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Purpose: Quantitative computed tomography (CT) measures are increasingly being developed and
used to characterize lung disease. With recent advances in CT technologies, we sought to evaluate
the quantitative accuracy of lung imaging at low- and ultralow-radiation doses with the use of itera-
tive reconstruction (IR), tube current modulation (TCM), and spectral shaping.
Methods: We investigated the effect of five independent CT protocols reconstructed with IR on
quantitative airway measures and global lung measures using an in vivo large animal model as a
human subject surrogate. A control protocol was chosen (NIH-SPIROMICS + TCM) and five
independent protocols investigating TCM, low- and ultralow-radiation dose, and spectral shaping.
For all scans, quantitative global parenchymal measurements (mean, median and standard devia-
tion of the parenchymal HU, along with measures of emphysema) and global airway measure-
ments (number of segmented airways and pi10) were generated. In addition, selected individual
airway measurements (minor and major inner diameter, wall thickness, inner and outer area, inner
and outer perimeter, wall area fraction, and inner equivalent circle diameter) were evaluated.
Comparisons were made between control and target protocols using difference and repeatability
measures.
Results: Estimated CT volume dose index (CTDIvol) across all protocols ranged from 7.32 mGy to
0.32 mGy. Low- and ultralow-dose protocols required more manual editing and resolved fewer air-
way branches; yet, comparable pi10 whole lung measures were observed across all protocols. Similar
trends in acquired parenchymal and airway measurements were observed across all protocols, with
increased measurement differences using the ultralow-dose protocols. However, for small airways
(1.9 � 0.2 mm) and medium airways (5.7 � 0.4 mm), the measurement differences across all proto-
cols were comparable to the control protocol repeatability across breath holds. Diameters, wall thick-
ness, wall area fraction, and equivalent diameter had smaller measurement differences than area and
perimeter measurements.
Conclusions: In conclusion, the use of IR with low- and ultralow-dose CT protocols with CTvolume
dose indices down to 0.32 mGy maintains selected quantitative parenchymal and airway
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measurements relevant to pulmonary disease characterization. © 2017 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.12436]

Key words: airway measurements, chronic obstructive pulmonary disease, low-dose computed
tomography, lung disease assessment, quantitative CT protocols

1. INTRODUCTION

Quantitative computed tomography (CT) measures are increas-
ingly being developed and used to characterize lung disease,
such as asthma1–4 and chronic obstructive pulmonary disease
(COPD),5–7 with baseline measurements established in
healthy, nonsmoking adults.8 However, accuracy and repeata-
bility of quantitative measures have previously been shown to
be sensitive to a wide range of variables.9 We have previously
reported on considerations for developing quantitative CT lung
protocols to minimize variability in quantitative measures.10

These recommendations have applications to CT lung protocol
development for multicenter trials for consistent acquisition of
high-quality quantitative subject data across multiple institu-
tions and multiple scanner technologies, with the most recent
development of the subpopulations and intermediate outcome
measures in COPD (SPIROMICS) CT protocol.11,12

Incorporation of recent CT technologies allow for compa-
rable qualitative CT data with a significant reduction in dose.
The use of tube current modulation (TCM), characterized by
automatic adjustment of the tube current based on patient size
and tissue attenuation characteristics, has been shown to
reduce dose while maintaining image quality.13–16 Iterative
reconstruction (IR) has also been used to maintain qualitative
image integrity in conjunction with low-dose protocols.17–19

Recent addition of spectral shaping capabilities, via the addi-
tion of tin filtering, increases the mean energy of the x-ray
spectrum. The removal of low-energy x-ray, which contribute
minimally to CT data quality, has shown utility in dose reduc-
tion in pulmonary nodule detection in chest CT,20 in higher
body weight patients,21 and pediatric imaging.22 Previously,
low-dose protocols have allowed for imaging down to
0.3 mSv while preserving quantitative accuracy of density
metrics assessed in a test object simulating a range of tho-
racic-based densities.23

Multiple multicenter studies, including SPIROMICS,11 the
Chronic Obstructive Pulmonary Disease Genetic Epidemiol-
ogy Study (COPDGene),24 the Severe Asthma Research Pro-
ject (SARP),25 and the Multi-Ethnic Study of Atherosclerosis
(MESA) Lung study,26 incorporate quantitative indices of
lung structure derived from CT. These quantitative CT mea-
sures include percent emphysema (percent of lung less than
�950 HU or �910 HU on inspiratory CT scans) and percent
air trapping (percent of lung less than �856 HU on expira-
tory CT scans), and measures of airway geometry at multiple
airway generations such as wall area percent, wall thickness,
luminal diameter, and inner luminal perimeter measurements.
The square root of wall area for a theoretical bronchus with
10 mm lumen inner perimeter (pi10) is a standardized mea-
sure of airway wall thickening which facilitates the evaluation

of airway wall changes across subjects with different-sized
lungs/airways,27,28 with utility demonstrated in COPD,29,30

and pulmonary hypertension.31 The success of these studies
and other studies in characterizing emphysema, small airway
disease, and airway geometry have been recognized although
there is concern that the radiation dose may be a limiting fac-
tor in applying quantitative CT to the characterization and
longitudinal monitoring of several lung diseases. The current
study was designed to look at the effects of low-dose and
ultralow-dose CT scanning using a state of the art CT scanner
to see how lung density and airway geometry measures are
affected by decreasing the dose in a large animal model. It is
the goal of this work to inform researchers’ choice of CT scan
parameters that affect dose in human subjects. This will also
help inform the translation of these multicenter research stud-
ies to the more widespread applications of these promising
research findings to the individual clinical patient.

In this paper, we investigate the effect of five independent
CT protocols reconstructed with IR on in vivo quantitative
airway measures and global lung measures. Protocols incor-
porate TCM, low-dose and ultralow-dose protocols, and tin
filtering applied with a single source. We report on the com-
parison of measures obtained from a control protocol and
each independent protocol using an animal model. We also
investigate the repeatability of acquired measures from each
protocol across multiple scans.

2. MATERIALS AND METHODS

All procedures were approved for by the Institutional Ani-
mal Care and Use Committee (IACUC). A male swine,
39 kg, was placed under anesthesia, induced with a mixture
of telazol (2.2 mg/kg), ketamine (1.1 mg/kg), and xylazine
(1.1 mg/kg) and maintained with isoflurane (1%–3%). The
animal was intubated and placed in the supine position in the
isocenter of the CT scanner. Mechanical ventilation was per-
formed with a respiratory rate of 10–16 breaths per minute
with a tidal volume of 10 mL/kg and a positive end-expira-
tory pressure (PEEP) of 5 cm H2O. Enforced breath holds
were utilized during imaging to remove respiratory motion
and maintained at a PEEP of 25 cm H2O with a water col-
umn. Monitoring was performed with electrocardiogram
(ECG), oxygen saturation pressure (SP-O2), and end tidal car-
bon dioxide pressure (ET-CO2). Anesthesia and ventilation
parameters were adjusted to maintain an ECG between 80
and 100 beats per minutes, an SP-O2 of 99%–100%, and an
ET-CO2 between 35 and 45 mmHg.

Imaging was performed with a Siemens SOMATOM
Force CT scanner (Siemens Healthcare, Forchheim, Ger-
many) using five independent protocols ranging in estimated
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CT volume dose index (CTDIvol) from 7.32 mGy to
0.32 mGy, with parameters listed in Table I. The designated
National Institutes of Health (NIH) SPIROMICS study proto-
col with the addition of TCM (“CARE Dose”) was chosen as
a control protocol with variability assessed within the proto-
col. The corresponding quality reference tube current time
product (mAs) was chosen to match a target CTDIvol of
7.32 mGy. The control protocol was then compared with the
current NIH-SPIROMICS CT Protocol which does not incor-
porate TCM,11,12 a low-dose chest protocol recommended by
the manufacturer, an ultralow-dose protocol without incorpo-
rating tin filtering, and an ultralow-dose protocol recom-
mended for the Force scanner with the use of tin filtering.

Prior to imaging, pulmonary recruitment was performed
with a PEEP of 12–14 cmH2O for 2 min. Volumes were
acquired in sets of three acquisitions in a single 30-s inspira-
tory breath hold. For each set, a volume was acquired with
the control protocol followed by two acquisitions with a tar-
get protocol, as listed in Table I. Each acquisition set con-
cluded with 5 min of ventilation with a PEEP of 5 cmH2O to
ensure return to baseline pulmonary function. The animal
respiration and CT acquisition schema is illustrated in Fig. 1.
All volumes were reconstructed with the same parameters
and standardized field of view for comparison: Qr40 kernel,
level 5 IR (SAFIRE), field of view diameter 250 mm, and
resolution of 0.49 mm 9 0.49 mm 9 0.75 mm.

Quantitative analysis was performed with lung parenchy-
mal and airway measurements. Lung segmentations were
generated on all control protocol volumes acquired with an
intensity-based segmentation algorithm using in-house soft-
ware (Pulmonary Analysis Software Suite32) for a total of
five segmentations. Lung segmentations were visually con-
firmed and manual editing was performed if required to
exclude airways and vessels. Quantitative values were
obtained by applying the lung segmentation generated from

the control volume to the two target volumes taken in the cor-
responding breath hold. Global mean, median, and standard
deviation measurements, along with percent emphysema

TABLE I. Description of the image acquisition parameters used to compare five computed tomography imaging protocols. Each set was acquired in a single
breath hold with the control protocol (Xcontrol) acquired first followed by two target protocols (X1, X2). All images were reconstructed with the same iterative
reconstruction kernel, same field of view diameter, and same voxel resolution.

Scan ID Scan description Quality reference mAs kV Tube current modulation (“CARE Dose”) Pitch Exp. time

Control variability Control 118 120 On 1 0.5

SPIROMICS w TCM 118 120 On 1 0.5

SPIROMICS w TCM 118 120 On 1 0.5

No-TCM Control 118 120 On 1 0.5

SPIROMICS 110 120 Off 1 0.5

SPIROMICS 110 120 Off 1 0.5

Low-dose Control 118 120 On 1 0.5

Low-dose chest 52 110 On 1.2 0.5

Low-dose chest 52 110 On 1.2 0.5

Ultralow-dose Control 118 120 On 1 0.5

Ultralow-dose 10 120 On 1 0.5

Ultralow-dose 10 120 On 1 0.5

Tin-filtered ultralow-dose Control 118 120 On 1 0.5

Sn ultralow-dose 97 Sn100 On 1.2 0.5

Sn ultralow-dose 97 Sn100 On 1.2 0.5

FIG. 1. CT Data Acquisition Summary. For each inspiratory lung volume,
three CT datasets were acquired in a single enforced breath hold — one con-
trol CT scan followed immediately by two target CT scans. Each breath hold
was preceded by 2 min of recruitment and followed by 5 min of normal ven-
tilation. This process of CT data collection was repeated for all protocols.
[Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 44 (9), September 2017

4749 Hammond et al.: Quantitative chest CT at reduced dose 4749



(percent < �910 HU, percent < �950 HU) of lung
parenchymal Hounsfield Units (HU) were calculated with the
final segmentations. Performance of each protocol with refer-
ence to the control protocol was assessed via difference mea-
sures between volumes obtained in a single breath hold to
determine the presence of a HU shift compared to the control
protocol. Raw values were reported as the average across all
control protocols.

Comparisons of airway measures were also performed to
determine the effect each target protocol had on airway mea-
surements compared to the control protocol. Airway trees
were segmented and quantitative measurements were
acquired using the APOLLO software (VIDA Diagnostics,
Inc., Coralville, IA, USA). Editing was applied via seed point
placement to fully extend the airway trees in the base of the
lung to account for extended length of the pig lung. Airway
segmentations were then assessed to ensure consistent
branching structure across all acquired segmentations with
merging of fractured branches occurring when required. The
number of segmented airways was calculated post-editing
and the pi10 value was obtained as a global comparative mea-
sure using all segmented airway branches.

Specific airway analysis was performed with quantitative
measures generated for eight chosen airways, four medium
sized (minor inner diameter 4–10 mm, inner area 20–
40 mm2), and four small sized (minor inner diame-
ter < 4 mm, inner area < 20 mm2), as shown in Fig. 2.

Measurements included the minor and major inner diameter,
wall thickness, inner and outer area, inner and outer perime-
ter, wall area percent (outer area – inner area/outer area), and
inner equivalent circle diameter (inner perimeter/p). Evalua-
tion was performed with difference measures between each
target protocol and the corresponding control protocol
obtained in the same breath hold. The magnitude of each dif-
ference was reported and averaged over medium airways and
small airways for a single protocol to assess the deviations
from control by type of airway. Comparisons were performed
evaluating protocol effect on the acquired measurements and
chosen airways. Cumulative change from control was also
reported summing the mean difference magnitudes from all
measurement across protocol and from all protocols across
all measurements providing a global assessment for protocol
and airway measurements. Raw values were reported as the
average across all control protocols.

Additional analysis was performed to determine the pres-
ence of a bias within each protocol. Normal variability was
determined for medium and small airways from the difference
measures obtained with the control variability acquisitions.
Minimum and maximum deviations were calculated with three
standard deviations from zero and used as criterion to deter-
mine the number of airway difference measures outside of this
range. Trends were observed to determine a systematic overes-
timation or underestimation of airway measurements within a
specific protocol with reference to the control protocol.

FIG. 2. Airway tree segmentations. The left most airway tree illustrates the eight airways isolated for analysis. Blue (BX) denotes the medium-sized airways,
while red (RX) denotes the small airways. The remaining airway trees represent the segmented airway trees from all acquired protocols, denoted in the lower
right corner of each image, with a corresponding CT cross section in the upper left corner.
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Changes due to breath hold alone (consistent control pro-
tocol) were additionally determined to provide a baseline fig-
ure for comparison of acquired measurements obtained
within a single breath hold. In each case, the breath hold was
mechanically enforced using a PEEP of 20 cmH2O. Differ-
ences were calculated between the control protocol acquired
for each breath hold and the control protocol acquired for the
first breath hold (control variability). Differences were
reported in the same manner as previously stated for specific
airway analysis.

Repeatability measurements were similarly obtained and
evaluated to determine the ability to acquire consistent and
reproducible quantitative measures. Difference measures
were calculated between the two target protocols acquired in
the same breath hold for parenchymal and airway measures.
Averages were calculated for the medium airways and small
airways. Differences were reported in the same manner as
previously stated for parenchymal measures and global and
specific airway measures. These results were placed into con-
text of repeatability with a consistent acquisition protocol,
but across mechanically enforced breath holds.

3. RESULTS

A total of five sets of three volumes per breath hold (one
control and two target) were acquired in five separate breath
holds, as illustrated in Fig. 1. CTDIvol for the control proto-
col ranged from 6.95 mGy to 7.02 mGy between all five sets
of scans with an effective mAs of 104–105. This was com-
pared to a quality reference mAs of 118, which represented
the effective mAs required for an average-sized subject (70–
80 kg). In comparison, no-TCM showed a 5% increase in
CTDIvol (110 mAs, 7.32 mGy). The low-dose protocol
showed a 64% reduction in CTDIvol (47 mAs, 2.48 mGy).
The ultralow-dose protocol showed a 90.5% reduction
(10 mAs, 0.67 mGy), while the tin-filtered ultralow-dose

protocol demonstrated a 95% reduction (93 mAs,
0.32 mGy), as detailed in Table II. Consistent lung volumes
were observed across scans acquired in a single breath hold,
except within the control variability set, in which a 60 mL
difference was observed between the control protocol lung
volume (1.83 L) and the second target protocol lung volume
(1.77 L). Therefore, for the control variability set, analysis
was performed with the control and first target volume only.

3.A. Global parenchymal results

Lung segmentations were successfully generated for all
control volumes and visually confirmed to match all scans
taken within a breath hold. A separate segmentation was
acquired for the first target volume in the control variability
set due to the differences in observed lung volume. Global
lung mean, median, and standard deviation did not appear to
be affected by the deactivation of TCM, the use of low and
ultralow-dose protocols, or tin filtering when using IR, as dis-
played in Table III. Differences between the target protocol
and control protocols for global mean were largest (6.64 HU)
with the low-dose protocol, while the largest standard devia-
tion (4.21 HU) was incurred with the tin-filtered ultralow-
dose protocol, and the maximum shift in median (5 HU)
occurred for multiple acquisition protocols (no-TCM, low-
dose, and tin-filtered ultralow-dose). All protocols showed
the ability to acquire repeatable measurements (X2–X1) with
the greatest variability observed in the low-dose protocol;
however, all differences were well within the variability
observed across breath holds.

Minimal differences were observed for percent emphy-
sema for control variability and no-TCM protocols with
repeatability comparable to that achieved across breath holds.
Increased differences of approximately 1% were observed
with the low-dose protocol, while the ultralow-dose and tin-
filtered ultralow-dose protocols showed differences between

TABLE II. Parameters used during volume acquisition with corresponding CTDIvol and lung volumes and the results of global airway analysis. Dose reduction
was calculated comparing the CTDIvol of the control protocol with the corresponding target protocol. Following airway segmentation, the number of airways
was reported and pi10 was calculated. Lung volumes were determined from the final lung segmentation.

Scan ID Scan description Effective mAs CTDIvol [mGy] % reduction # segmented airways pi10 Lung volume [L]

Control variability Control 105 7.02 – 262 3.71 1.83

SPIROMICS w TCM 105 7.02 0% 243 3.71 1.81

No-TCM Control 104 6.95 – 309 3.65 2.03

SPIROMICS 110 7.32 �5% 332 3.66 2.03

SPIROMICS 110 7.32 �5% 334 3.65 2.03

Low-dose Control 104 6.99 – 303 3.65 1.99

Low-dose chest 47 2.48 65% 306 3.68 1.99

Low-dose chest 47 2.48 65% 311 3.66 1.99

Ultralow-dose Control 105 7.02 – 320 3.68 2.05

Ultralow-dose 10 0.67 90% 287 3.90 2.05

Ultralow-dose 10 0.64 91% 256 3.84 2.05

Tin-filtered ultralow-dose Control 104 6.95 – 322 3.67 2.02

Sn ultralow-dose 93 0.32 95% 261 3.69 2.02

Sn ultralow-dose 93 0.32 95% 249 3.76 2.02
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2% and 3% indicating the presence of a histogram shift at
low intensities. Overall, the tin-filtered ultralow-dose had
superior repeatability compared to all the other protocols for
this measure. Minimal differences of less than 0.01% were
reported comparing percent of voxels below �950 HU for
control variability, no-TCM, and low-dose protocols com-
pared to control. Further evidence of a histogram shift with
ultralow-dose and tin-filtered ultralow-dose was seen with
increased differences of 0.1% and 0.2%, respectively, for per-
cent below �950 HU.

3.B. Global airway results

Fifteen airway segmentations were generated, edited, and
visually confirmed to have consistent branching structure,
seen in Fig. 2, for all volumes with calculated pi10 results
shown in Table II. Ultralow-dose and tin-filtered ultralow-
dose protocols showed increased fracturing in branching
structure requiring more merging to ensure consistent branch-
ing. They also had fewer resolved airway branches compared
to the corresponding control relative to the control variability,
no-TCM, and low-dose protocols. The control variability set
resulted in the least number of overall segmented airways,
and also showed the smallest lung volumes potentially due to
the order of set acquisition for the study and progressive
recruitment/lung inflation over time. This is reflected by not-
ing the number of airways segmented using the control proto-
col across the different breath holds increased from 262 to
322. The low-dose protocol showed the most consistent
results with respect to the corresponding control, while the
ultralow-dose protocols showed the greatest disparity (less)
from control. Overall, the number of segmented airways had
minimal effect on pi10 for the control variability, no-TCM,
low-dose, and tin-filtered ultralow-dose protocols with differ-
ence magnitudes less than 0.10 from control. Larger differ-
ences (0.16 and 0.22) were observed with the ultralow-dose
protocol; however, these are still within 6% of the corre-
sponding control value.

3.C. Specific airway results

Eight airways were chosen for specific airway measure-
ment analysis, divided into medium or small airways as

defined across all control protocols acquired. The four
medium airways had an average minor inner diameter of
5.70 � 0.35 mm and inner area of 31.56 � 4.27 mm2.
The four small airways had an average minor inner diame-
ter of 1.93 � 0.21 mm and inner area of 3.85 � 0.80
mm2.

3.C.1. Small airways

Major and minor inner diameter, wall thickness, inner
perimeter, inner area, wall area percent, and inner equivalent
circle diameter did not appear to be affected by change in pro-
tocol in small airways when compared to equivalent measures
observed in the control variability results, as seen in Table IV.
For outer perimeter and outer area, all protocols showed
greater average difference magnitudes compared to the con-
trol variability protocol; however, average difference magni-
tudes were similar to those seen across breath holds for no-
TCM and low-dose protocols. Average difference magnitudes
greater than those seen across breath holds were observed for
both ultralow-dose protocols for outer perimeter and outer
area. Overall, average difference magnitudes were subvoxel
(0.49 mm) or near subvoxel across most measurements. Sim-
ilar trends were observed across cumulative change plots seen
in Fig. 3.

Repeatability of small airway measurements, also pre-
sented in Table IV and Fig. 3, show repeatability compara-
ble to the control protocol (control variability set) for
minor and major inner diameter, wall thickness, inner
perimeter, inner area, wall area percent, and inner equiva-
lent circle diameter. Outer perimeter showed similar
repeatability in low-dose and both ultralow-dose protocols
with mildly elevated average difference magnitudes com-
pared to those seen with control variability and no-TCM.
Overall, the absence of TCM (no-TCM) produced the most
repeatable results most likely explained by the lack of vari-
ability in the tube current.

Lastly, both ultralow-dose protocols showed presence of
systematic overestimation of small airway measures using the
variability observed in the control protocol. Additionally,
outer area and outer perimeter were more likely to be overes-
timated across all protocols, suggesting difficulty in consis-
tent segmentation of the outside of the airway.

TABLE III. Global parenchymal results. Difference measures comparing parenchymal values between control and target protocols and between the two target pro-
tocols acquired for the mean, median, standard deviation, and percent emphysema (% < �910 HU). Values were not reported for the second target volume for
the control variability set indicated with an n/a.

Mean (HU) Median (HU) Standard deviation (HU) % < �910 HU (%)

Average across all control protocols �814.25 � 10.38 �836.6 � 7.47 86.47 � 9.31 0.40 � 0.09

Protocol X1–Xc X2–Xc X2–X1 X1–Xc X2–Xc X2–X1 X1–Xc X2–Xc X2–X1 X1–Xc X2–Xc X2–X1

Control variability �1.06 n/a n/a 0.00 n/a n/a �1.49 n/a n/a 0.11 n/a n/a

No-TCM �2.60 �4.96 2.37 �2.00 �5.00 3.00 �0.24 �1.46 1.22 0.11 0.21 �0.10

Low-dose �2.00 �6.64 4.63 �1.00 �5.00 4.00 �0.03 �1.92 1.89 0.90 1.26 �0.36

Ultralow-dose 0.68 �1.14 1.82 3.00 1.00 2.00 1.08 0.65 0.43 2.07 2.29 �0.22

Tin-filtered ultralow-dose 1.90 0.19 1.71 5.00 2.00 3.00 2.91 4.21 �1.31 2.97 3.03 �0.06
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3.C.2. Medium airways

For medium airways, only minor inner diameter, wall thick-
ness, and wall area percent did not appear to be affected by
protocol when compared to equivalent results in the control
variability protocol. The remaining airway measures — major
inner diameter, inner and outer perimeter, inner and outer area,
and inner equivalent circle diameter — showed average differ-
ence measures similar to those seen across breath holds (and
larger than differences within the control variability set) in all

protocols. Similar to small airways, outer area showed the
highest deviations from the control; unlike small airways, inner
area had the second highest deviations. It is important to note
that deviations from the control protocol tended to increase as
the raw measurement increased, as listed in Tables IV and V
for both small and medium airways; therefore, larger differ-
ences, as observed for medium airways compared to small air-
ways, may not always be an indicator of unreliability.

Repeatability of medium airways was observed to be
affected by the tin-filtered ultralow-dose protocol, specifically
when measuring outer area. In addition, the tin-filtered
ultralow-dose protocol showed trends of overestimation of
medium airway measures, similar to those seen in small air-
ways. In comparison, the absence of TCM tended to underes-
timate medium airway measurements when compared to the
control protocol with TCM. For medium airways, average
difference magnitudes are displayed in Table V with cumula-
tive change plots shown in Fig. 4.

4. DISCUSSION

This study found that quantitative airway and parenchymal
measurements were comparable for low- and ultralow-dose
protocols with the use of IR (ADMIRE). Work has previously
been done validating noise levels and volume quality across
doses with the incorporation of TCM and/or reconstruction
methods.33–37 Our work incorporated these techniques and
focused on quantitative parenchymal and airway measure-
ments with differences measured between each protocol and
the control protocol, in a biologically relevant large animal
model. Overall, diameter measurements, wall thickness, and

TABLE IV. Specific airway results for small airways. Average difference magnitudes for the four analyzed small airways showing comparison of differences
between each target scan and control scan acquired within the same breath hold (comparison to control) and differences between each target scan acquired within
the same breath hold to assess for repeatability of airway measures (repeatability). Across breath hold differences are obtained between each control scan and the
control scan acquired for the control variability set. Raw measurements were calculated from the airway measures obtained across each control scan. Results are
presented as average difference magnitudes � standard deviation. Bold indicates results showing the largest average difference magnitudes in comparison to con-
trol and across breath holds.

Minor
inner

diameter
(mm)

Major
inner

diameter
(mm)

Wall
thickness
(mm)

Inner
perimeter
(mm)

Outer
perimeter
(mm)

Inner
area
(mm2)

Outer
area
(mm2)

Wall
area

percent

Inner
equivalent
circle

diameter (mm)

Raw measurement 1.93 � 0.21 2.48 � 0.27 0.93 � 0.07 7.23 � 0.71 13.37 � 0.89 3.85 � 0.80 13.65 � 1.98 0.72 � 0.02 2.30 � 0.23

Across breath holds 0.08 � 0.06 0.11 � 0.07 0.07 � 0.06 0.28 � 0.17 0.19 � 0.11 0.27 � 0.16 0.47 � 0.27 0.03 � 0.02 0.09 � 0.05

Control variability 0.10 � 0.05 0.10 � 0.08 0.06 � 0.06 0.29 � 0.26 0.11 � 0.13 0.28 � 0.26 0.24 � 0.30 0.03 � 0.03 0.09 � 0.08

Comparison to control (X1/2–Xc)

No-TCM 0.09 � 0.05 0.08 � 0.05 0.03 � 0.03 0.21 � 0.12 0.22 � 0.13 0.23 � 0.13 0.48 � 0.27 0.01 � 0.01 0.07 � 0.04

Low-dose 0.07 � 0.06 0.08 � 0.07 0.05 � 0.04 0.18 � 0.21 0.22 � 0.16 0.23 � 0.26 0.51 � 0.45 0.01 � 0.01 0.06 � 0.07

Ultralow-dose 0.11 � 0.08 0.14 � 0.11 0.06 � 0.03 0.34 � 0.35 0.50 � 0.50 0.39 � 0.39 1.15 � 1.05 0.01 � 0.01 0.11 � 0.11

Sn ultralow-dose 0.07 � 0.04 0.11 � 0.10 0.08 � 0.04 0.29 � 0.24 0.54 � 0.30 0.25 � 0.23 1.11 � 0.66 0.01 � 0.01 0.09 � 0.08

Repeatability (X1–X2)

No-TCM 0.06 � 0.04 0.03 � 0.03 0.02 � 0.01 0.10 � 0.04 0.17 � 0.09 0.11 � 0.03 0.37 � 0.25 0.01 � 0.01 0.03 � 0.01

Low-dose 0.05 � 0.05 0.10 � 0.10 0.03 � 0.03 0.21 � 0.23 0.21 � 0.15 0.21 � 0.26 0.42 � 0.45 0.01 � 0.01 0.07 � 0.07

Ultralow-dose 0.02 � 0.02 0.09 � 0.11 0.06 � 0.04 0.15 � 0.15 0.24 � 0.16 0.14 � 0.17 0.67 � 0.50 0.01 � 0.01 0.05 � 0.05

Sn ultralow-dose 0.05 � 0.03 0.12 � 0.12 0.06 � 0.05 0.30 � 0.25 0.31 � 0.14 0.21 � 0.16 0.59 � 0.16 0.01 � 0.01 0.09 � 0.08

FIG. 3. Specific airway results for small airways. Cumulative change in aver-
age difference magnitudes for small airways showing normal variability
across breath holds and within the control protocol. Results are presented
with differences compared to control (black) and showing repeatability
(white) and summed across measurement to assess by protocol (left) and
summed across protocol to assess by measurement (left).
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derived measures (wall area fraction, inner equivalent circle
diameter) were the most reliable and repeatable airway mea-
sures, where larger differences were observed for area and
perimeter measurements. Comparable airway measures were
observed across the no-TCM, low-dose, and both ultralow-
dose protocols with trends indicating ultralow-dose protocols
have greater difference magnitudes (similar to variability in
measurements seen across breath holds). Additionally, small
airways showed smaller differences from control compared to
medium airways. This may be explained as the magnitude of

small airway differences across all measurements and proto-
cols were subvoxel on average (0.23 mm � 0.25).

The validation of quantitative measures across scanner
protocols and reconstruction methods is important due to the
increased use of quantitative lung CT in disease characteriza-
tion in large, multicenter trials. The current protocol for NIH-
SPIROMICS does not include IR during reconstruction due
to the significant differences reported in acquired emphysema
and airway measures between volumes obtained with and
without IR.18,38,39 In comparison, our laboratory showed sat-
isfactory quantitative attenuation measures at doses compara-
ble to chest x-ray (0.15 mGy) with the use of a newer version
of IR (ADMIRE) and a tin filter on a SOMATOM Force
scanner with the use of a test object.23 We also found compa-
rable mean density measures across several doses with IR;
however, deviations in emphysema measures (% < �910 HU
and % < �950 HU) were observed at ultralow-doses with
greater severity in differences observed in the tin-filtered
ultralow-dose protocol. In addition, the tin-filtered ultralow-
dose protocol showed systematic overestimation of airway
measurements. It is important to note that the two ultralow-
dose protocols included in this study were independently con-
structed to achieve CTDIvols < 1 mGy. The difference
between the two protocols incorporates tin filtering, and also
includes different kV and mAs. While large reductions in
CTDIvol were achieved, these trends indicate further need for
studies to understand the effect of spectral shaping on airway
and parenchymal measures, using related protocols examin-
ing solely the impact of tin filtering (excluding other vari-
ables).

Additionally, we compared protocols with and without the
use of TCM. Similar to IR, the NIH-SPIROMICS protocol

TABLE V. Specific airway results for medium airways. Average difference magnitudes for the four analyzed medium airways showing comparison of differences
between each target scan and control scan acquired within the same breath hold (comparison to control) and differences between each target scan acquired within
the same breath hold to assess for repeatability of airway measures (repeatability). Across breath hold differences are obtained between each control scan and the
control scan acquired for the control variability set. Raw measurements were calculated from the airway measures obtained across each control scan. Results are
presented as average difference magnitudes � standard deviation. Bold indicates results showing the largest average difference magnitudes in comparison to con-
trol and across breath holds.

Minor
inner

diameter
(mm)

Major
inner

diameter
(mm)

Wall
thickness
(mm)

Inner
perimeter
(mm)

Outer
perimeter
(mm)

Inner
area
(mm2)

Outer
area
(mm2)

Wall
area

Percent

Inner
equivalent
circle

diameter (mm)

Raw measurement 5.70 � 0.35 7.02 � 0.49 1.30 � 0.04 20.29 � 1.5 28.64 � 1.68 31.56 � 4.27 63.39 � 6.58 0.50 � 0.02 6.46 � 0.48

Across breath holds 0.14 � 0.12 0.28 � 0.17 0.03 � 0.02 0.62 � 0.59 0.72 � 0.58 1.74 � 1.25 2.87 � 2.09 0.01 � 0.01 0.20 � 0.19

Control variability 0.16 � 0.15 0.10 � 0.11 0.04 � 0.02 0.12 � 0.09 0.24 � 0.24 0.54 � 0.39 0.89 � 0.72 0.01 � 0.01 0.04 � 0.03

Comparison to control (X1/2–Xc)

No-TCM 0.07 � 0.06 0.17 � 0.18 0.06 � 0.03 0.59 � 0.76 0.63 � 0.70 1.15 � 1.11 2.03 � 1.98 0.01 � 0.01 0.19 � 0.24

Low-dose 0.10 � 0.05 0.10 � 0.08 0.04 � 0.05 0.17 � 0.19 0.45 � 0.33 0.50 � 0.54 1.72 � 1.32 0.01 � 0.01 0.06 � 0.06

Ultralow-dose 0.08 � 0.05 0.14 � 0.15 0.02 � 0.02 0.25 � 0.29 0.45 � 0.39 0.68 � 0.79 1.78 � 1.57 0.01 � 0.00 0.08 � 0.09

Sn ultralow-dose 0.10 � 0.08 0.24 � 0.34 0.03 � 0.03 0.63 � 1.14 0.70 � 0.91 1.12 � 1.66 2.17 � 2.32 0.01 � 0.01 0.20 � 0.36

Repeatability (X1–X2)

No-TCM 0.02 � 0.01 0.04 � 0.03 0.02 � 0.02 0.03 � 0.01 0.18 � 0.19 0.04 � 0.05 0.61 � 0.61 0.00 � 0.01 0.01 � 0.00

Low-dose 0.09 � 0.04 0.08 � 0.04 0.01 � 0.02 0.20 � 0.15 0.28 � 0.22 0.51 � 0.46 0.99 � 0.89 0.01 � 0.00 0.06 � 0.05

Ultralow-dose 0.07 � 0.03 0.13 � 0.14 0.03 � 0.02 0.17 � 0.29 0.49 � 0.21 0.46 � 0.62 1.68 � 0.97 0.01 � 0.01 0.05 � 0.09

Sn ultralow-dose 0.08 � 0.09 0.46 � 0.53 0.06 � 0.04 1.21 � 1.49 1.36 � 1.33 2.06 � 2.04 4.22 � 3.41 0.01 � 0.00 0.38 � 0.47

FIG. 4. Specific airway results for medium airways. Cumulative change in
average difference magnitudes for medium airways showing normal variabil-
ity across breath holds and within the control protocol. Results are presented
with differences compared to control (black) and showing repeatability
(white) and summed across measurement to assess by protocol (left) and
summed across protocol to assess by measurement (left).
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does not use TCM. At the time that the SPIROMICS protocol
was originally established, TCM technology was new and
less refined than that in the current CT systems and did cause
some nonuniformity throughout the lungs (data not pub-
lished). In our study, we found the absence of TCM to pro-
duce the most repeatable results, as we were examining
measures within the same subject. However, inclusion of
TCM is expected to have benefit in multicenter studies across
variable-sized subjects, whereby noise is held constant. We
did find a systematic underestimation of airway measure-
ments compared to the equivalent protocol with the use of
TCM (control), specifically among the analyzed medium air-
ways.

Airway wall thickness as measured through quantitative
analysis of CT data, has been utilized as a metric to under-
stand the etiology of COPD.29,40,41 Recent work has shown
that greater airway wall thickening, represented by pi10, is an
early indicator of disease in symptomatic current or former
smokers with normal spirometry.30 With the use of low- and
ultralow-dose protocols, our results showed consistency
across pi10 measurements, even with variability in number of
airways segmented. This trend was observed before and after
merging of fractured airway branch paths for consistency
across all airway trees. In addition to the merging of airway
branches, editing of airway trees included seed point place-
ment to grow out the base of the airway trees due to the dif-
ferences between human and pig lungs42; however, all
segmentation was automatically performed with the Apollo
software. The least number of segmented airways was
observed in the control protocol variability set; however, this
set showed the smallest lung volume at approximately
200 mL less than the remaining scans. It is well known that
lung volume has an effect on quantitative density measures
with normalizations developed to compensate for differences
in volume across breath holds.43 Therefore, we compared
results taken from volumes within the same breath hold; how-
ever, variability was still observed within the control variabil-
ity set despite mechanical enforcement. To minimize this
limitation, we used the control and first target volume to
acquire difference measures for comparison. It can be seen
that over the course of the study sets, the number of airway
branches segmented in the control protocol increased and
closely reflected, or was higher than the number of airway
branches segmented in the two target scans acquired within
the same breath hold.

Furthermore, we also explored additional airway measure-
ments, including those previously used for correlation with
COPD GOLD stage in large, multicenter trials.41,44 We found
that area and perimeter measurements, specifically of the
outer airway component, are less reliable, while diameter
measurements and wall thickness produced were more reli-
able and repeatable. Derived measures (wall area percent,
inner equivalent circle diameter) also showed reliability and
repeatability; however, wall area fraction is derived from
inner and outer areas which demonstrated the largest differ-
ences and inner equivalent circle diameter is derived from
inner perimeter showing the same differences simply scaled

by pi. While these derived measures are consistent across
protocols in this study, they may not be reliable biomarkers
of structural change, as they are scaled parameters calculated
from measurements susceptible to protocol variability and
repeatability.

Our study was limited through the use of a single large
animal subject, studied repeatedly with different protocols.
Extrapolation of our results to comparisons across subjects
and time points may be minimal, although our findings in
this biological model support those of similar studies per-
formed using test objects.23,39 As a baseline measure of vari-
ability, we compared measurements across breath holds;
however, no corrections were made to compensate for inspi-
ratory volume differences,43 which ranged from 1.7 to 2.1 L
despite mechanically enforced breath holds. This reflects a
significant challenge of consistent inspiratory lung volume
for repeated measures, also encountered in clinical studies
incorporating quantitative CT measures for lung assess-
ment.12 Research has also shown that quantitative parenchy-
mal measures differ by lobe.45 Due to the lobar structure of
pig lungs and additional segmentation required, a compre-
hensive analysis of the animal’s lung lobes was not included
in this study.42

5. CONCLUSIONS

In conclusion, the use of IR with low- and ultralow-dose
CT protocols with CT volume dose indices down to
0.32 mGy maintains selected quantitative parenchymal and
airway measurements relevant to multicenter trials. Mean
parenchymal measures, including median and standard devia-
tion, were preserved in the presence of ultralow-dose and
tin-filtered ultralow-dose dose protocols; however, limited
reliability was seen in emphysema measures (% < �910 HU)
for the included ultralow-dose dose protocols. Reliability was
observed across wall thickness and major and minor diameter
airway measures compared to area and perimeter measure-
ments with respect to the variability seen in the control proto-
col. Specifically, caution should be used if using outer area as
an important quantitative measure of the airways. Impor-
tantly, derived airway measurements showed consistency
across all protocols; however, they are dependent on measure-
ments that demonstrated the largest differences. Lastly, more
studies are required to further understand the effect spectral
shaping with tin filtering and TCM have on quantitative
parenchymal and airway measures.
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