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Abstract

Disease modeling involves the use of mathematical functions to describe quantitatively the time 

course of disease progression. In order to characterize the natural progression of disease, these 

models generally incorporate longitudinal data for some biomarker(s) of disease severity or can 

incorporate more direct measures of disease severity. Disease models are also often linked to 

pharmacokinetic–pharmacodynamic models so that the influence of drug treatment on disease 

progression can be quantified and evaluated. Regulatory agencies have embraced disease 

progression models as powerful tools that can be used to improve drug development productivity. 

This article provides a brief overview of key concepts in disease progression modeling followed by 

illustrative examples from models for Alzheimer’s disease. Finally, recent novel applications in 

which disease progression models have been linked to cost-effectiveness analysis and genomic 

analysis are described.
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Introduction

Disease progression modeling involves the utilization of mathematical functions as 

quantitative descriptors of the time course of disease status. Disease models may incorporate 

biomarkers of disease severity and/or clinical outcomes to characterize the natural 

progression of disease. In clinical pharmacology, disease models are often integrated with 

pharmacokinetic–pharmacodynamic models in order to quantify the influence of drug 

treatment on disease progression. Seminal work in disease progression modeling was 

published in the early 1990s [1–5], but the field has truly flourished in more recent years, 

since the US Food and Drug Administration (FDA) embraced such quantitative models as 

powerful tools that can be used to improve drug development productivity. In 2004, the FDA 

launched its Critical Path Initiative, which aims to modernize drug development, and disease 

modeling was promoted as a key opportunity for advancement [6, 7]. Since that time, 

disease modeling has been widely adopted by the pharmaceutical industry [8]. In addition to 

encouraging the application of disease progression models to pharmaceutical research and 

development [6, 7, 9], the FDA has developed and made publicly available models for 

diseases of public health importance, including Alzheimer’s disease, Parkinson’s disease, 

bipolar disorder, obesity, and non-small cell lung cancer [10]. This article provides a brief 

review of the types and components of disease progression models followed by illustrative 

case studies in the area of Alzheimer’s disease. Finally, recent novel applications of disease 

progression models to cost-effectiveness analysis and genome-wide analysis are described.

Disease Progression Modeling

Disease progression models can be broadly categorized into three classes: empirical, semi-

mechanistic, and systems biology. Empirical models are purely data driven and do not 

describe underlying biological processes; they serve as mathematical frameworks for 

interpolation between observed data. At the other extreme, systems biology models of 

disease progression are physiologically based and incorporate mathematical representations 

of biological, pathophysiological, and pharmacological processes in as much molecular 

detail as possible. Semi-mechanistic models fall in between the poles of empirical and 

systems biology models. Importantly, the appropriate model type depends highly upon the 

problem at hand. Whereas empirical models are well suited to answering questions that are 

relatively narrow in scope (e.g., dose selection or clinical trial design and interpretation), the 

more mechanistic nature of semi-mechanistic and systems models enables application to 

broader scientific questions (e.g., prediction of effects of drugs with differing mechanisms of 

action, novel target identification, or risk projection based on biomarker data) [9, 11]. This 

review will first cover some considerations related to the types of data that can be utilized in 

disease progression models before discussing these three classes of models in greater detail.

Data

Various types of data can be incorporated into disease progression models [12]. Assessment 

of disease severity in many areas, especially neurological and mental health disorders, relies 

upon relatively subjective scoring systems based on patient-reported responses or clinician 

evaluation. Utilization of subjective measures in disease models poses particular challenges 
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because such data tend to exhibit high variability, and it may therefore be necessary to 

include many subjects in order to obtain an adequate description of disease progression. 

Some examples of this type of data that have been used in disease progression models 

include the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) [2, 3, 

5, 13], the Hamilton Rating Scale for Depression (HAM-D) [14–16], and the Revised 

Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) [17, 18]. Although 

these types of observations are often technically ordinal data, they are generally treated as 

continuous variables for the purposes of disease modeling because many of these scales 

comprise relatively wide ranges of possible scores (e.g., 0–70 for ADAS-Cog). Continuous 

biomarker data are also widely used in disease models. For instance, in a semi-mechanistic 

bone cycle model, C-terminal telopeptide of type I collagen (CTX) and osteocalcin were 

incorporated as serum biomarkers of bone resorption and formation, respectively, and bone 

mineral density was included as a measure of bone mass [19]. Additionally, continuous 

disease progression models can be linked to discrete clinical endpoints through survival or 

hazard functions. Approaches for linking disease progression to clinical outcome have been 

reviewed by Mould [20], and the author provided detailed examples of models linking the 

time course of chemotherapy-induced myelosuppression to the probability of developing 

febrile neutropenia [21] and tumor size to survival [22, 23].

Disease models are often developed to characterize chronic diseases that progress slowly, so 

these models commonly require incorporation of disease severity data that has been 

collected over extended time periods. Such data is rarely available from a single study, and 

data from several clinical studies must often be pooled in order to provide sufficient 

observations for modeling of disease progression. Consequently, model-based meta-analysis 

is an effective approach for disease modeling. Model-based meta-analysis involves model 

development using the combined results of multiple previous studies. Unlike traditional 

model development, which generally utilizes patient-level data from a limited number of 

clinical studies, model-based meta-analysis may incorporate both summary-level 

information obtained from literature references and patient-level information obtained from 

databases and/or available clinical trial data. Importantly, nonlinear mixed-effects modeling, 

which is widely utilized for empirical and semi-mechanistic disease modeling, can account 

for differences in study design and subject characteristics to reduce the potential for bias 

introduced by pooling data from multiple studies. Ahn and French have demonstrated meta-

analytic approaches for fitting longitudinal summary-level data with NONMEM software, 

which is commonly used for nonlinear mixed-effects models of disease progression [24]. 

They provided illustrative NONMEM code for incorporation of study-level and/or treatment 

arm-level random effects, both with and without residual correlation, and they used 

simulated data to evaluate the importance of including these different model components. 

Mould has also reviewed the application of meta-analysis to disease progression modeling 

[20] and provided detailed discussion of meta-models for progression of Alzheimer’s 

disease [25] and Crohn’s disease [26]. Although model-based meta-analysis poses certain 

challenges, results from such analyses are often statistically stronger and more generalizable 

than those from single studies [27].
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Empirical Models

The empirical approach has commonly been employed in areas where disease severity is 

routinely assessed via subjective scoring systems. For instance, empirical models have been 

utilized to model progression of Alzheimer’s disease [2, 3, 5], Parkinson’s disease [28, 29], 

depression [14, 15], schizophrenia [30, 31], amyotrophic lateral sclerosis [17], and 

Huntington’s disease [32]. The simplest disease progression model is linear, assuming a 

constant rate of change for a measure of disease status over time (Equation 1):

(Eq. 1)

where S(t) is disease status at time t, S0 is the baseline disease status (y-intercept), and α is 

the rate of change of disease status (slope). A hypothetical linear disease model is depicted 

in Figure 1. Although this function is quite simple, linear models have been successfully 

implemented to describe progression of several diseases, including Alzheimer’s disease [2, 

3, 5], schizophrenia [30], and Huntington’s disease [32]. For many diseases, however, more 

complex equations must be used to describe the time course of progression adequately. 

Details about more complex models, such as asymptotic progress, physiological turnover, 

and growth and decay models, have been reported in other publications [12, 33]. Mould has 

also provided example code for implementing such models in NONMEM software [12].

It should be noted that baseline disease status, S0, can be a complex parameter in disease 

progression models. It may be defined as some measure of disease status either at the time a 

disease started, at the time a disease was diagnosed, or at the time a subject enrolled in a 

clinical trial. Alternatively, if the disease status, S(t), is defined as the change in a disease 

measure relative to a baseline value, rather than as the actual value of that measure, then S0 

may be fixed at zero. The precise definition of S0 can have important implications for how 

the disease progresses from the baseline time. For instance, in linear models of Alzheimer’s 

disease progression, baseline disease status is generally defined near the time of trial 

enrollment, and baseline status has been observed to interact strongly with disease 

progression rate, which increased with increasing baseline severity [25, 34, 35]. This 

potential for interaction between baseline disease status and disease progression rate makes 

baseline severity a crucial factor in clinical trial design and in evaluation of clinical trial and 

disease model results.

Drug effects can be incorporated into disease models in different ways, and the manner in 

which a drug effect is included in a disease progression equation has implications for how 

the treatment influences the disease. For instance, a drug may provide only symptomatic 

relief. For the linear disease progression example depicted above (Equation 1), a 

symptomatic drug effect could be incorporated as follows (Equation 2):

(Eq. 2)

where S(t) is disease status at time t, S0 is the baseline disease status (y-intercept), α is the 

rate of change of disease status (slope), and E(t) is a function incorporating the drug effect. 
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In this case, the drug does not influence the rate of disease progression but merely provides a 

transient benefit by offsetting the disease severity; when treatment is discontinued, the 

disease will return to a state that is the same as if the treatment had not occurred (Figure 1). 

Alternatively, a drug may alter the progression of a disease. For the linear disease 

progression example depicted above (Equation 1), such a disease-modifying effect could be 

incorporated as follows (Equation 3):

(Eq. 3)

where S(t) is disease status at time t, S0 is the baseline disease status (y-intercept), α is the 

rate of change of disease status (slope) in the absence of drug treatment, and E(t) is a 

function incorporating the drug effect. Here, the drug alters the rate of disease progression; 

when treatment is discontinued, the rate of disease progression returns to that in the absence 

of treatment (α), but the disease severity will be offset from what it would have been if 

treatment had not occurred (Figure 1). Methods for incorporating different types of drug 

effects into more complex disease progression models have been reported in other 

publications [12, 33] along with example NONMEM code [12].

One critical consideration when comparing drug effects to standard-of-care treatment is the 

fact that standard of care evolves over time. Improvements in standard of care are likely to 

be accompanied by changes in the typical time course of disease progression, so disease 

models and databases must be updated regularly in order to consider the response of disease 

to novel treatments in an appropriate, current context.

Systems Biology Models

Systems biology models of disease progression incorporate as much molecular detail as 

possible. Consequently, systems models generally require extensive scientific collaboration 

and integration of in vitro, ex vivo, in vivo, non-clinical, and clinical data [11]. The 

complexity of systems disease modeling is evident in work that has been performed in the 

area of diabetes research. Diabetes is a chronic, complex disease, and a comprehensive 

model of diabetes progression would incorporate mathematical representations of the 

molecular pathways involved in glucose homeostasis, diabetes pathophysiology, and the 

diverse complications associated with hyperglycemia-induced tissue damage. After decades 

of modeling efforts, researchers are still working toward such a systems model [36]. Ajmera 

et al. recently reviewed developments in diabetes modeling from the past fifty years and 

identified challenges that must be addressed in order to achieve a complete description of the 

relevant regulatory network [37]. Additionally, as a collaborative resource for fellow 

researchers, Ajmera et al. encoded several key models from the literature in a standard 

model description language (SBML, systems biology mark-up language [38]) and shared 

these models via BioModels Database [39], which is an online repository for quantitative 

models of biological processes.

One example of a systems-based disease model is that for calcium homeostasis and bone 

remodeling published by Peterson and Riggs [40, 41]. The model incorporated relevant 

molecular pathways in physiological spaces representing the gut, vasculature, intracellular 
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phosphate, kidneys, parathyroid gland, bone, and intracellular osteoblast components [40] 

(Figure 2a). Although the model contained some empirical elements that could be refined 

through future experiments, the systems approach enabled adequate description of markers 

of calcium homeostasis, bone turnover, and bone mineral density under diverse disease 

states and therapeutic conditions, including hypoparathyroidism, hyperparathyroidism, renal 

insufficiency, antiresorptive therapy (denosumab), and anabolic therapy (teriparatide) [40, 

41]. In 2014, in what has been described as “a watershed moment” for the discipline of 

quantitative systems pharmacology [42], clinical pharmacologists at the FDA used an open-

source version of this model to evaluate the appropriateness of a proposed dosage regimen 

for a new biologic treatment for hypoparathyroidism [43].

Semi-Mechanistic Models

Like empirical models, semi-mechanistic models are largely data driven, and, like systems 

models, semi-mechanistic models incorporate knowledge about underlying biological, 

pathophysiological, and pharmacological processes; however, in contrast to systems models, 

semi-mechanistic models are not intended to provide comprehensive depictions of molecular 

pathways. Instead, parsimony is preferred, and mathematical representations of biological 

processes generally incorporate just enough complexity to describe the relevant data 

accurately. For instance, van Schaick et al. recently reported a semi-mechanistic model of 

bone turnover and bone mineral density for evaluating the effects of osteoporosis treatments 

[19]. The semi-mechanistic approach was implemented because earlier mathematical models 

of bone remodeling were too complex to characterize adequately the time course of clinical 

biomarkers of bone turnover and the associated variability observed in clinical studies. 

Rather than including detailed representation of all molecular and cellular processes 

involved in bone remodeling, the semi-mechanistic model incorporated assumptions and 

simplified functions that were thought to capture the most critical aspects of the process. 

Specifically, the full model consisted of a closed form cyclical model with four 

compartments representing bone resorption, formation, primary mineralization, and 

secondary mineralization, a disease progression model representing bone loss in 

osteoporosis, a vitamin D and calcium supplementation (placebo) model, and a drug model 

for antiresorptive treatments (Figure 2b). The full model accurately described the short-term 

(<1 year) and long-term (1 year–10 years) time course of bone turnover biomarkers and 

bone mineral density in postmenopausal women receiving treatment with either placebo or 

antiresorptive drugs (bisphosphonate or denosumab). Given the long duration of late-phase 

osteoporosis trials, incorporation of disease progression was a critical component of the full 

model. Potential future applications of this model include optimization of dosage regimens, 

prediction of effects of novel osteoporosis therapeutics, prediction of long-term bone 

mineral density values in patients based on bone turnover biomarker values observed in 

short-term phase I trials, and linkage of the model to a discrete clinical outcome, such as the 

probability of bone fracture.

Case Studies in Alzheimer’s Disease

Alzheimer’s disease is a chronic, neurodegenerative disease that afflicts an estimated 5.3 

million Americans and is the sixth leading cause of death in the US [44]. The chronic, 
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degenerative nature of the disease combined with its high prevalence and societal burden 

have made this area ripe for application of disease progression modeling.

In a pair of companion papers published in 1992, Holford and Peace described the 

development and evaluation of an empirical disease model for progression of cognitive 

effects in Alzheimer’s patients treated with the acetylcholinesterase inhibitor tacrine [2, 3]. 

This work, which proved seminal in the application of nonlinear mixed-effects analysis to 

disease progression modeling, incorporated data from two clinical trials of the same study 

design in subjects with probable Alzheimer’s disease. One trial was conducted in the US and 

the other in France. The design involved an initial, randomized tacrine dose titration phase, a 

placebo baseline washout phase, a double-blind phase comparing placebo with the best-

tolerated tacrine dose in patients who achieved a predefined response, and a blinded, 

sustained active phase with the best-tolerated tacrine dose in all patients. Patients were 

blinded to treatment throughout the trials. ADAS-Cog was the primary measure of disease 

status [13], and the final model successfully described the progression of ADAS-Cog, 

ADAS-Cog(t), with a linear model that incorporated symptomatic effects for both tacrine 

and placebo (Equation 4):

(Eq. 4)

where ADAS-Cog0 is the baseline ADAS-Cog score; α is the rate of disease progression, 

which was estimated as 6.17 ADAS-Cog units/year; Etacrine(t) is a function incorporating the 

drug effect, and Eplacebo(t) is a function incorporating the placebo effect. The effect of 

tacrine shifted the disease progress curve by −2.99 ADAS-Cog units, and there were 

significant positive correlations between baseline ADAS-Cog score, disease progression 

rate, and the magnitude of the tacrine effect. Because subjects were blinded to treatment but 

aware of when changes in treatment occurred, the model included a placebo response at 

times of treatment change. The placebo model, Eplacebo(t), featured a Bateman-type 

function, which enabled estimation of the onset, offset, and magnitude of the placebo effect. 

Interestingly, the magnitude of the placebo effect was 76% greater in the French trial 

compared to the US trial, and the offset of the placebo effect occurred more slowly in the 

French trial, perhaps reflecting cultural differences in expectations about treatment.

Over the past 25 years, many others have expanded upon the work of Holford and Peace. 

These efforts have been spurred on by prominent failures in Alzheimer’s disease drug 

development, which have been partially attributed to inadequate clinical trial design [45]. In 

several recent publications, generalized logistic functions have been employed to 

characterize a sigmoidal progression of ADAS-Cog scores in Alzheimer’s patients [46–48]. 

For instance, Conrado et al. [48] modeled data from the Coalition Against Major Diseases 

(CAMD) database for control-arm patients (both placebo and stable background 

Alzheimer’s medication) from randomized, double-blind clinical trials in patients with mild-

to-moderate Alzheimer’s disease; the data were adequately described by the Richards 

function (a generalized logistic function) (Equation 5):
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(Eq. 5)

where ADAS-Cog0 is the baseline ADAS-Cog score, 70 is the maximum possible observed 

ADAS-Cog score, r is the intrinsic rate of disease progression, t is time, and β is the shape 

factor allowing for a non-central inflection point of disease progression. This function 

describes an asymmetric, S-shaped curve with a non-linear rate of disease progression that 

increases when ADAS-Cog is below the inflection point and decreases when ADAS-Cog is 

above the inflection point, which was estimated to occur at a score of 52. Thus, ADAS-Cog 

scores reach a plateau as they approach the maximum possible value. Compared to earlier 

linear models, the Richards function more appropriately constrains ADAS-Cog scores to the 

range of possible values (0–70) and also better characterizes the nonlinear, saturable 

progression of Alzheimer’s disease, wherein disease scores increase exponentially during 

the early stages of disease and then the progression rate slows and approaches zero as 

ADAS-Cog scores approach 70. This plateau in the Richards function is consistent with the 

ceiling effect that has been observed in clinical practice when patients with severe 

Alzheimer’s disease experience loss of speech and can no longer perform the tasks required 

to capture cognitive deterioration via ADAS-Cog. Additionally, in order to completely 

constrain model predictions to the possible range of ADAS-Cog scores, recent models have 

incorporated beta-distributed residual variability, which allows for a heteroscedastic error 

distribution with a variance that approaches zero as ADAS-Cog scores approach the 

boundaries [46, 48]. Recent modeling efforts have also focused on identification of patient 

characteristics (i.e., covariates) that appear to influence the rate of disease progression. For 

instance, age and apolipoprotein E (APOE) genotype have consistently been identified as 

covariates affecting disease progression rate, with younger age and the presence of the 

APOEε4 allele associated with faster progression [46–48].

A milestone in Alzheimer’s disease modeling was achieved in the summer of 2013 when the 

CAMD received regulatory endorsement from both the FDA and the European Medicines 

Agency (EMA) for its clinical trial simulation tool for mild-to-moderate Alzheimer’s disease 

[49]. At the core of this simulation tool is a disease progression model that incorporates 

many of the features described above. Disease progression is described by the longitudinal 

change in ADAS-Cog score over time, and scores advance along a sigmoidal curve with 

bounds at 0 and 70 [46]. The placebo effect is incorporated with a Bateman-type function 

[35], and symptomatic drug effects are described by an overall function offset [49], as 

illustrated generically in Figure 1 and Equation 2. Although disease-modifying drugs for 

Alzheimer’s disease are not currently available, the FDA and EMA agreed that claims of a 

disease-modifying drug effect could be substantiated by evidence of a drug-induced decrease 

in the rate of disease progression, provided that such a change in progression rate is 

accompanied by a biomarker change that supports improvement in the underlying 

pathophysiology [49]. For the purposes of clinical trial simulation, the tool also incorporates 

covariates, such as age and APOEε4 allele status, which may influence disease progression. 

The FDA and EMA deemed this tool scientifically sound and fit for purpose in aiding design 

of future clinical trials in patients with mild-to-moderate Alzheimer’s disease [49], and 
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intended applications include calculation of sample size, determination of optimal trial 

durations and treatment effect measurement times, identification of optimal data analysis 

methods, and comparison of the sensitivity of competing trial designs to assumptions about 

treatment effects [50]. Importantly, such a tool could not have been developed without 

construction and utilization of a large, collaborative, standardized database [51] that enabled 

integration of patient-level data with summary-level data from the literature. Similar efforts 

are currently underway in disease modeling of mild cognitive impairment and pre-

symptomatic Alzheimer’s disease [50, 52].

Recent Developments

Integration of Disease Progression Modeling with Cost-Effectiveness Analysis

Widespread concern about rising healthcare costs has made cost-effectiveness analysis an 

increasingly important component of health technology assessment. At present, cost-

effectiveness analyses for pharmaceutical agents primarily rely upon empirical models of 

disease progression, such as Markov models, to describe probabilistic transitions in the 

health states of patients over time [53]. Unfortunately, this approach relies on data from late-

stage clinical trials and does not allow for model-informed prediction of cost effectiveness 

during early stages of clinical development. Nevertheless, given the goal of providing 

effective, safe, and affordable treatment options in a timely fashion, there is increased 

interest among regulatory agencies, industry representatives, and coverage bodies in early 

integration of cost-effectiveness analysis with regulatory review [54].

Van Hasselt et al. recently described an integrated simulation framework for eribulin 

treatment in castration-resistant prostate cancer that included sub-models for disease 

progression/clinical outcome, eribulin-induced toxicity, dose adaptation, and cost 

effectiveness [55]. The disease progression/clinical outcome model described the dynamics 

of prostate-specific antigen and its relationship to overall survival [56]. The models for 

eribulin-induced toxicity included dose-limiting neutropenia and other graded toxicities 

(nausea, fatigue, peripheral neuropathy, paresthesia, diarrhea, asthenia, and anemia), and the 

dose adaptation model incorporated definitions for when and how dose adjustments should 

be made following toxicities. The hypothetical cost model included direct drug costs and 

adverse event-related costs. The cost model was only intended to demonstrate proof of 

concept and was, therefore, relatively simple; however, additional cost considerations, such 

as those associated with follow-up hospital visits or background mortality rates, could be 

readily incorporated into such a model. The integrated simulation was conducted in R using 

the deSolve [57] and MASS packages, and a detailed description of the implementation of 

cost-effectiveness analysis in R has been previously reported [58]. Using this integrated 

framework, the authors were able to simulate scenarios with different treatment protocols 

and patient characteristics and then evaluate the impact of these changes on expected 

efficacy and cost effectiveness. Thus, the integrated framework successfully linked 

mechanistic clinical and pharmacological underpinnings to predictions about efficacy and 

cost. In addition to cancer, diabetes and heart disease are particularly costly therapeutic areas 

that are currently ripe for application of such integrated disease modeling strategies for cost-

effectiveness analysis.
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Integration of Disease Progression Modeling with Genomic Data Analysis

To date, the search for genetic variants that influence complex traits and diseases has largely 

relied upon phenotype data collected from individuals at single time points (i.e., cross-

sectional measurements); however, interest has risen in integrating genotype data with 

longitudinal phenotype data that accounts for the progression of chronic disease [59, 60]. In 

a recent report, Wu et al. used an empirical nonlinear mixed-effects model to characterize 

lung function in asthma patients over time and then performed a genome-wide association 

study to identify genetic contributors to longitudinal phenotypes that were determined from 

the disease progression model [61]. The authors modeled the time course of forced 

expiratory volume in 1 second (FEV1) in children with mild-to-moderate asthma using 

longitudinal data (FEV1 recorded every 2–4 months over a 4-year period) collected from 

1,041 children as part of the Childhood Asthma Management Program (CAMP) study [62]. 

FEV1 was best predicted with an exponential function (Equation 6):

(Eq. 6)

where θ1 and θ2 are the rates of change in FEV1 associated with age and height, 

respectively, θ3 is the baseline FEV1, and θdrugeffect is the additive (symptomatic) 

improvement provided by the corticosteroid budesonide. In subsequent genome-wide 

analysis of a subset of study subjects (581 white patients), the individual-level parameter 

estimates for baseline FEV1 (θ3 in Equation 6) and for rate of change in FEV1 with age (θ1 

in Equation 6) were used as longitudinal phenotypes, which were tested for association with 

473,680 genotyped single nucleotide polymorphisms (SNPs). For comparison, genome-wide 

association analysis was also performed with a single-time-point phenotype (FEV1 at 48 

months). The genome-wide association study identified seven novel SNPs that were 

nominally associated with longitudinal lung function phenotypes (six SNPs for baseline 

FEV1 and one SNP for rate of change in FEV1 with age). Additionally, five SNPs that were 

previously associated with pulmonary function were suggestively associated (p < 0.05) with 

the longitudinal phenotypes, but the single-time-point phenotype was not associated (p > 

0.05) with any of the previously reported SNPs that were considered. Thus, despite sample 

size limitations, genome-wide association analysis with the longitudinal phenotype appeared 

to enhance discovery of relevant genetic variants compared to analysis with the single-time-

point phenotype [61].

Conclusions

Disease models can be used to synthesize and quantitatively summarize knowledge about 

disease progression and the influence of drug treatment on disease severity. Models for 

chronic diseases that progress slowly often require incorporation of data that has been 

collected from multiple sources over extended time periods. Thus, collaborative research, 

data sharing, and database standardization are likely to be critical to the continued success of 

disease modeling endeavors. Recent years have seen notable effective collaborations 

between industry and regulatory agencies in the area of Alzheimer’s disease modeling and 

simulation. Novel integration of disease progression modeling with other analyses, such as 
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cost-effectiveness analysis and genomic data analysis, is likely to further expand the utility 

of this flexible, powerful modeling technique.
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Fig. 1. 
A hypothetical empirical disease model with linear progression. The solid line represents 

disease progression with no treatment, and the other lines represent disease progression with 

treatment effects that start at time 12 and end at time 48. The dashed line illustrates the 

effect of a drug that provides symptomatic relief; the dotted line illustrates the effect of a 

drug that modifies the rate of disease progression; and the dotted-and-dashed line illustrates 

the combined effects of a disease-modifying drug that also provides symptomatic relief. 

Note that the lines have been offset slightly to prevent overlap
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Fig. 2. 
a Schematic representation of the systems-based model describing calcium homeostasis and 

bone remodeling. Solid arrows indicate fluxes, dashed arrows indicate binding effects, dark 
green plus signs indicate stimulatory effects, red minus signs indicate inhibitory effects, blue 
plus/minus signs indicate bidirectional effects, and bracketed purple numbers refer to 

differential equation numbers in the source publication. (Reprinted with permission of 

Elsevier from [40], copyright 2009) b Schematic representation of the semi-mechanistic 

bone cycle model. The red arrows between the mineralization and resorption compartments 

indicate an increased transit rate due to disease progression; the green bars indicate a 

decreased transit rate due to vitamin D and calcium supplementation; and the dashed blue 
bars indicate a decreased transit rate due to a drug effect. (Reprinted with permission of 

Springer from [19], copyright Springer Science+Business Media New York 2015) 1-α-OH 
1-alpha-hydroxylase, Ca calcium, OB osteoblast, OC osteoclast, OCpre osteoclast precursor, 
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OPG osteoprotegerin, PO4 phosphate, PT gland parathyroid gland, PTH parathyroid 

hormone, RANK receptor activator of nuclear factor kappa B, RANKL RANK ligand, ROB 
responding osteoblast, TGFβ transforming growth factor beta, vit D vitamin D
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