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Abstract

The innate immune response to pathogenic challenge is a complex, multi-staged process
involving thousands of genes. While numerous transcription factors that act as master regu-
lators of this response have been identified, the temporal complexity of gene expression
changes in response to pathogen-associated molecular pattern receptor stimulation
strongly suggest that additional layers of regulation remain to be uncovered. The evolved
pathogen response program in mammalian innate immune cells is understood to reflect a
compromise between the probability of clearing the infection and the extent of tissue dam-
age and inflammatory sequelae it causes. Because of that, a key challenge to delineating
the regulators that control the temporal inflammatory response is that an innate immune
regulator that may confer a selective advantage in the wild may be dispensable in the lab
setting. In order to better understand the complete transcriptional response of primary mac-
rophages to the bacterial endotoxin lipopolysaccharide (LPS), we designed a method that
integrates temporally resolved gene expression and chromatin-accessibility measurements
from mouse macrophages. By correlating changes in transcription factor binding site motif
enrichment scores, calculated within regions of accessible chromatin, with the average
temporal expression profile of a gene cluster, we screened for transcriptional factors that
regulate the cluster. We have validated our predictions of LPS-stimulated transcriptional
regulators using ChlP-seq data for three transcription factors with experimentally confirmed
functions in innate immunity. In addition, we predict a role in the macrophage LPS response
for several novel transcription factors that have not previously been implicated in immune
responses. This method is applicable to any experimental situation where temporal gene
expression and chromatin-accessibility data are available.
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Introduction

Macrophages are long-lived coordinating cells of the innate immune system. Activation of tis-
sue macrophages by Toll-like receptor (TLR) stimulation initiates a dynamic program of gene
expression changes involving hundreds of genes that are associated with processes such as
phagocytosis, antigen presentation, immunoregulation, and non-oxidative metabolism [1-4].
This gene expression program involves scores of transcription factors (TFs) whose activation
is regulated both hierarchically [5-7] and temporally [7-9] and whose accessible binding sites
in the genome change over time due to stimulation-dependent alterations in epigenetic state
of the chromatin [7, 10, 11]. One of the key chromatin marks directing the transcriptional
response to endotoxin stimulation in macrophages is histone acetylation (HAc), which is asso-
ciated with open chromatin and active promoters [10, 12]. Functional TF binding sites (TFBS)
are often found within regions of histone acetylation, and our previous work has shown that
the binding sites within histone-acetylated regions tend to appear as distinct features in the
quantitative signal that represents the local amount of HAc ChIP-seq fragment recovery [13].

Various systems biology approaches have been used to map the transcription factors that
regulate the transcriptional response of macrophages and dendritic cells to stimulation with
bacterial endotoxin lipopolysaccharide (LPS) [14, 15] including (i) promoter scanning of
genes clustered by temporal expression profiles [1, 16, 17] to identify known TFBS position-
weight sequence patterns (motifs) that are enriched within the gene cluster; (ii) time-lagged
correlation analysis of TF gene expression and target gene expression [9] (which can detect
TFs that are dynamically regulated at the transcript level, but not those that are exclusively
post-translationally regulated); (iii) siRNA inhibition of selected TFs, with qPCR gene expres-
sion profiling of selected target genes [18]; (iv) p300-guided sequence analysis [11]; (v) high-
throughput multiplexed ChIP-seq [7]; and (vi) expression quantitative trait locus (eQTL) pro-
filing [19-21]. Motif-based scanning for enriched TFBS within gene promoters has yielded
multiple insights into the TFs regulating macrophage activation [1, 9, 16, 22-24] but is unable
to comprehensively define the relevant TFs because the analysis is generally constrained to the
promoter-proximal sequence in order to yield a tractable number of candidate molecules [9,
25, 26]. However, mammalian TF binding sites are often distal to the transcription start site
(TSS), for example, in enhancers that can be many kilobase distant [11, 13, 27, 28].

As more large biological data sets are deposited in public repositories, big data analytics is
an increasingly useful tool for predicting TF binding sites, tissue distribution, function and
interactions. This approach is promising and offers a number of advantages, such as the ability
to comprehensively analyze large numbers of cells and tissues simultaneously, and to make
specific predictions based on the complete picture. These predictions can then be sorted by
probabilities and tested in the lab. Such a computational approach has been used to success-
fully predict key TFs that play a role in cell differentiation; for example, ectopic expression of
just nine of the top candidate TFs for epithelial retinal pigment cells, was sufficient to trans-
form human fibroblasts into retinal pigment epithelial-like cells [29]. Bioinformatic analysis of
gene expression profiles, based on whole transcriptome sequencing data from 33 mouse tis-
sues, was used to produce an online database of fundamental functional annotation for mouse
TFs [30]. Such computational efforts are not limited the TF predictions. Recent work has dem-
onstrated the ability to predict large numbers of lincRNAs from RNA Seq data [31].

In this work, we build on our previous finding that active TFBS are concentrated in local
“valleys” of HAc that occur within HAc-enriched regions [13] and our previous analytical
approach in which HAc valley signals at a single time point were used to inform TFBS enrich-
ment analysis [24, 28]. Here we have analyzed temporal HAc measurements in LPS-stimulated
primary macrophages in order to obtain TFBS motif-specific temporal binding propensity
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profiles that we correlated with temporal gene expression profiles. In contrast to single-time-
point epigenome-guided analysis [24, 28] and TF-expression-to-target-expression correlation
analysis [9], this approach enables the detection of TFs that regulate target gene expression
without the assumption that TF expression reflects binding.

Materials and methods
Macrophage tissue culture and RNA isolation

All animal studies were approved by Center for Infectious Disease Research Institutional Ani-
mal Care and Use Committee. Murine bone marrow-derived macrophages (BMDMs) were
cultured from female C57BL/6] mice (age 8-12 weeks) as previously described [9] and on day
six, cells were re-plated into six-well tissue culture plates. On day seven, cells were incubated
for the indicated times (see text in Results section) in complete RPMI with thM-CSF and 10
ng/mL of LPS (from Salmonella enterica serovar minnesota R595; List Biological Laboratories,
Campbell, CA) and then harvested. RNA was isolated using TRIzol (Thermo Fisher Scientific,
Waltham, MA) following the manufacturer’s instructions.

Microarray assay

For each sample, 1 g of RNA was amplified and labeled using the Affymetrix single-step pro-
tocol and hybridized to Affymetrix Mouse Exon 1.0 ST Array GeneChips (Affymetrix, Santa
Clara, CA). The GeneChips were scanned using the Affymetrix GeneChip Scanner 3000 and
processed into probe-level intensity (“.CEL”) files using the Affymetrix GeneChip Operating
Software. Array data files are available in GEO (GSE100059).

Microarray data processing

Affymetrix exon array files were processed using the Affymetrix Power Tools software using
probe-to-probeset mappings from the University of Michigan Custom CDF project (ENTREZG,
release 18.0.0) (#%affymetrix-algorithm-param-apt-command-line = apt-probeset-summarize -a
rma-sketch—pgf-file MoEx10stvl_Mm_ENTREZG_18.0.0.pgf—clf-file MoEx-1_0-st-v1.r2.clf—
use-disk false -0 outENTREZv18.0-LPS—cel-files celFilesLPS-BMDM.txt). Processed data were
loaded into Analyst (GeneData, Basel, Switzerland). Expression levels for genes that have an inten-
sity of at least 64 (log, of 6) were analyzed by ANOVA. Permutation g values were determined
using balanced permutations and the cutoff of permutation q value of 0.01 and fold change of 5 or
greater was used to select significantly changing genes. Upregulated and downregulated genes
were separated and clustered separately (Positive Correlation Distance 1-1).

Histone-acetylation ChIP-seq data processing

BMDMs were prepared as described above and stimulated on day 7 with 10 ng/mL of LPS for
the indicated times. Immunoprecipitation (IP) was carried out as described in [24] using a rab-
bit polyclonal IgG for the acetyl-H4 IP (Merck Millipore, Billerica MA; catalog number 06—
866). A sequencing library for the Illumina Genome Analyzer was derived from the IP using
the Illumina reagent kit as previously described in [32] and sequenced on the Genome Ana-
lyzer II (Illumina, San Diego, CA) with 36-cycle chemistry. Raw files from this study are avail-
able in GEO (GSE54414). Reads were aligned to the reference mouse genome (GRCm38)
using GSNAP [33], sorted and indexed using samtools [34], converted to UCSC BED format
using bedtools [35] bamToBed, deduplicated, 3’-extended by 122 bp using bedtools slopBed,
converted to UCSC bedgraph format using bedtools genomeCoverageBed, and converted to
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Affymetrix BAR file format [36] using a custom script in the MATLAB computing environ-
ment version R2015a (Mathworks, Natick, MA).

Valley score calculation

Valley scores were computed based on the HAc ChIP-Seq signal sampled at a resolution of 10
bp. First, the HAc ChIP-Seq signal was smoothed by convolving it with a Gaussian kernel with
a standard deviation of 40 bp. Next, local minima of the HAc ChIP-Seq signal were identified:
for each sample point, the maximum signal values in the windows 50-500 bp to the right and
left of the point were computed using a sliding window approach. If the signal value at the
sample point was less than 70% of the minimum of its two surrounding local maxima (to the
right and to the left), this sample point was designated a “valley”. The “valley score” assigned
to this point is the minimum of these two local maxima. For all sample points that were not
identified as a valley, the valley score signal was set to zero, thus reducing the data track to only
the local minima of the HAc ChIP-Seq signal. The valley score calculation was implemented in
MATLAB.

TF ChlP-seq data processing

For the IRF1, IRF8, and SPI1 ChIP-seq datasets, we obtained SRA files from NCBI GEO
(Accession Number GSE56121). SRA files were converted into FASTQ files, and filtered for
quality and common adapter sequences. Filtered FASTQ files were aligned to the GRCm38
genome assembly (UCSC gene annotation build mm10) using GSNAP. We then used Subread
featureCounts [37] to count reads within genomic features.

ChlIP-seq analysis

In order to test the ability of our algorithm to predict TFs regulating each temporal expression
cluster, we compared the ChIP-seq counts for IRF1 or IRF8 in the promoter regions of genes
in each temporal expression cluster to the average counts for that TF in 1000 randomly gener-
ated gene sets of equal size. For each target we computed the average and standard deviation of
the log,-transformed counts within the range of -2000 to +500 bp with respect to the transcrip-
tion start site across the 1000 random gene sets ("background average and standard devia-
tion"). We then computed the log, counts in the promoters of genes in the biologically-derived
clusters and converted these into z-scores using the background average and standard devia-
tion values for that ChIP-seq experiment type and cluster type. From the z-scores, we obtained
p values using the area under both tails of the normal distribution above |z| and below -|z|. We
then adjusted the p values for multiple hypothesis testing using the Benjamini-Hochberg false
discovery rate method [38]. This analysis was implemented in the R statistical computing envi-
ronment ({39, 40]; version 3.2.1).

Time-lagged correlation analysis

For each combination of a transcription factor binding site (TFBS) motif and a gene expres-
sion cluster, we computed the Pearson correlation coefficient between two sets of samples: (i)
the time-course motif Clover raw scores for the DNA sequence in AcH4-valley regions within
+5 kbp of the transcription start sites of the genes in the cluster; and (ii) the time-course, clus-
ter-median expression data at time points corresponding to the time-points for the AcH4
experiments (0, 1, 2, and 4 h) plus a time lag 7 (the time-lagged correlation R,). One fixed time
lag 7 was selected for each cluster by maximizing the sum-squared R, values for all motifs that
were associated with the cluster by a Clover enrichment analysis at least one time point
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(allowing the time lag to take any value in the range 0-2 h). The gene expression data at arbi-
trary time points were obtained by linear interpolation of the cluster-median gene expression
measurements at the sampling time points 0, 2, 4, and 12 h. The optimal time lags for each of
the clusters are (in hours): DC1 2.0; DC2 1.72; DC3 2.0; UC1 2.0; UC2 1.44; UC3 2.0; UC4 2.0;
UCS5 0.976. This analysis was implemented in the R statistical computing environment.

Gene regulatory network analysis

We used the Ingenuity Pathways Analysis (IPA) tool (QIAGEN Bioinformatics, Redwood
City, CA) to query for experimentally validated TF-gene interactions.

Results
Gene expression dynamics in LPS-stimulated macrophages

In order to identify transcription factors that regulate the macrophage response to stimulation
with LPS, we first profiled the transcriptomes of mouse bone-marrow-derived macrophages
(BMDMs) without stimulation and at 1, 4, or 12 hours post-stimulation using exon-targeted
microarrays. Restricting the analysis to the most strongly LPS-responsive transcripts, we iden-
tified 707 that were differentially expressed at one or more time points (g value < 0.01 and
fold-change > 5). Each differentially expressed gene was assigned to one of eight temporal
expression profile clusters using a partitioning algorithm (k-means). Five clusters contain
genes that were up-regulated in response to LPS, labeled Upregulated Cluster 1 (UC1) through
Upregulated Cluster 5 (UC5), and three contain genes that were down-regulated, labeled
Downregulated Cluster 1 (DC1) through Downregulated Cluster 3 (DC3) (Fig 1). Under the
hypothesis that the distinct temporal patterns of gene expression are regulated by distinct sets
of TFs [1, 9, 10], on a cluster by cluster basis, we analyzed DNA sequence in the 5’ regulatory
regions to identify TFBS for cluster-level enrichment analysis.

Over-represented transcription factor binding motifs in gene promoter
regions

In order to identify cluster-specific TFs whose binding sites are enriched within the promoters
of genes in each cluster, we computationally analyzed DNA sequence from 1,500 bp upstream
to 500 bp downstream of the transcription start site of each gene. We then used the Clover tool
[41] to score the enrichment of matches to TFBS motifs (from the TRANSFAC database)
within the promoter sequences for the genes in each cluster as described previously [42] using
the promoter regions of all macrophage-expressed genes as a background set. Across the eight
clusters, the number of significantly overrepresented TFBS motifs (p < 0.01) varied from 18 to
255 and did not correlate with the number of genes in the cluster (Fig 2). A high proportion of
the TFs whose binding site motif matches were enriched are known to have a role in inflam-
mation; for instance, the top 20 enriched motifs (by p-value) in cluster UC3 (Fig 1) include
those for IRF, ISRE, TCF3, STAT6 and BLIMPI. This analysis also identified a significant
number of TFs with no known role in the macrophage LPS response. For example, TFBS motif
matches for TAL11, MYF and MZF1 were enriched in the promoter regions of genes in DC3.

A limitation of this approach is that the Clover scores and enrichment p-values for each
cluster only suggest which TFs could be playing a role in regulating expression of that set of
genes. Using these data alone, it is difficult to determine the relative contribution of each TF to
the regulation of each cluster, and whether the TF is acting as an activator or as a repressor. In
order to refine our predictions, we used temporal epigenetic profiling to further refine predic-
tions for functional regulatory elements [43] in the activated macrophages.
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Fig 1. Transcriptional response to LPS. Heatmap of five upregulated and three downregulated clusters
(left) and median cluster fold change (right). Lines show median cluster expression and shaded areas show
interquartile range.

https://doi.org/10.1371/journal.pone.0184850.9001
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Fig 2. Promoter analysis of genes in eight clusters. Blue line shows the number of over-represented motifs (p < 0.01) in each
cluster. Red line shows the number of genes in each cluster.

https://doi.org/10.1371/journal.pone.0184850.g002

Defining active regulatory elements

Previous work from our group and others has established that the density of regulatory ele-
ments mediating macrophage responses to TLR stimulation is strongly enhanced within pro-
moter regions marked by histone acetylation (HAc) [13, 24]. Specifically, the density of TF
binding sites is increased within ~100 bp dips (valleys) in the HAc signal in noncoding geno-
mic regions that are otherwise strongly histone-acetylated [13]. Incorporating HAc valley
information into a motif-based TF binding site prediction algorithm, significantly improves
accuracy [13]. Here, we have extended that approach to identify TFs that are associated with
specific temporal programs of the macrophage transcriptional response to LPS stimulation.

Bone marrow-derived macrophages were harvested just prior to and at 1, 2 and 4 hours fol-
lowing LPS stimulation and histone-acetylated regions were mapped genome-wide by chro-
matin immunoprecipitation with high-throughput sequencing tag analysis (ChIP-seq) using
an antibody against acetylated histone 4 (AcH4) [44] (using normal IgG as a control). For each
time point, we computationally mapped AcH4-enriched regions genome-wide by comparing
the local tag count in the AcH4 IP-based sample to the control sample and determined loca-
tions of the AcH4 valleys (Fig 3A); a total of 15,730, 12,623, 11,995, and 13,460 valleys were
detected genome-wide in the 0, 1, 2 and 4 hour samples respectively. We defined the active
promoter regions (APRs) as those AcH4 valleys within +5,000 bp of the TSS of each gene (Fig
3B). Restricting APRs to this distance from the TSS is a tradeoff in order to effect a compro-
mise between maximizing the number of candidate regulatory regions and unambiguous
assignment of APRs to specific genes.
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Fig 3. AcH4 valleys and active promoter regions. (A) AcH4 valleys. ChlP-seq signal and smoothed ChIP-seq signal are shown by gray
and black lines respectively. Green bars represent the locations of detected AcH4 valleys. (B) Active promoter regions, defined as regions
where detected AcH4 valleys (short blue bars shown for different time point) overlap with the +5,000bp region around TSS (long blue bar).

https://doi.org/10.1371/journal.pone.0184850.g003

Motif search and results

We tested the sequence in APRs of each cluster at each time-point for over-representation of
matches for each of 909 vertebrate TFBS motifs in the TRANSFAC database relative to a back-
ground of promoter sequences for all genes expressed in the entire dataset using a log-average-
likelihood score (Clover [41]) as described previously [42]. Motifs with enrichment p < 0.01
for at least one time-point were retained for further analysis. We interpreted the Clover raw
score for each motif as a signal representing the strength of association of the corresponding
TFs with the genes in the cluster and we hypothesized that temporal changes in this score indi-
cated the time-dependent regulatory activity of the TF for the cluster. That is, we would expect
that the changes in raw score for motifs corresponding to TFs regulating a significant number
of genes in a cluster would correlate (either positively or negatively) with the temporal cluster-
median expression profile. Therefore, we ranked the list of enriched motifs for each of the
eight clusters by the magnitude of the change in score across all time points (max(score)-min
(score)) (S1 Table). Fig 4 shows the median fold-change (blue lines) and the Clover raw score
(red lines) for the top ranked motif in each cluster. Although the temporal resolution of these
data does not allow for the precise timing of specific features of expression level dynamics for
each cluster (e.g., maximum point), it would be expected that the binding of a TF to target
gene promoters would occur prior to the observed change in the expression levels of the TF’s
target genes. With that in mind, we performed a time-lagged correlation analysis using the
optimal time-shift for each motif/cluster combination. With few exceptions, the highest
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scoring motifs for each cluster show very good correlation of Clover raw score and cluster
expression (S2 Table).

Next, we assessed if our TF-cluster associations are consistent with current knowledge of
TFs that are involved in the macrophage response to LPS-stimulation. For a number of well-
characterized TFs, the Clover score and cluster-median expression data showed time-lagged
correlations that are consistent with known roles of these factors. For instance, based on TF-
gene interactions reported in the Ingenuity Pathways Analysis (IPA) database, the top three
TFs associated with the 122 genes in down-regulated cluster 1 (DC1) are E2F4, TP53 and YY1.
Consistent with this, the Clover scores for the E2F4 motif showed a strong positive correlation
(R = 0.8206 with a +2 hour time shift) with the median DC1 cluster expression (Fig 5A), while
those of YY1, a known transcriptional repressor, were strongly anti-correlated (R = -0.9985
with a +2 hour shift) with the median DCI cluster expression (Fig 5B). We should note that
our analysis did not show any of the TP53 motifs as over-represented at any time points for
DCI1 cluster. Further, by IPA analysis, the DC1 cluster is enriched for genes that are involved
in cell cycle and DNA repair pathways, consistent with the known functions of E2F4 (cell
cycle; [45]) and YY1 (DNA damage response; [46]). Finally, NFY, the TF whose binding site
sequence matches are most highly correlated with the median expression of DC1 (V$NFY_01)
(Fig 4), is known to regulate the cell cycle [47].

Validating TF-cluster temporal associations from our model, using
temporal TF occupancy data

To further validate this approach, we tested our predicted associations for three transcription
factors (IRF1, IRF8 and SPI1) with the clusters described above (Fig 1) using temporally
resolved genome-wide location data from LPS-stimulated macrophages obtained from GEO
(GSE56123 [48]). These data consist of ChIP-seq measurements of bone-marrow-derived
macrophages at 0, 2, and 4 hours following stimulation with LPS using antibodies against each
of these TFs.

To test whether the Clover motif score for each gene cluster correlates with the observed
binding of the corresponding TF to gene promoters in the cluster, we compared the motif
scores in HAc valleys of genes in 8 clusters against the ChIP-seq signal in the same regions at

18 o
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Fig 4. Top ranked motif for each of the eight expression clusters. Median fold change for each of the eight clusters is represented using blue
lines and the values are shown on the left Y axes. Red lines represent Clover raw scores for the top ranked motif and the values are shown on the Y
axes on the right. Based on a time-lagged correlation analysis (using optimum lag time for each moitif), the correlation between the Clover score and
the cluster-median expression levels are: UC1/V$CREBP1_Q2 - R=0.828 (t=2.0); UC2/V$IRF_Q6—R=0.777 (t= 1.0004); UC3/VS$IRF_Q6—
R=0.999 (t=1.343); UC4/V$SP1_Q2_01—R=0.8965 (t = 2.0); UC5/VEMYF_01—R=-0.900 (t = 1.001) DC1/VENFY_01—R=0.992 (t = 0.589);
DC2/V$NFY_01—R=0.916 (t=2.0); DC3/V$ZFP281_01—R=0.304 (t = 2.0).

https://doi.org/10.1371/journal.pone.0184850.9004
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Fig 5. Negative correlation of motif Clover scores and median cluster expression. Blue line and Y axis
on the left show median fold change of 122 transcripts in down-regulated cluster 1 (DC1). Clover raw scores
for the motifs VEE3F4DP2_01 (R=0.821 at 2 min time shift) (A) and V$YY1_Q6_02 (R=-0.999) (B) are
represented by red lines and the Y axes on the right.

https://doi.org/10.1371/journal.pone.0184850.g005

the identical time points (0, 2 and 4 hours). For all three TFs tested (IRF1, IRF8, and SPI1) the
Clover scores were strongly correlated with the appearance of ChIP-seq TF binding signals in
the promoters at the time-points predicted to be enriched for the corresponding motif (based
on our combined transcriptome and HAc valley analysis approach) (Fig 6). For most clusters
in which these motifs were not enriched, both the scores and the observed counts change only
negligibly (Fig 6). An exception was noted in case of IRF8, where observed ChIP-seq tag
counts in not-enriched clusters were found to increase without a corresponding increase in
Clover score (Fig 6); we hypothesize that these data reflect IRF8 binding to a motif that is not
included in the TRANSFAC database that we used.
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https://doi.org/10.1371/journal.pone.0184850.9006

In general, the Clover scores and measured binding of the corresponding TFs correlate
coherently over time for gene clusters in which the motif is enriched (e.g. IRF1, IRF8, and SPI1
for UC3 -Fig 7) and appear unrelated for clusters in which the motif is not predicted to play a
regulatory role (e.g. IRF1/ UC1) (Fig 8). In contrast, IRF1 counts in promoters of genes in
UC1 (the cluster for which the IRF1 motif is not enriched) show marginal change both by
observation (Fig 8A) and by prediction (Fig 8B).

While a number of TFs with a known role in inflammation were identified using correla-
tion method (e.g. IRF1, IRF8 and SPI1 -Fig 7), we have also flagged novel ones as well. The
SMAD family member (SMAD1 -Fig 9) was shown to have a high degree of correlation with
the gene expression (0.70 and -0.76 for UC1 and UC3, respectively).

To further the TF-gene cluster associations derived using the HAc valley data, we examined
the ChIP-seq signal in the unmasked promoter regions (-2000 to +500 bp relative to the TSS)
of genes in each cluster (Fig 1). We compared the total number of ChIP-seq reads for each TF
in the promoter regions of the genes in each of the eight clusters with the distributions of
summed-counts for randomly selected sets of expressed genes identical in size to each cluster.
We tested the summed-counts for the gene cluster for extremality in the distribution of
summed-counts based on the randomly constructed gene sets, yielding an enrichment p-value
for each combination of ChIP-seq experiment and gene cluster. For clusters where a TF was
predicted to be enriched, we observed significantly higher counts as compared to random dis-
tribution (Table 1). For instance, IRF8 binding at 2 hours was strongly enriched with the DC1
genes (g < 0.01); DC3 genes (q < 0.01) (Table 1).
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Fig 7. An example of good correlation between predicted and measured TF binding (for the cluster UC3). Top 3 graphs show normalized
counts for IRF1, IRF8 and SPI1 within the HAc-valley regulatory elements of genes in DC3 (purple line), or within 10kb region centered at TSS for the
same genes (green line). Graphs below show predicted binding of those TFs as represented by Clover raw scores (red lines) superimposed on the
UC3 cluster median fold change (blue lines).

https://doi.org/10.1371/journal.pone.0184850.9007

Discussion

Regulation of gene expression in mammals is combinatorial, tissue/context-specific, and
dynamic. A substantial portion of the regulation of gene activity is performed at the level of
transcription. With the increase in the evolutionary complexity of species, the number of
genes that the species’ genome encodes for, does not seem to correlate with the evolutionary
complexity. Estimates for the number of human protein-coding genes have been continuously
lowered and the best current guess is around 20,000, a far cry from some of the earlier esti-
mates of more than 100,000 [49]. The number of genes in humans is higher than in other
mammals but lower than that in many plants [50]. Converging lines of evidence suggest that
the complexity of higher organisms arises in part from the intricate, multifactorial, gene regu-
lation and complex gene product interactions, rather than from the sheer number of available
genes [51].

Methods employing knockout (KO) mice, transient or permanent KO, knockdown, or
overexpression of a gene in vitro, allow for relatively easy detection of genes involved in a
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Fig 8. Clover scores and ChIP-seq counts for TF when motif is not over represented. An example of
observed counts (pane A) and predicted scores (pane B) for TF whose motif was not found to be over represented.
Top graph shows normalized counts for IRF1 within the HAc-valley regulatory elements of genes in UC1 (purple
line), or within 10kb region centered at TSS for the same genes (green line). Graph below shows predicted binding
of those IRF1 as represented by Clover raw scores (red line) superimposed on the UC1 cluster median fold change
(blue line).

https://doi.org/10.1371/journal.pone.0184850.9008

certain phenotype in situations where the pathway regulating the phenotype has a single gene
bottleneck. However, almost no phenotype in higher organisms is a product of one gene, even
in the situation where a bottleneck exists. While Tlr4”~ mice do not respond to LPS, response
to LPS is dependent on thousands of genes that are carefully regulated and function in concert
to produce a complex response ([52-54]). Those genes (regulators and effectors) would be
expected to be under tight evolutionary pressure meaning that they work together to provide
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an appropriate response to pathogens. A deficiency in LPS response in macrophages would be
expected to impair the innate immune response to pathogenic challenge, while over-response
could lead to tissue damage and autoimmune dysfunction. It is reasonable to assume that the
gene regulatory network downstream of TLR4 in macrophages represents an evolutionary
compromise in which changing a single, or even a few genes, results only in a modest modula-
tion of response. While those differences are almost certainly evolutionary and functionally
important, experimentally demonstrating their functional significance can be challenging.

The method described in this manuscript offers one approach to exploring a complex inter-
play of multiple transcription factors that are involved the regulation of gene expression.
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Table 1. Enrichment test results for ChlP-seq tags for specific TFs in HAc-valley regulatory elements within 5 kbp of TSSs for genes in specific

clusters.

TF
IRF8
IRF8
IRF8
IRF8
IRF8
IRF8
IRF8
IRF1
IRF1
IRF1
IRF1
IRF1
IRF1
IRF1
SPI1
SPI1
SPI1
SPI1
SPI1
SPI1

ChIP-seq Time point
Oh
Oh
2h
4h
Oh
2h
4h
2h
4h
Oh
2h
4h
2h
4h
Oh
Oh
2h
4h
2h
4h

Cluster predicted g-value
DC1 yes 5.6x1073
DC3 no 9.5x1072
ucz2 yes 2.3x1077
ucz2 yes 6.4x107°
ucs yes 1.4x107""
ucs yes 5.2x1072°
ucs yes 2.0x107%°
ucz yes 4.6x1073
uc2 yes 9.8x1072
ucs yes 3.7x10728
ucs yes 1.4x10724
ucs yes 2.9x107%°
ucs yes 3.7x1072
ucs no 4.6x1072
DC3 yes 4.9x1073
ucz yes 7.1x107*
ucz2 yes 9.6x10712
uc2 yes 6.2x1071°
ucs yes 4.8x1078
ucs yes 2.7x1071°

The first two columns (“TF” and “ChlP-seq time point”) identify the specific ChlP-seq dataset; the “Cluster” column identifies the gene expression cluster
with which the TF was predicted to be associated; the “predicted” column indicates whether or not the TF’s binding site motif was statistically enriched
(p<0.01) in HAc-valley regulatory elements based on H4ac ChIP-seq data at the indicated time point; and the “g-value” column gives the g-value for the
enrichment test for the TF-specific ChlP-seq experiment for the indicated cluster at the indicated time point.

https://doi.org/10.1371/journal.pone.0184850.t001

While in itself, this method does not prove involvement of any particular transcription factor,
it computationally predicts candidate TFs of which our results indicate a significant propor-
tion undergo LPS-dependent changes in TF binding to target gene clusters. Even after strin-
gent p value filtering, a number of motifs still remain significant for each cluster. While many
of those motifs are associated with transcription factors already known to be important during
the inflammatory response in macrophages, quite a few appear to be novel (S1 Table). Several
different methods were used to sort motifs in order to allow the most significant ones to rise to
the top. Three principles guided our efforts: 1. Higher Clover raw score correlates with signifi-
cant binding; 2. Motifs that show large Clover raw scores differences between time points are
active in regulating genes for that cluster and 3. Correlation (positive or negative) between Clo-
ver raw score and cluster median expression suggests a direct role of those motifs in regulating
that particular set of genes. To account for 1 and 2, we have sorted the hits either by highest
score at any time point, highest score at the time point closest to the highest cluster expression
or by highest total score difference (d = MaxScore-MinScore). All of these three methods pro-
duced similarly sorted lists. In contrast, sorting by correlation, especially if time shift was intro-
duced, produced significantly different result (52 Table). Considering that the epigenetic
changes and TF binding and dissociation can occur rather quickly, on the scale of minutes, the
concordance between the list of TFs sorted by time-lagged correlation and the other three TF
sorting heuristics would be expected to improve with higher-resolution temporal transcrip-
tome profiling.
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Most of the high ranking transcription factors predicted to play a role in LPS response, by
the method presented here have previously been described as having a role in inflammation.
In addition to those however, a number of additional transcription factors, not previously
described in the context of inflammation, were found to have a high degree of correlation
with the gene expression. Sequence matches to the SMAD1 binding motif were found to be
enriched in the active promoter regions of clusters UC1 and UC3 (Fig 9). At first glance, it
would appear that this TF is acting as an activator for the genes in UC1, and as a repressor for
the genes in UC3. However, the temporal resolution of the transcriptome profiling is not suffi-
cient to draw that conclusion in the case of UCL. In the case of UC3, since the cluster-median
gene expression increases and reaches a plateau, and since the SMAD1 Clover score goes
down and stays down, it is reasonable to suppose that it acts as a repressor.

The transcription factor SMADLI is activated by bone morphogenic protein type 1 (BMP1)
receptor kinase ([55, 56]). We found that in our data, BmpI transcript was transiently upregu-
lated after LPS stimulation (S1 Fig). Recently, it has been reported that SMAD1/5 pathway can
be activated by TGF-B1 in human primary macrophages, and is not affected by bone morpho-
genic proteins [57]. TGF-BI is known to inhibit the inflammatory response of macrophages to
LPS, an effect which was found to be specifically mediated through SMAD3 [58]. While in gen-
eral stimulation of macrophages by TGF-B1 is anti-inflammatory [58], SMAD1/5 activation
by TGF-B1 promotes pro-inflammatory, pro-atherogenic effect [57].

Supporting information

S1 Fig. Expression of Bmpl1 transcript in LPS stimulated macrophages. Bars show normal-
ized expression levels of Bmp1 transcript in unstimulated macrophages and at 1, 4 and 12h
post LPS stimulation.

(TIF)

S1 Table. Results for motif scanning in APRs of eight expression clusters for all time
points. Each tab shows all motifs for one expression cluster that were found to be significantly
over-represented at one time point at least. Columns labeled as “Score” represent Clover score
and “p value” represent over-representation p value (relative to the background set of genes).
MaxScoreDifference column represents Clover score difference between highest and lowest
value (at any time point).

(XLSX)

$2 Table. Correlation of motif scores and cluster fold change. Clover raw score are shown
for time points 0, 1, 2 and 4h for each motif and each cluster (7,272 total). Cluster median
expression is shown for each cluster. Three different correlation scores are shown, one without
any time lag, one for fixed time lag (fixed for each cluster) and one for optimal time lag (best
score) for that motif/cluster combination.

(XLSX)
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