of myo-
tubes (Fig. 4D) and the protein expression levels of MyHC at
DM 3 day (Fig. 4E).

We also tested the influence of miR-34c loss-of-function
during myoblast differentiation by transfecting cells with miR-
34c inhibitor or NC inhibitor (Fig. 4F). Through decreasing the
expression of miR-34c, the mRNA and protein expression of
MyoG was downregulated at DM 1 day (Fig. 4G and H), and
the number of myotubes was reduced (Fig. 41). In addition, the
protein expression levels of MyHC at DM 3 day was downregu-
lated (Fig. 4J). Taken together, we suggest that miR-34c can
promote C2C12 myoblasts differentiation.

YY1 was a direct target of miR-34c

To account for these mechanisms through which miR-34c
affected myoblasts proliferation and differentiation, YY1 was
predicted to be a potential target by TargetScan (http://www.tar
getcan.org/mmu_71/). YY1 maintains transcriptional suppres-
sion of myofibrillar genes in undifferentiated myoblasts.”* Con-
trary to miR-34c, YY1 was upregulated in proliferating
myoblasts and downregulated during differentiation (Fig. 5A).
To determine whether miR-34c can directly target YY1, we
constructed 2 dual-luciferase reporters that included the wild-
type or mutant 3’ UTR of YY1. When the dual-luciferase
reporters were co-transfected with miR-34c mimics or NC
mimics into 293T cells, miR-34c significantly reduced the lucif-
erase activity of the wild-type YY1 reporter compared with that
in the negative control, and the mutant reporter no longer
responded to miR-34c (Fig. 5B). Next, we upregulated miR-34c
in C2C12 cells cultured in GM or DM and assessed the effect
on the mRNA and protein levels of YY1. gPCR and immuno-
blotting analysis revealed that mRNA and protein levels of YY1
were reduced by miR-34c (Fig. 5C and D). Conversely, inhibi-
tion of miR-34c upregulated the mRNA and protein levels of
YY1 (Fig. 5E and F). In addition, overexpression of miR-34c in
primary myoblasts reduced the mRNA and protein level of
YY1 (Fig. 5G), inhibition of miR-34c in primary myoblasts
increased the protein level of YY1 (Fig. 5H). These results dem-
onstrated that miR-34c directly targeted the YY1.

miR-34c regulated myoblasts proliferation by YY1

We transfected C2C12 myoblasts cultured in GM with si-YY1
or si-NC to knockdown the expression of YY1 (Fig. 6A).
Twenty-four hours after transfection, si-YY1 significantly
enhanced cell cycle arrest in the GO/G1 phase (Fig. 6B) and
reduced the proportion of EdU" myoblasts (Fig. 6C). Mean-
while, with knockdown of YY1, mRNA and protein expression
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levels of cell cycle genes were also reduced (Fig. 6D and E).
Interestingly, the cell cycle arrest in the GO/G1 phase via over-
expression miR-34c was rescued by YY1 overexpression in
C2C12 cells (Fig. 6F). After transfection, the GM was replaced
with DM to induce myoblast differentiation (Fig. 6G). Similar
to the effect of miR-34c overexpression, the mRNA and protein
expression of MyoG was significantly upregulated at DM 1 day
(Fig. 6H), the number of myotubes (Fig. 6I) and protein expres-
sion of MyHC was increased at DM 3 day (Fig. 6]). Thus, miR-
34c regulated myoblasts proliferation and the consequence dif-
ferentiation process by targeting YY1.

Discussion

miRNAs, especially the muscle-specific miRNAs called myo-
miRs, miR-206, miR-1, and miR-133a, are recently discovered
as important regulators in myoblasts. These miRNAs are
expressed at low levels in proliferating myoblasts and are upre-
gulated during differentiation.” In this study, we identified that
the expression pattern of miR-34c is similar to that of myomiRs
in myoblasts, which indicates that it plays a role in myoblasts
proliferation and differentiation.

Recent research indicates that miR-34c, acting as an impor-
tant tumor suppressor, can inhibit proliferation of many kinds
of cancer cell proliferation.”>* Previous studies have demon-
strated that the miR-34 family can directly target cell cycle
genes such as CCND1, CCNE2, CDK4, and CDK6.*”** These
target genes are important for cell proliferation, overexpression
of miR-34c induced cell cycle arrest in GO/Gl stage and
reduced the number of EQU™ cells. This might at least partially
provide a fundamental role for cell cycle arrest mediated by
miR-34c in myoblasts.

As one of its indicated target genes, YY1 was reported to
regulate gastric carcinogenesis associated with miR-34 family.*
YY1, as a transcription factor, plays a critical role in cell prolif-
eration in a dose-dependent manner. Knocking out YY1 indu-
ces cytokinesis failure and cell cycle arrest.*” In differentiated
cells, YY1 interaction with Rb favors progression into the S
phase.*® These results indicate that miR-34c can inhibit cell
proliferation by targeting YY1 in both pathological and physio-
logical conditions. Our present study identified YY1 as a target
of miR-34c in myoblasts. A low level of miR-34c induced the
production of sufficient quantities of YY1 to promote cell mul-
tiplication and proliferation; in addition, the upregulation of
miR-34c downregulated YY1 to permit myoblast differentiation
during the differentiation phase.

The proliferation and differentiation of myoblasts are
important for skeletal muscle regeneration.””** Cell cycle arrest
is a critical step for myoblast differentiation.” Our results
showed that miR-34c plays a positive regulator role in inducing
myoblasts differentiation. Myoblasts proliferate and differenti-
ate rapidly following 3-7 d post injection of cardiotoxin (CTX).
During this period, the expression of miR-34c was sharply
increased (Fig. 1C). These results imply that miR-34c plays an
important role in muscle regeneration, which is a key topic for
further study.

In conclusion, our study provides direct evidence that miR-
34c inhibits C2C12 myoblasts and primary myoblasts prolifera-
tion. Overexpression of miR-34c leading to GO/G1 arrest
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Figure 4. miR-34c promoted C2C12 myoblasts differentiation. (A-E) Cells were transfected with miR-34c mimics in growth medium and samples were collected at DM1
and DM3. (A) The mRNA expression of miR-34c was detected by qPCR. (B) The mRNA expression of MyoG was detected by qPCR at DM1. (C) The protein expression of
MyoG was detected by western blotting at DM1. (D) Cells were fixed and immunostained for MyHC at DM3, and nuclei were stained blue with DAPI (left); the scale bar
represents 400 um, and the analysis of the number of fused myotubes per field is shown (right). (E) The protein expression of MyHC was detected by western blotting at
DM3. (F-J) Cells were transfected with miR-34c mimics in GM and samples were collected at DM1 and DM3. (F) The mRNA expression of miR-34c was detected by gPCR.
(G) The mRNA expression of MyoG was detected by gPCR at DM1. (H) The protein expression of MyoG was detected by western blotting at DM1. (I) Cells were fixed and
immunostained for MyHC at DM3, and nuclei were stained blue with DAPI (left); the scale bar represents 400 pm. The analysis of the number of fused myotubes per field
is shown (right). (J) The protein expression of MyHC was detected by western blotting at DM3. All results are expressed as the mean =+ SD *P < 0.05; **P < 0.01.
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0.01.
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(right). (J) The protein expression of MyHC was determined by western blotting at DM3. All results are expressed as the mean & SD *P < 0.05; **P < 0.01.




accelerated differentiation. We also found that miR-34c inhibit
myoblast proliferation, in part by repressing YY1 expression.
miR-34c might therefore be a potential candidate for improving
skeletal muscle development and regeneration.

Materials and methods
Plasmids

The following method was used to create the pcDNA-3.1-YY1
expression vector. Through enzymatic digestion using EcoR V
and Xho I restriction sites, the YY1 coding sequence was
obtained from a YY1 expression plasmid provided by Prof.
Wang Huating (The Chinese University of Hong Kong, Hong
Kong) and cloned into the pcDNA-3.1 vector.

To construct the YY1 3" UTR luciferase reporter plasmid,
the YY1 3’ UTR fragment was amplified from mouse genomic
DNA using the following primers:

forward primer 5-GATCCTCGAGGGTTTTGTTTGC-

TATCTT-3;
reverse  primer
TATCTT-3'.

The PCR product was cloned into the psiCHECK-2 dual-
luciferase reporter vector (Promega) using Xho I and Not I
restriction sites. The mutant fragment of the YY1 3’ UTR was
created by mutating the seed region of the predicted mmu-
miR-34c site (ACTGCCA to GTCATTG) by overlap PCR.

5'-GATCCTCGAGGGTTTTGTTTGC-

Mouse muscle regeneration model

Muscle degeneration and regeneration in mice were induced by
injecting CTX (Sigma, C9759). Eight-week-old C57BL/6 mice
were injected in their tibialis anterior muscles with 100 pul of
10 uM CTX. Tibialis anterior muscles from each mouse were
collected at 0, 1, 3, 7, 14, and 21 d post-CTX injection.

Cell culture

C2C12 myoblasts, 293T cells, and RD cells were cultured in
growth medium consisting of Dulbecco modified Eagle
medium (DMEM, Gibco) supplemented with 10% fetal bovine
serum (FBS, Gibco) and 1% penicillin/streptomycin (Invitro-
gen). To induce myogenic differentiation, culture medium was
switched to DMEM supplemented with 2% horse serum
(Gibco) and 1% penicillin/streptomycin.

Primary myoblast isolation and culture

Primary myoblasts were isolated from hind limb muscles of 4-
8-week-old mice as described previously.*’ Briefly, the muscles
were finely minced and digested in 0.2% collagenase I (Sigma,
C6885) and 2.5 U/ml dispase II (Roche, 04942078001) for 1 h,
and the cell slurry was passed through a 40 um cell filter, and
then pre-plated for 1 h. Unattached cells were centrifuged at
350 x g and cultured on collagen-coated dishes in F10 medium
(Sigma) supplemented with 20% FBS and 2.5 ng/ml fibroblast
growth factor (bFGF, Invitrogen, 13256-029). Primary myo-
blasts were further purified by pre-plating and then were cul-
tured in F10/DMEM medium (1:1) supplemented with 20%
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FBS, 2.5 ng/ml bFGF, and 1% penicillin/streptomycin. For
myogenic differentiation, culture medium was shifted to
DMEM supplemented with 2% horse serum and 1% penicillin/
streptomycin.

q-PCR

Total RNA was isolated from cells with TRIzol reagent (Invitro-
gen) and treated with DNase I (Qiagen) to remove residual
DNA. miRNA was isolated from cells using the mirVana
miRNA kit (Ambion) following the manufacturer’s
protocol. Reverse transcription was performed with M-MLV
reverse transcriptase (Promega). As the reverse transcription
primer, a specific stem-loop primer was used to initiate cDNA
synthesis of miRNA.>® The qPCR primers used are as follows:

RT-miR-34c: 5'-CTCAACTGGTGTCGTGGAGTCGGCAA

TTCAGTTGAGGCAATCAG-3;

RT-U6: 5-AACGCTTCACGAATTTGCGT-3'.

LightCycler 480 SYBR Green I Master (Roche) was used for
qPCR with a LightCycler 480 II (Roche) system. U6 and
GAPDH were used to normalize miRNA and other genes
expression, respectively. The qPCR primers used are as follows:

U6-F, 5'-CTCGCTTCGGCAGCACA-3';

U6-R, 5'-AACGCTTCACGAATTTGCGT-3';

miR-34c-F, 5-GCTGCTGTAGGCAGTGTAGTTAG-3';

miR-34¢-R, 5'-CTCAACTGGTGTCGTGGAGTC-3';

GAPDH-F, 5-GTGCCGCCTGGAGAAACCT-3';

GAPDH-R, 5-AAGTCGCAGGAGACAAC-3;

MyoG-F, 5'-GAATGCAACTCCCACAGC-3';

MyoG-R, 5'-TCCACGATGGACGTAAGG-3';

YY1-F, 5-GAGGGATACCTGGCATTG-3';

YYI-R, 5-TTCTTGGAGCATCATCTTCT-3;

CDK2-F, 5-GGCATTCCTCTTCCCCTCA-3';

CDK2-R, 5'-CATTGATAAGCAGGTTCTGGG-3';

CDK6-F, 5-ATGCCGCTCTCCACCATC-3';

CDK6-R, 5-GTCCGTCCGTGACACTGTG-3';

CCNDI-F, 5-GCCCTCCGTATCTTACTTCAAG-3';

CCNDI1-R, 5-ACCTCCTCTTCGCACTTCTG-3';

CCNEI1-F, 5-CCCCACCCCTAACAAAGAAG-3;

CCNEI1-R, 5-TCCTCCAAACCTCTTCTCTATTG-3'.

RNA oligonucleotides and transfection

The miR-34c mimics, NC mimics, miR-34c inhibitor, NC
inhibitor, and siRNA were purchased from GenePharma (Gen-
ePharma). Cells transfection was performed with the Lipofect-
amine 2000 reagent (Invitrogen) according to the
manufacturer’s recommendations.

Immunoblotting and Immunofluorescence

Immunoblotting was performed using standard procedures and
antibodies to MyHC (Sigma, M4276, 1:3000), MyoG (Abcam,
ab1835, 1:1000), CDK6 (Cell Signaling Technology, 31365,
1:2000), CCND1 (Cell Signaling Technology, 2978S, 1:1000),
CDK2 (Cell Signaling Technology, 2546s, 1:1000), CCNEL
(Cell Signaling Technology, 4129S, 1:1000), YY1 (Abcam,
ab12132, 1:1000), and GAPDH (Cell Signaling Technology,
2118L, 1:10000). For immunostaining, cells treated in 6-well
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plates were fixed in 4% formaldehyde for 20 min and then
washed 3 times for 5 min each with PBS. The cells were then
permeabilized with 0.1% triton X-100 for 15 min. The cells
were incubated in blocking solution (Beyotime) for 1 h at room
temperature. After blocking, the cells were incubated with anti-
MYHC (Sigma, M4276, 1:500) overnight at 4 °C. The next day,
secondary Alexa Fluor 594 goat anti-mouse IgG (H*L) anti-
body (Invitrogen) was incubated with the samples for 2 h at
room temperature. The cell nuclei were visualized with DAPI
staining (Roche). MyHC™ myoblasts with more than 2 nuclei
were defined as fused myotubes.

EdU assays

The EdU assay was performed using the EdU assay kit (Ribo-
bio, C10310-2) according to the manufacturer’s instructions.
Briefly, 24 or 36 h after transfection, cells were exposed to
50 mM EdU for 3 h. Next, cells were fixed with 4% paraformal-
dehyde and permeabilized with 0.5% triton X-100. Subse-
quently, cells were incubated in Apollo reaction solution for 1 h
and stained with Hoechst 33342 for 30 min. The cells were fur-
ther analyzed by calculating the ratio of EQU™ cellsto the total
number of cells.

Cell cycle flow cytometry

After transfection 24 or 36 h, cells were fixed in 70% (v/v) etha-
nol overnight at -20 °C. Following incubation in 50 1tg/ml pro-
pidium iodide (Sigma) containing 100 pg/ml RNase A
(Qiagen) and 0.2% (v/v) TritonX-100 (Sigma) for 30 min at 4
°C, the cells were analyzed in a FACSCalibur flow cytometer
(BD Biosciences) and ModFit software.

Dual luciferase reporter assay

293T cells were co-transfected with 100 ng of wide-type or
mutant 3’ UTR luciferase reporter and 40 nM of miR-34c
mimics or NC mimics using Lipofectamine 2000 reagent (Invi-
trogen) in 24-well plates. After transfection for 24 h, the activi-
ties of firefly and Renilla luciferase were measured using a dual-
luciferase reporter assay system (Promega, E2920) following
the manufacturer’s instructions. The Renilla luciferase signal
was normalized to the firefly luciferase signal.

Statistical analysis

All results were represented as mean =+ SD. A 2-tailed Student’s
t-test was used for P-value calculations and P < 0.05 was con-
sidered significant (P < 0.05; P < 0.01).
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