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Abstract

Human metabolomics has great potential in disease mechanism understanding, early diagnosis, 

and therapy. Existing metabolomics studies are often based on profiling patient biofluids and 

tissue samples and are difficult owing to the challenges of sample collection and data processing. 

Here, we report an alternative approach and developed a computation-based prediction system, 

MetabolitePredict, for disease metabolomics biomarker prediction. We applied MetabolitePredict 

to identify metabolite biomarkers and metabolite targeting therapies for rheumatoid arthritis (RA), 

a last-lasting complex disease with multiple genetic and environmental factors involved.

MetabolitePredict is a de novo prediction system. It first constructs a disease-specific genetic 

profile using genes and pathways data associated with an input disease. It then constructs genetic 

profiles for a total of 259,170 chemicals/metabolites using known chemical genetics and human 

metabolomic data. MetabolitePredict prioritizes metabolites for a given disease based on the 

genetic profile similarities between disease and metabolites. We evaluated MetabolitePredict using 

63 known RA-associated metabolites. MetabolitePredict found 24 of the 63 metabolites (recall: 

0.38) and ranked them highly (mean ranking: top 4.13%, median ranking: top 1.10%, P-value: 

5.08E–19). MetabolitePredict performed better than an existing metabolite prediction system, 

PROFANCY, in predicting RA-associated metabolites (PROFANCY: recall: 0.31, mean ranking: 

20.91%, median ranking: 16.47%, P-value: 3.78E–7). Short-chain fatty acids (SCFAs), the 

abundant metabolites of gut microbiota in the fermentation of fiber, ranked highly (butyrate, 

0.03%; acetate, 0.05%; propionate, 0.38%). Finally, we established MetabolitePredict’s potential 

in novel metabolite targeting for disease treatment: MetabolitePredict ranked highly three known 
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metabolite inhibitors for RA treatments (methotrexate:0.25%; leflunomide: 0.56%; sulfasalazine: 

0.92%).

MetabolitePredict is a generalizable disease metabolite prediction system. The only required input 

to the system is a disease name or a set of disease-associated genes. The web-based 

MetabolitePredict is available at:http://xulab.case.edu/MetabolitePredict.
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1. Introduction

Human metabolome is the complete set of small-molecule metabolites found in the human 

body. Human metabolomics is the study of metabolome using patient biofluids and tissue 

samples in order to find molecular profiles associated with diseases or health status. 

Metabolomics has potential for early disease diagnosis, monitoring therapy and 

understanding disease pathogenesis [1,2].

Profiling human metabolome is challenging. The human metabolomes are affected not only 

by intrinsic factors such as host genetics, but also by many external factors, including 

lifestyle, pollutants, diet, medications, exercise, gut microbiota, and age [3]. In addition, 

metabolites are highly heterogeneous and include lipids, small peptides, amino acids, 

organic acids, vitamins, carbohydrates, nucleic acids, as well as metabolites derived from 

drugs, environmental contaminants, food additives, toxins, cosmetics, and other xenobiotics 

[4]. Since human metabolome is affected by not only intrinsic but also many external 

factors, sample collection, storage, processing and data analysis is crucial for reproducibility 

and knowledge generalization.

Here we report a novel disease metabolite prediction system, MetabolitePredict, that 

performs de novo prediction of disease-associated metabolites and metabolite targeting 

therapies via simultaneous integrative analysis of vast amounts of human disease genetics, 

chemical genetics, human metabolomic data, and genetic pathways. MetabolitePredict 

complements current clinical sample-based metabolomics studies: current human 

metabolomics characterize clinically significant metabolite profiles from patient samples; 

MetabolitePredict contextualizes disease metabolite biomarker discovery with vast amounts 

of existing system-level genetic and molecular data. MetabolitePredict is also different from 

existing computation-based metabolite prediction systems, including PROFANCY [5] and 

MetPriCNet [6], which identify additional disease metabolites based on known disease-

associated metabolites, therefore cannot perform predictions for diseases without known 

metabolites. MetabolitePredict is a de novo prediction system that can predict metabolite 

biomarkers for any diseases without the need of known disease-associated metabolites. We 

demonstrated that MetabolitePredict performs better than PROFANCY in prioritizing RA-

associated metabolites. We recently developed algorithms that prioritize human gut 

microbial metabolite biomarkers for colorectal cancer (CRC) [7] and Alzheimer’s disease 
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[8] based on genetic relevance between diseases and microbial metabolites (171 microbial 

metabolites). MetabolitePredict incorporated our previous algorithms and developed new 

algorithms for large-scale prioritization of metabolites (259,170 chemicals/pathways) based 

on pathway profile similarity. In addition, MetabolitePredict has the additional capability in 

identifying metabolic inhibitors for novel disease treatments. To the best of our knowledge, 

MetabolitePredic represents the first de novo prediction system for both metabolomic 

biomarker discovery and metabolite targeting-based drug discovery.

We applied MetabolitePredict to rheumatoid arthritis (RA) for both metabolomics biomarker 

discovery and metabolite targeting for two reasons. First, RA is a common, chronic, 

systemic, inflammatory disorder. RA affects up to 1% of the population worldwide [9]. The 

cause of RA remains unknown, with multiple genetic and environmental factors involved 

[10–12]. Second, the availability of known RA-associated metabolites and metabolite 

inhibitor-based treatments allows us to robustly evaluate MetabolitePredict’s functionalities. 

We tested MetabolitePredict using 63 RA-associated metabolites extracted from published 

metabolomics studies [3,13] and from the Human Metabolome Database (HMDB) [4].

We evaluated MetabolitePredict in identifying human gut microbial metabolites that may be 

involved in RA pathogenesis. Human gut microbiota (>1014 microbial cells comprising 

about 1000 different species) are important modifiable environmental factors that we are 

exposed to continuously [14]. These microbiota exist in symbiotic relationship with a human 

host by metabolizing compounds that humans are unable to utilize and by controlling the 

immune balance of the human body [15]. Evidence increasingly suggests that gut microbiota 

and their metabolites exert profound effects on the host immune system, and are implicated 

in the initiation and progression of many common complex diseases, including RA [16,17]. 

We demonstrated that MetabolitePredict has the potential to identify which and how human 

gut microbial metabolites are associated with RA.

Disease-specific metabolomic profiles are a promising source of drug targets. Considerable 

efforts have been focused on combining metabolic modulators with conventional therapies 

for cancer [18] and other diseases. Metabolic inhibitors such as methotrexate, leflunomid 

and sulfasalazine have been used to treat RA [19–22]. In this study, we established 

MetabolitePredict’s potential in novel metabolite targeting for diseases.

2. Data and methods

2.1. Data

MetabolitePredict incorporated a large amount of data, including human metabolome, 

disease genetics, chemical genetics, functional protein interactions and signaling pathways. 

The system is highly flexible and additional datasets can be easily included.

2.1.1. Disease genetics and genomics data—MetabolitePredict incorporates disease 

genetics from two complementary data resources: (1) The Catalog of Published Genome-

Wide Association Studies (GWAS Catalog), an exhaustive source containing descriptions of 

disease-/trait-associated single nucleotide polymorphisms (SNPs) from published GWAS 

data [23]. Currently, the GWAS Catalog contains 22,470 disease/trait-gene pairs, 
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representing 8,689 genes and 881 common complex diseases/traits, including RA and 95 

RA-associated genes; and (2) The Online Mendelian Inheritance in Man database (OMIM), 

the most comprehensive source of disease genetics for Mendelian disorders [24]. Currently, 

OMIM includes 15,462 disease-gene pairs for 5,983 diseases and 8,831 genes, including RA 

and 20 RA-associated genes. We used these two complementary resources of disease 

genetics to demonstrate the robustness of MetabolitePredict.

2.1.2. Chemical genetics data—We used the STITCH (Search Tool for Interactions of 

Chemicals) database to obtain chemical/metabolite-gene associations. STITCH is a database 

of known and predicted interactions between chemicals and proteins [25]. STITCH contains 

data on the interactions between 300,000 small molecules and 2.6 million proteins from 

1133 organisms. In this study, we used chemical-gene associations found in human body, 

which include 1,466,636 chemical-gene pairs, 259,171 chemicals, and 15,620 human genes.

2.1.3. The Human Metabolome Database (HMDB)—HMDB contains detailed 

information about 41,993 small molecule metabolites found in the human body and is 

intended for applications in metabolomics, biomarker discovery and other applications [4]. 

We used HMDB to obtain a list of metabolites found in human body, including human gut 

microbial metabolites.

2.1.4. Genetic pathway data—We used the rich pathway information from the 

Molecular Signatures Database (MSigDB) to construct pathway profiles for diseases and 

metabolites. MSigDB is currently the most comprehensive resource for 10,295 annotated 

pathways and gene sets [26].

2.2. Methods

2.2.1. Overview of MetabolitePredict—Currently, MetabolitePredict implemented two 

prioritization algorithms: (1) gMetabolitePredict, which prioritizes metabolites based on 

gene set profile similarities; and (2) pMetabolitePredict, which prioritizes metabolites based 

on pathway profile similarities.

gMetabolitePredict is shown in Fig. 1 and consists of the following components: (1) 

gMetabolitePredict constructs a genetic profile for an input disease, which is the set of 

disease-associated genes; (2) gMetabolitePredict then constructs genetic profiles for a total 

of 259,170 chemicals/metabolites from STITCH. The genetic profile for a metabolite is a set 

of metabolite-associated genes extracted from STITCH; (3) gMetabolitePredict prioritizes 

metabolites for an input disease based on the genetic profile similarity between disease and 

metabolites. Currently, gMetabolitePredict implemented three commonly used set similarity 

measures: (a) overlap, (b) Jaccard similarity coefficient, and (c) cosine similarity [27].

pMetabolitePredict is shown in Fig. 2 and consists of the following components: (1) 

pMetabolitePredict first constructs a pathway profile for a given disease by performing 

pathway enrichment analysis for a set of disease-associated gene; (2) pMetabolitePredict 

constructed pathway profiles for a total of 259,170 chemicals/metabolites. This step was 

only performed once and the data were stored in MetabolitePredict database; and (3) 
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pMetabolitePredict prioritizes metabolites based on the pathway profile similarity (overlap, 

Jaccard coefficient, and cosine similarity) between disease and metabolites.

2.2.2. Construct genetic and pathway profile for input disease—For 

gMetabolitePredict, the genetic profile for a disease is the set of disease-associated genes 

(Fig. 1). For RA, we used 20 RA-associated genes from the OMIM database and 95 genes 

from the GWAS Catalog to build two gene profiles for RA. For pMetabolitePredict, pathway 

enrichment analysis was performed to identify genetic pathways significantly enriched for 

the set of disease associated genes (Fig. 2): pathways associated with for each gene first 

were obtained from MSigDB. For each pathway, the probability of this pathway associated 

with a set of genes (disease or metabolite-associated genes) was assessed by comparing to 

that for the same number of randomly selected genes. We repeated the random process 1000 

times and performed a t-test to assess the enrichment significance. For example, the pathway 

profile for RA consists of these 266 significantly enriched pathways.

2.2.3. Construct genetic and pathway profiles for chemicals/metabolites—
Similarly, MetabolitePredict built gene and pathway profiles for 259,170 chemicals from the 

STITCH database. For example, butyric acid, a human gut microbial metabolite, is 

associated with 669 genes, for which a total of 609 pathways are significantly enriched. The 

genetic profile for butyric acid is the set of 669 genes and the pathway profile is the set of 

609 significantly enriched pathways.

2.2.4. Prioritize metabolites for input diseases—MetabolitePredict prioritizes 

metabolites based on the gene profile (gMetabolitePredict) or pathway profile 

(pMetabolitePredict) similarity between disease and metabolites. Currently, 

MetabolitePredict implements three commonly used set similarity measures: overlap, 

Jaccard coefficient, and cosine similarity. Additional similarity measures can be easily 

incorporated.

2.2.5. Evaluation using known RA-associated metabolites—We evaluated 

MetabolitePredict in identifying and prioritizing metabolite biomarkers for RA using 63 RA-

associated metabolites extracted from published metabolomics studies [3,13] and from 

HMDB [4]. Recall, mean ranking, and median rankings were used for performance 

measures. Significance was calculated by comparing to random expectation (based on 

random expectation, these metabolites shall have an average ranking of 50%).

A good prioritization algorithm shall enrich true positives among top-ranked entities. We 

compared enrichments of true positives at 12 different ranking cutoffs (top 1%, 5%, 10%, 

20, 30, …, 100%). We used enrichment curves instead of precision-recall curves because the 

large number of prioritized chemicals/metabolites (259,170) and the relative small number 

of known RA metabolites (large denominator and small numerator) make precision at each 

ranking cutoff extremely small. At each ranking cutoff, we calculated the enrichment fold by 

dividing the precision at the cutoff by the precision at ranking cutoff of 100% (which is the 

precision of random ranking). For example, the precision at ranking cutoff of top 1% is 

0.0028, which is small. However it represents 45-fold enrichment as compared to the 
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precision of 6.21E-05 at ranking cutoff of 100%. We compared gMetabolitePredict to 

pMetabolitePredict in prioritizing/enriching true positives at 12 ranking cutoffs.

2.2.6. Compare to an existing metabolite prediction system—We compared 

MetabolitePredict to PROFANCY in prioritizing RA-associated metabolites. From the web-

based PROFANCY application, we obtained a list of 6574 prioritized metabolites for RA. 

We evaluated these predictions using the 63 known RA-associated metabolites. Recall, mean 

ranking, and median rankings were calculated. Significance of these rankings was calculated 

by comparing to random expectation.

2.2.7. Understanding how human gut microbial metabolites are involved in RA 
pathogenesis—Animal studies show that the short-chain fatty acids (SCFAs), the 

abundant metabolites of gut microbiota in the fermentation of fiber, have a role in the 

suppression of inflammation in RA [28,29]. We tested MetabolitePredict in prioritizing three 

known RA-associated SCFAs (butyrate, acetate, and propionate). We then analyzed top-

ranked human gut microbial metabolites and identified genetic pathways significantly 

enriched for these top-ranked metabolites. We first identified genes associated with top 

ranked microbial metabolites (ranked within top 20%) using chemicalgene associations from 

STITCH database. Pathway enrichment analysis was then performed to find genetic 

pathways significantly enriched for this set of genes.

2.2.8. Evaluate MetabolitePredict’s potential in identifying metabolite 
inhibitors for RA treatment—Currently, there are three FDA-approved metabolite 

inhibitors for the treatment of RA. We prioritized 259,171 chemicals from STITCH based on 

their genetic relevance to RA pathogenesis. These chemicals include not only metabolites 

but also metabolite inhibitors. We evaluated the rankings of three known metabolite 

inhibitors (methotrexate, leflunomid and sulfasalazine) among 259,171 prioritized 

chemicals.

3. Results

3.1. pMetabolitePredict ranking RA-associated metabolites highly

We compared gMetabolitePredict and pMetabolitePredict in prioritizing 63 known RA-

associated metabolites. As shown in Table 1, pMetabolitePredict performed much better than 

gMetabolitePredict for Jaccard and overlap similarity measures. In addition, the overlap-

based measure has best performance.

We also compared both systems to PROFANCY [5]. PROFANCY has recall of 0.31, a mean 

ranking of 20.9%, and a median ranking of 16.5%. These results show that 

pMetabolitePredict performed better than PROFANCY.

Fig. 3 shows the actual rankings of the 24 identified (out of 63) known metabolites among 

prioritized chemicals. The other 39 metabolites are not in either STITCH or HMDB 

database, therefore not identified by the systems. All 24 metabolites were ranked within top 

35% and the mean and median rankings are 4.13% and 1.10%, respectively.
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We further compared the prioritization capabilities of gMetabolitePredict and 

pMetabolitePredict at 12 ranking cutoffs. As shown in Fig. 4, both prioritization systems 

enriched true positives among top ranked metabolites. For example, pMetabolitePredict has 

a enrichment fold of 45.8 at the cutoff of top 1%, which is much higher than the enrichment 

fold of 2 at the cutoff of top 50%. The similar trend was observed for gMetabolitePredict. 

pMetabolitePredict has better enrichment performance than gMetabolitePredict at all 

ranking cutoffs. For instance, pMetabolitePredict has an enrichment fold of 45.8 at the cutoff 

of 1%, which is much higher that the 29.3 for pMetabolitePredict at the same cutoff.

3.2. MetabolitePredict is robust across different disease genetics data resources

The only required input to MetabolitePredict is a disease name or a set of disease-associated 

genes. We then investigated how robust pMetabolitePredict is when different disease 

genetics data were used (the OMIM database and the GWAS Catalog). Table 2 shows that 

pMetabolitePredict was able to rank known RA-associated metabolites significantly highly 

across two complementary disease genetics databases.

3.3. Systematic analysis of significant human gut microbial metabolites

From the 259,170 chemicals/metabolites prioritized by MetabolitePredict using RA as input, 

we identified a set of 65 metabolites originated from human gut microbiome (based on 

HMDB classification). 50 of these 65 microbial metabolites ranked within top 20%, 

indicating that gut microbial metabolism in general is related to RA. Short-chain fatty acids 

(SCFAs), the abundant metabolites of gut microbiota in the fermentation, ranked highly: 

butyrate, top 0.03%; acetate, top 0.05%; propionate, top 0.38%. These results indicate that 

fiber in food as well as the capability of human gut microbiota in fiber fermentation may be 

implicated in RA pathogenesis and that alternating these modifiable environmental factors 

may present a practical disease prevention strategy for RA. Our findings are consistent with 

recent studies showing that SCFAs have a role in the suppression of inflammation in RA 

[28,29].

We examined functional commonalities of the 50 top-ranked RA-associated microbial 

metabolites. We first identified genes associated with these metabolites, and then identified 

78 genetic pathways significantly enriched for these genes. The top 20 pathways (Table 3) 

indicate that human gut microbial metabolites may be mechanistically linked to RA through 

glycolysis, amino acid metabolism, TCA cycle, and fatty acid bio-oxidation. The 

identification of microbial metabolites and the understanding of their role as key mediators 

through which these bacteria promote/protect against RA will provide insight into the basic 

mechanisms of RA etiology, facilitate our understanding of the complex host genome-

microbiome interactions in RA, and enable/activate new possibilities for RA diagnosis, 

prevention, and treatment.

3.4. Known metabolite inhibitors for RA treatments ranked highly

Methotrexate, leflunomid and sulfasalazine are three metabolic inhibitors used to treat RA 

[19]. Methotrexate is a folate inhibitor and currently the most important and most frequently 

prescribed medication for the treatment of RA. Methotrexate inhibits DNA and RNA 

synthesis in lymphocytes by preventing de novo purine and pyrimidine synthesis [20]. 
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Leflunomide is an isoxazole derivate that inhibits the mitochondrial enzyme dehydroorotate 

dehydrogenase and prevents de novo synthesis of pyrimidine in lymphocytes [22]. 

Sulfasalazine inhibits folate-dependent enzyme and induces apoptosis of neutrophils and 

macrophages [21].

MetabolitePredict prioritized a total of 259,171 chemicals derived from STITCH based on 

their genetic relevance to RA pathogenesis. These chemicals include not only metabolite 

biomarkers but also metabolite inhibitors. Among the prioritized chemicals, the three 

metabolite inhibitors ranked highly: methotrexate, top 0.25%; leflunomide, top 0.56%; 

sulfasalazine, top 0.92%. These results demonstrate MetabolitePredict’s potential in not only 

metabolite biomarker discovery but also identifying novel therapies for metabolic targeting 

in RA.

4. Discussion

MetabolitePredict is a general approach and can perform de novo predictions of metabolites, 

microbial metaboites as well as metabolite-targeting therapies for any diseases. The input 

can be a disease name or a set of disease-associated genes. The web-based MetabolitePredict 

is publicly available at: http://xulab.case.edu/MetabolitePredict. We evaluated 

MetabolitePredict for RA metabolomic biomarker discovery, gut microbial metabolite 

identification, and metabolite inhibitor discovery, because metabolomics, microbiome 

studies, and metabolite targeting therapy in RA are relatively well studied. However, we did 

not tailor the system for RA in any way. Therefore, we expect that MetabolitePredict would 

be equally effective for other diseases.

The de novo prediction system MetabolitePredict is different from existing computation-

based metabolite prediction systems [5,6], which identify disease metabolites based on 

known disease-associated metabolites and cannot perform predictions for diseases without 

known metabolites. Though we demonstrated that MetabolitePredict performs better than 

PROFANCY in prioritizing RA-associated metabolites, the de novo prediction system has its 

inherent limitation since it ignores our existing knowlege of disease-associated metabolites. 

In the future, we will further improve MetabolitePredict by taking into account of the 

increasingly available knowlege of disease-associated metabolites. For example, we can 

further prioritize a metabolite for a disease if the metbolite share genetic or pathway profile 

with known disease-associated metabolites.

Rapid environmental changes and modern lifestyles are the driving factors to many common 

complex diseases, including RA. While significant progress has been made in understanding 

genetic, molecular, and cellular mechanisms of RA, however, little is known about which 

environmental factors are important in RA. Human gut microbiota are important modifiable 

environmental factors that are part of the ecosystem of our bodies. We demonstrated that 

MetabolitePredict has the potential to identify which and how human gut microbial 

metabolites are associated with RA.

Another advantage of MetabolitePredict is that it can simutaneously predict both disease 

metaboilte biomarkers and metabolite targeting for disease treatment. We showed that 
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MetabolitePredict identified and ranked highly three known metabolite inhibitors for RA 

treatments.

MetabolitePredict does not replace existing patient sample-based metabolomics studies, 

instead, it largely complements existing metabolomics profiling by contextualizing 

metabolite biomarker discovery with vast amounts of existing knowledge of diseases, genes, 

pathways, and metabolites. We believe that MetabolitePredict fills an important need by 

simultaneous identifying and understanding metabolite biomarkers for diseases, 

understanding how modifiable environment factors such as human gut microbiome are 

involved in disease mechanisms, and by translating metabolomic data into relevant 

biological knowledge and drug treatments.

With the vast amounts of knowledge built into MetabolitePredict and it can take a list of 

genes as input, we expect that MetabolitePredict can be applied to identify metabolite 

signatures unique for disease subtypes, disease progression, as well as treatment response 

given the involved genes are available.
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Fig. 1. 
gMetabolitePredict: a genetics-based disease metabolite prediction system.

Wang and Xu Page 11

J Biomed Inform. Author manuscript; available in PMC 2017 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
pMetabolitePredict: a pathway-based disease metabolite prediction system.
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Fig. 3. 
The rankings of 24 known RA-associated metabolites among 259,170 prioritized chemicals 

from STITCH.
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Fig. 4. 
Enrichment of true positives among prioritized metabolites at 12 ranking cutoffs for both 

gMetabolitePredict and pMetabolitePredict. The 95 RA-associated genes from the GWAS 

Catalog and chemical genetics from STITCH were used.
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Table 1

Evaluation of pMetabolitePredict, gMetabolitePredict, and PROFANCY in prioritizing 63 RA-associated 

metabolites. The 20 RA-associated genes from the OMIM data based were used as input for both 

gMetabolitePredict and pMetabolitePredict.

Prediction System Similarity Measure Mean Ranking (top %) Median Ranking (top %) P value

gMetabolitePredict Overlap 19.05% 2.80% 1.74E–5

Jaccard 19.18% 2.81% 1.77E–5

Cosine 19.18% 2.81% 1.77E–5

pMetabolitePredict Overlap 4.43% 1.37% 4.55E–20

Jaccard 6.83% 3.85% 5.71E–20

Cosine 47.99% 56.91% 0.818

PROFANCY 20.9% 16.5% 3.78E–7
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Table 2

The performance of pMetabolitePredict across two disease genetics (the OMIM database and the GWAS 

Catalog).

Disease Genetics Database Recall Mean Ranking (top %) Median Ranking (top %) P value

OMIM 38.10% 4.32% 1.37% 4.55E–20

GWAS 38.10% 4.13% 1.10% 5.08E–19
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Table 3

Top 20 genetic pathways significantly enriched for top-ranked RA-associated human gut microbial 

metabolites.

Pathway Enrichment Pathway Enrichment

Ethanol oxidation 41 Feeder Pathways for Glycolysis 33

Digestion of dietary carbohydrate 29 Glycine, serine and threonine metabolism 27

Glycolysis Pathway 23 Tyrosine metabolism 16

Galactose metabolism 15 Pyruvate metabolism 14

Tryptophan metabolism 14 The Citric Acid Cycle (Krebs pathway) 14

Glycolysis/Gluconeogenesis 14 Phenylalanine metabolism 13

Phase 1 – Functionalization of compounds 12 Fatty acid metabolism 12

Mitochondrial Fatty Acid Beta-Oxidation 12 Starch and sucrose metabolism 12

Valine, leucine and isoleucine degradation 11 Metabolism of polyamines 11

Peroxisomal lipid metabolism 11 Free Radical Induced Apoptosis 11
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