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Abstract

Adoptive immunotherapy with chimeric antigen receptor-modified T (CAR-T) cells is a rapidly
growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical
trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the
clinical success of CD19-targeted CAR-T therapy in B-cell acute lymphoblastic leukemia, and the
promising data in B-cell non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Despite
the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain
to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell
immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some
of these challenges may be overcome will help guide the development of CAR-T cell therapy for
malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers.

1 Introduction
1.1 The Rationale for CD19 CAR-T Cell Immunotherapy for B Cell Malignancies

A component of the adaptive immune system, T cells are effectors of cell-mediated
immunity. In response to engagement of the T cell receptor by a cognate peptide antigen
presented in the context of a specific major histocompatibility complex (MHC) molecule, T
cells exert effector functions and induce lysis of antigen-bearing target cells. T cells were
noted to have anti-tumor effects during studies of T cell-depleted hematopoietic stem cell
transplantation (HSCT), in which patients who received grafts depleted of T cells had a
higher risk of disease relapse compared to their counterparts who received T-cell replete
grafts.[1] Early approaches to generate large numbers of tumor-reactive T cells for adoptive
transfer to cancer patients involved repetitive in vitro stimulation with antigen, were
cumbersome, and infrequently met with clinical success.[2] More recent efforts have taken
advantage of genetic modification strategies to rapidly redirect the specificity of polyclonal
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T cells by introduction of a tumor-targeted recombinant antigen receptor, such as a chimeric
antigen receptor (CAR). A CAR comprises an extracellular antibody-derived single chain
variable fragment (scFv) specific for a target antigen that is linked to one or more
intracellular T cell-derived signaling sequences (Fig 1), which enables T cell activation on
ligation of the scFv with its target antigen. Limited therapeutic activity was noted in clinical
trials using T cells engineered to express first generation CARs, which contained an
intracellular T cell signaling sequence (e.g. CD3() in the absence of a costimulatory
molecule sequence.[3-5] Clinical activity has been markedly improved by T cell products
that incorporate second generation CARs that include costimulatory sequences derived, for
example, from 4-1BB or CD28.[6-12] Third and fourth generation CARs, which contain
multiple co-stimulatory domains and/or other signals are in development, but clinical
experience with these constructs in B cell malignancies so far is limited.[13, 14]

CD19 is a very good target antigen for CAR-T cell immunotherapy of B cell malignancies,
as it is expressed at high and stable levels on tumor tissue from most patients with B cell
acute lymphoblastic leukemia (B-ALL), non-Hodgkin’s lymphoma (NHL), and chronic
lymphocytic leukemia (CLL). It is also expressed on normal B cells, but not on other tissues
outside the B cell lineage, limiting known “on-target off-tumor” toxicities to B cell aplasia, a
condition that can be managed with immunoglobulin replacement.[15]

1.2 Lymphodepletion Chemotherapy, CAR-T Cell Manufacturing, and Infusion

Approaches for CAR-T cell production differ at each center, but typically involve isolation
of autologous T cells from the patient using leukapheresis, followed by /n vitro stimulation
with anti-CD3 or anti-CD3/anti-CD28 beads, genetic modification by transduction with a
retroviral or lentiviral vector to express a CAR, and subsequent culture for approximately 2—
3 weeks. After leukapheresis and while CAR-T cells are being manufactured, patients in
most protocols will receive lymphodepleting chemotherapy, which creates a favorable
immune environment for adoptively transferred CAR-T cells, improving their /in vivo
expansion, subsequent persistence, and clinical activity (Fig 2).[16] During the acute phase
of /n vivo CAR-T cell expansion, patients are monitored closely for the development of
adverse effects of CAR-T cell immunotherapy, such as cytokine release syndrome (CRS)
and neurotoxicity. CRS is associated with immune T cell activation and is characterized by
fevers, hypotension, capillary leak and coagulopathy.[17] Neurotoxicity commonly presents
as delirium, but can be manifest as focal neurological deficits, seizures or coma.
Neurotoxicity usually occurs in association with CRS, but its pathogenesis is unclear.
Although in a majority of cases CRS and neurotoxicity are self-limited, the IL-6-receptor
antibody, tocilizumab, and/or corticosteroids have been used to treat serious cases. Toxicity
grading and therapy algorithms are still under development.[7, 17-19]

2 CD19 CAR-T Cell Clinical Trials in B-cell Malignancies

A majority of the published clinical experience has come out of four centers, each using a
distinct CAR design and manufacturing approaches (Table 1). Clinical trial data from these
centers that have been published or recently presented in abstract form at the annual
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meetings of the American Society of Clinical Oncology (ASCO) or American Society of
Hematology (ASH) are presented in this review.

The group at Memorial Sloan Kettering Cancer Center (MSKCC) initially published their
experience with 5 adult B-ALL patients in 2013, followed by a second manuscript in 2014.
[18, 20] Park et al updated their data to include a total of 51 patients at ASCO 2016.[21]
Following either cyclophosphamide (Cy) or Cy with fludarabine (Flu) lymphodepletion, 1 x
10% to 3 x 108 CAR-T cells/kg were infused. On restaging after CAR-T cell infusion, of 50
evaluable patients 41 (82%) had a morphologic complete remission (CR) (Table 2). Thirty-
nine patients with morphologic CR were evaluated with marrow flow cytometry and 33 were
in minimal residual disease (MRD)-negative CR. Thus, the overall MRD-negative CR rate in
evaluated patients was approximately 69%. The authors identified a relationship between
toxicity and tumor burden; 13 of 31 patients with morphologic disease (>5% blasts)
developed severe CRS requiring mechanical ventilation or vasopressors, compared to only
one of 20 with MRD.[22, 23] Neurotoxicity occurred in 15 of 51 patients. Three patients
with morphologic disease died after receiving 3 x 10 CAR-T cells/kg, leading to a risk-
adapted therapy, in which patients without morphologic disease receive 3 x 108 cells/kg,
whereas patients with morphologic disease receive a 1 x 108 cell/kg dose.

In 2015, Lee et al. from the National Cancer Institute (NCI) reported 21 patients, and
updated their B-ALL data at ASH 2015 to a total of 38 patients.[9, 24] Lymphodepletion
intensity was adjusted according to tumor burden; patients with 225% blasts in the marrow
received a variety of high-intensity regimens, while patients with <25% blasts received a
lower intensity combination of Cy and Flu. In the initial cohort of 20 patients it was
determined that the maximum tolerated dose was 1 x 106 CAR-T cells/kg; therefore, this
dose was used in the second cohort of 18 patients. MRD-negative CRs were seen in 20 of 38
patients (53%). In those who achieved an MRD-negative CR, leukemia-free survival was
45.5% at 18 months. 16% of patients in the first cohort and 5.6% in the second cohort
developed grade 4 CRS.[17] Neurotoxicity was not reported.

Another report from the NCI outlined treatment of allogeneic HSCT recipients with CAR-T
cells manufactured from the HSCT donor and administered without antecedent
lymphodepletion chemotherapy.[25, 26] Four of 5 patients obtained a CR without evidence
of acute graft versus host disease.

The University of Pennsylvania (UPenn) and Children’s Hospital of Philadelphia (CHOP)
reported their initial results in 2013 and 2014, with updates at ASCO 2016.[6, 7, 27]. 59
children and young adults (<24 years old) were treated with 1 — 10 x 107 total T cells/kg
with a CAR transduction efficacy of 2.3 — 45% following a variety of lymphodepletion
regimens. Fifty-five (93%) patients achieved a negative marrow by flow cytometry. Twenty
patients relapsed, 13 of them with CD19 negative disease, giving a relapse free survival
(RFS) of 55% and overall survival (OS) of 79% at 12 months. CRS (any grade) developed in
88% of patients, with severe CRS occurring in 27% and being more frequent in those with
high tumor burden.
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At ASCO 20186, Frey et al. reported on the UPenn experience with 27 adults in B-ALL,
using fixed doses of 5 x 107 versus 5 x 108 total CAR-T cells given, as a single infusion or
in split fractions.[28] Of 9 patients treated with 5 x 10’ CAR-T cells administered as a
single dose, only 3 obtained a CR, while of the 6 patients treated with 5 x 108 CAR-T cells
as a single dose, 3 achieved CR and 3 died of severe CRS. After introduction of a
fractionated schedule to administer 5 x 108 CAR-T cells, the CR rate was 75% (9 of 12).
While 75% of patients developed grade 3—4 CRS, no patients died of acute toxicity.

Relationships between infused CAR-T cell dose and clinical outcomes were difficult to
define in early studies of CAR-T cell therapy, potentially a result of variability in the T cell
subset composition of the infused CAR-T cell products, which can affect the potency of a
CAR-T cell product.[29] In an effort to manufacture a more uniform CAR-T cell product
that could assist in defining relationships between infused CAR-T cell dose and clinical
outcomes, we developed an approach at Fred Hutchinson Cancer Research Center (FHCRC)
in which patients received CAR-T cells formulated in a defined 1:1 ratio of CD4+:CD8+
CAR-T cells. The defined composition product was infused at set dose levels of 2 x 105, 2 x
108 or 2 x 107 CD19 CAR-T cells/kg following lymphodepletion chemotherapy with Cy-
based regimens with or without Flu. We recently published our findings in 30 B-ALL
patients in early 2016.[12] Twenty-seven of 29 evaluable patients (94%) achieved a flow
cytometry-negative CR; two of these patients were found to have MRD by molecular testing.
Twenty-five of the 30 developed CRS with 7 cases being severe enough to require ICU care.
Severe toxicity was encountered in 2 patients treated at the highest dose level; therefore, no
further patients were treated with this dose. Similar to other groups, we identified that the
burden of CD19+ cells in the marrow prior to therapy was a risk factor for subsequent
toxicity, leading to a risk-adapted therapy approach in which patients with >20% marrow
involvement received 2 x 10° cells/kg while those with <20% received 2 x 10° cells/kg.
After adoption of this approach, only one of 10 patients developed severe CRS requiring
ICU care. In the early part of the study, we used Cy-based lymphodepletion without Flu.
Although CR rates in this cohort were robust, early relapse was noted in a subset of patients,
associated with loss of CAR-T cells in blood due to an anti-CAR-T cell immune response
directed at epitopes in the murine scFv. This mechanism may contribute to early loss of
CAR-T cells in some patients in trials that use a CAR containing a murine scFv (Table 1).
Addition of Flu to Cy in the lymphodepleting regimen minimized the effect of transgene
immunogenicity, improving CAR-T cell expansion, persistence, and clinical outcomes.

2.2 B-NHL and CLL

In 2015, the NCI group reported treatment of 11 B-NHL patients and 4 CLL patients.[30]
Nine of the 11 NHL patients had aggressive disease on histology (4 with diffuse large B-cell
lymphoma (DLBCL), NOS, 4 with primary mediastinal B-cell NHL, one with Richter’s
transformation to DLBCL after CLL) and 2 had indolent disease. Patients received
lymphodepletion with high dose Cy (60-120 mg/kg) followed by 5 days of Flu 25mg/m2,
with infusion one day later of 1 — 5 x 108 CAR-T cells/kg. Of the 9 patients with aggressive
histology, 7 were evaluable, with 4 patients achieving a CR and 2 achieving a partial
response (PR). Three of the 4 CLL patients achieved a CR. Adverse events included grade
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=3 hypotension in 4 of 15 (27%) patients and neurotoxicity in 6 of 15 (40%) patients. One
patient died on day 16 from an unclear etiology.

At ASCO 2016, Kochenderfer et al. reported outcomes in 22 patients given low-dose Cy
(300mg/m2-500mg/m2) for 3 days, with concurrent Flu 30mg/m?2 administration as
lymphodepletion.[31] Eight of 19 DLBCL patients achieved a CR with an overall response
rate (ORR) in DLBCL of 68% (13 of 19 patients). One MCL patient and two FL patients
obtained CR.

Brudno et al. reported data from treatment of allogeneic HSCT recipients with CAR-T cells
that were manufactured from T cells directly isolated from the HSCT donor and
administered without antecedent lymphodepletion chemotherapy in 2015.[25, 26] Ten B-
NHL and 5 CLL patients were treated, with responses observed in 2 of 10 B-NHL patients
and 2 of 5 CLL patients.

At ASH 2015, UPenn reported treatment of 24 NHL patients with 3.08 x 106 to 8.87 x 10°
CAR-T cells/kg following a range of lymphodepletion regimens.[32] Eight of 11 patients
with follicular lymphoma, 7 of 15 patients with DLBCL and one of 2 patients with mantle
cell NHL responded, with an ORR of 68%. Sixteen of 24 patients developed CRS and 3
patients developed neurotoxicity.

The UPenn group also reported success in CLL, with an ORR of 57% (4 of 14 CR, 4 of 14
PR).[8] Results from a subsequent phase 1l dose optimization study in 35 patients were
reported at ASCO 2016. [33]. Patients received a high (5 x 108) or low (5 x 107) total CD19
CAR-T cell dose. Stage | of the study demonstrated a higher response rate in the high dose
cohort, leading to expansion of this dose level in the stage 11 group. Nine of the 17 evaluable
patients at the high dose level responded, with an ORR of 53%. Nineteen of 35 patients
(48%) developed CRS, of which 7 were grade 3-4.

At ASCO 2016, Geyer et al from MSKCC reported on treatment of 8 patients with
refractory CLL after first line pentostatin, cyclophosphamide, and rituximab.[34] After Cy
600mg/m2, patients were given 3 x 10%, 1 x 107, or 3 x 107 CAR-T cells/kg. Two patients
obtained a CR, with an ORR of 50% (4 of 8). Despite progressive disease in 3 patients, 2
had evidence of a marrow response.

We recently reported treatment of 32 patients with a variety of B-NHL histologic types (11
de novo DLBCL, 10 transformed DLBCL, 5 FL, and 4 MCL).[11] Of the 30 evaluable
patients, 10 (33%) had a CR and 9 (30%) a PR, giving an ORR of 63%. Severe CRS
requiring ICU care was seen in 4 of 32 (12.5%) of patients, and grade >3 neurotoxicity was
noted in 9 of 32 (28%) patients. As observed in our studies in B-ALL patients, addition of
Flu to Cy-based lymphodepletion improved CAR-T cell expansion, persistence, and clinical
outcomes in NHL patients. Patients treated at the highest CAR-T cell dose (2 x 107 cells/kg)
after Cy and Flu lymphodepletion experienced more toxicity; therefore, 2 x 106 cells/kg was
deemed the maximum tolerated dose. Infusion of this dose after Cy and Flu
lymphodepletion to 11 patients resulted in a CR rate of 64% and an ORR of 82%.
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At ASCO 2016, we reported 13 CLL patients who were treated with lymphodepletion
chemotherapy and CD19 CAR-T cells at FHCRC.[35] All patients had previously received
ibrutinib. Of the 12 restaged patients, 10 (83%) achieved clearance of the marrow by flow
cytometry and 6 (50%) achieved CR by CT+/-PET imaging.

3 Challenges in CD19 CAR-T Cell Immunotherapy

Outcomes in relapsed/refractory patients with B cell malignancies are promising, but many
challenges remain.

3.1 Toxicities and Management

CRS arises from the activation of CAR-T cells, leading to inflammatory cytokine release,
and is manifest as a spectrum of findings, including fever, constitutional symptoms,
hypotension, capillary leak, coagulopathy, and organ dysfunction, usually presenting in the
first 1-2 weeks after CAR-T cell infusion. Neurotoxicity can occur with or after the onset of
CRS, and in some cases can present after resolution of CRS. The pathogenesis is poorly
understood. Presentations include delirium, speech disturbances, focal neurological deficits,
seizures, and occasionally coma. Both CRS and neurotoxicity are reversible in the majority
of cases; however, fatalities may occur. Although tocilizumab and corticosteroids are used to
treat severe CRS and neurotoxicity, the roles of these drugs in treatment of neurotoxicity and
prophylaxis of CRS or neurotoxicity are unclear. Early detection testing may be able to
identify patients at risk of severe toxicity who might benefit from early intervention.[11, 12]
Grading systems for CRS and neurotoxicity have been proposed, but none is currently
universally accepted.[8, 17, 18]

3.2 Failure of CAR-T Cell Immunotherapy

The success of CAR-T cell therapy is associated with the capacity of infused CAR-T cells to
proliferate and induce effector function on encounter with antigen-expressing tumor. In most
cases, CAR-T cell therapy is delivered as an autologous, patient specific product, and the
outcomes are in part dependent on the quality of the collected T cells and the manufactured
product. Approaches to T cell collection and CAR-T cell manufacturing methods are
actively being investigated by many groups in an effort to allow delivery of more consistent
and potent products.[36—38] Even after manufacturing of CAR-T cells with robust /n vitro
functional capacity, CAR-T cell activation in vivo may be inhibited by a suppressive tumor
microenvironment established by the expression of inhibitory molecules and receptors (e.g.
PD-1/PD-L1) by the tumor or stromal cells. Combination therapies to limit immune
suppression and allow unrestrained activation of CAR-T cells in the tumor
microenvironment are in development.[39, 40]

Despite good /in vivo CAR-T cell expansion and achievement of CR, relapses can occur after
CD19 CAR-T cell immunotherapy. Two categories of relapse can be identified. Relapse of
tumor that remains CD19-positive can occur due to a suppressive tumor microenvironment,
but can also occur in association with loss of CAR-T cell persistence. The reasons for loss of
CAR-T cell persistence are complex and may be difficult to determine in individual patients.
In a subset of patients an immune response to the CAR transgene can lead to CAR-T cell
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rejection and loss of persistence. Modification of lymphodepletion regimens to suppress an
anti-CAR immune response or use of less immunogenic CAR designs might minimize the
impact of immune-mediated CAR-T cell rejection. In other patients, activation induced cell
death (AICD) or senescence may contribute to loss of CAR-T cells. In these situations,
strategies to optimize CAR signaling to minimize AICD or improve manufacturing to
produce less differentiated CAR-T cells might improve outcomes. Relapse of CD19-negative
tumor is a distinct category that involves a change in tumor phenotype to escape an active
CD19-directed anti-tumor immune response, and may occur despite robust CAR-T cell
persistence. It appears to be more common in ALL than NHL or CLL. A variety of
mechanisms of CD19 loss in tumors have been described, including phenotypic lineage
switch and alternative splicing.[6, 41, 42] Targeting additional tumor antigens in
combination with CD19 (e.g. CD20 or CD22) is being investigated as a strategy to reduce
the risk of CD19-negative escape.[43, 44]

3.3 Role of HSCT after CAR-T Cell Therapy

Despite the potential for durable responses in response to CD19 CAR-T cell
immunotherapy, it is unclear currently whether additional consolidation approaches such as
allogeneic HSCT should be used to maintain remission for a subset of patients who might be
at increased risk of relapse. A personalized approach is currently warranted, with more
definitive guidelines to be determined by future studies.

4 Conclusions

CAR-T cell therapy is an effective novel therapeutic with outstanding success in B-ALL and
promising results in B-NHL and CLL, signaling a new era of cancer treatment.
Understanding CAR-T cell immunotherapy for B cell malignancies will assist in broadening
the field to provide more effective therapies for other malignancies.
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Key Points

Chimeric antigen receptor-modified T (CAR-T) cell therapy is an effective
novel therapeutic with outstanding success in B-ALL and promising results in
B-NHL and CLL, signaling a new era of cancer treatment.

Understanding the challenges in CAR-T cell immunotherapy for B cell
malignancies will assist in broadening the field to provide more effective
therapies for other malignancies.
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Spacer
scFV

Fig. 1.
Chimeric antigen receptor (CAR) design. A first generation CAR incorporates a CD19-

specific single chain variable fragment (scFv) fused through linker sequences to CD3C.
When introduced into a T cell by genetic modification, the CAR allows redirection of T cell
specificity to CD19. Second and third generation CARs incorporate additional costimulatory
domains.
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CAR-T cell Production CRS and/or Neurotoxicity

Screening CAR-T Cell

and Apheresis Infusion
CAR-T cell level

in blood

Lymphodepletion

~2 weeks prior Day O 2 weeks 4 weeks
Time

Fig. 2.
Timeline of a typical course for a patient undergoing CAR-T cell immunotherapy. After

leukapheresis to isolate T cells, CAR manufacturing takes approximately 1-3 weeks. The
patient usually receives lymphodepletion chemotherapy shortly before CAR-T infusion.
Over 1-3 weeks after infusion the CAR-T cells proliferate in vivo (red line) then contract,
leaving a fraction of persistent CAR-T cells. Patients are closely monitored for cytokine
release syndrome (CRS) and neurotoxicity during the first 3-4 weeks after infusion.
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Table 1

Design and formulation of four different chimeric antigen receptor (CAR) constructs in published clinical

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

trials.

Institution scFv Costimulatory Domain Vector Formulation
MSKCC Murine (SJ25C1) CD28 Gamma-retrovirus not pre-defined
NCI Murine (FMC63) CD28 Gamma-retrovirus not pre-defined
UPENN / CHOP | Murine (FMC63) 4-1BB Lentivirus not pre-defined
FHCRC Murine (FMC63) 4-1BB Lentivirus 1:1 ratio of CD4:CD8 CAR-T cells

MSKCC, Memorial Sloan Kettering Cancer Center; NCI, National Cancer Institute; UPenn, University of Pennsylvania; CHOP, Children’s
Hospital of Philadelphia; FHCRC, Fred Hutchinson Cancer Research Center; scFv, single chain variable fragment.
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