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Purpose: Although a variety of mathematical observer models have been developed to predict
human observer performance for low contrast lesion detection tasks, their predictive power for high
contrast and high spatial resolution discrimination imaging tasks, including those in CT bone imag-
ing, could be limited. The purpose of this work was to develop a modified observer model that has
improved correlation with human observer performance for these tasks.
Methods: The proposed observer model, referred to as the modified ideal observer model (MIOM),
uses a weight function to penalize components in the task function that have less contribution to the
actual human observer performance for high contrast and high spatial resolution discrimination tasks.
To validate MIOM, both human observer and observer model studies were performed, each using
exactly the same CT imaging task [discrimination of a connected component in a high contrast
(1000 HU) high spatial resolution bone fracture model (0.3 mm)] and experimental CT image data.
For the human observer studies, three physicist observers rated the connectivity of the fracture model
using a five-point Likert scale; for the observer model studies, a total of five observer models, includ-
ing both conventional models and the proposed MIOM, were used to calculate the discrimination
capability of the CT images in resolving the connected component. Images used in the studies
encompassed nine different reconstruction kernels. Correlation between human and observer model
performance for these kernels were quantified using the Spearman rank correlation coefficient (q).
After the validation study, an example application of MIOM was presented, in which the observer
model was used to select the optimal reconstruction kernel for a High-Resolution (Hi-Res, GE
Healthcare) CT scan technique.
Results: The performance of the proposed MIOM correlated well with that of the human observers
with a Spearman rank correlation coefficient q of 0.88 (P = 0.003). In comparison, the value of q
was 0.05 (P = 0.904) for the ideal observer, 0.05 (P = 0.904) for the non-prewhitening observer,
�0.18 (P = 0.634) for the non-prewhitening observer with eye filter and internal noise, and 0.30
(P = 0.427) for the prewhitening observer with eye filter and internal noise. Using the validated
MIOM, the optimal reconstruction kernel for the Hi-Res mode to perform high spatial resolution and
high contrast discrimination imaging tasks was determined to be the HD Ultra kernel at the center of
the scan field of view (SFOV), or the Lung kernel at the peripheral region of the SFOV. This result
was consistent with visual observations of nasal CT images of an in vivo canine subject.
Conclusion: Compared with other observer models, the proposed modified ideal observer model
provides significantly improved correlation with human observers for high contrast and high spatial
resolution CT imaging tasks. © 2017 American Association of Physicists in Medicine [https://
doi.org/10.1002/mp.12404]
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1. INTRODUCTION

Hardware and software advances in modern multidetector
detector CT (MDCT) provide new means to improve spatial
resolution for MDCT systems. The improvement in spatial
resolution may benefit many clinical applications that
demand high-spatial resolution, such as the diagnosis of bone
fractures or middle and inner ear disease using CT. The
High-Resolution (Hi-Res) scan mode (GE Healthcare,
Waukesha, WI, USA) is a technique to improve spatial reso-
lution in MDCT. It uses in-plane focal spot deflection, an
increased angular sampling rate, and dedicated Hi-Definition
(HD) reconstruction kernels to improve the in-plane spatial
resolution of CT.1–4 However, improved spatial resolution
does not necessarily mean improved diagnostic performance,
since the ultimate diagnostic performance is jointly deter-
mined by spatial resolution, noise power, imaging tasks, and
the performance of the image reader. Therefore, to optimally
use these new technologies in clinical practice to accomplish
a clinical diagnostic task, one must comprehensively study
the potential tradeoffs between spatial resolution and noise,
as well as their joint impact on the overall diagnostic perfor-
mance for a specific imaging task. Ultimately, it is the human
observer who reads, and infers, diagnostic information from a
given image for a given task. Therefore, it would be ideal to
evaluate the performance of a new technology for a given task
by human observers. However, this is usually a time- and
resource-consuming process and thus is not easy to imple-
ment for every clinical tasks. To mathematically model the
human perception process, mathematical observer models
were developed to incorporate the quantitative imaging sys-
tem characteristics into a single figure of merit (FOM) to pre-
dict the performance of human observers. When these
observer models are properly validated, they can be used to
optimize the needed imaging technologies and the associated
scanning parameters for a given clinical tasks. The main pur-
pose of this paper was to develop and validate such an obser-
ver model for high-contrast and high-spatial resolution
discrimination task.

To be more specific, an observer model is a mathematical
algorithm that is capable of making decisions about specific
visual tasks given an image and a priori statistical informa-
tion.5–9 Performance of the observer model in decision mak-
ing can be quantitated by a FOM known as the detectability
index d

0
, which can be analytically calculated from the spatial

resolution and noise properties of the imaging system as well
as the imaging task itself. Compared with other image quality
FOMs such as the modulation transfer function (MTF), the
observer model-derived d

0
has the advantage of being task-

dependent in addition to taking both spatial resolution and
noise into account. Therefore, observer models have been
widely used in the development and assessment of many
imaging modalities, including mammography,10–12 dual-
energy digital radiography,13,14 digital tomosynthesis,15–20

CT,21–34 cone beam CT17,18,31,35–38 and differential-phase
contrast CT.39,40

A variety of observer models have previously been devel-
oped, and they differ from each other in the number and nat-
ure of hypotheses about the human visual perception that are
integrated into the model to obtain a quantitative response
variable. Although these observer models have been well val-
idated for low-contrast imaging tasks, a direct application of
these observer models to high-contrast and high-spatial reso-
lution discrimination imaging tasks may lead to poor correla-
tion with human observer performance. Therefore, a
modified observer model must be developed and validated
for high-contrast and high-spatial resolution discrimination
tasks.

To facilitate reading, the paper is laid out as follows: First,
to demonstrate the failure of conventional observer models
for the high-contrast, high-spatial resolution discrimination
tasks, human observer studies were performed in this work,
and the results were compared with d0 generated by several
popular observer models. Next, a modified observer model
with significantly improved correlation with human observers
for the high-contrast and high-spatial resolution task was pre-
sented and validated. Finally, the observer model was used to
choose the optimal reconstruction kernel for the Hi-Res scan
mode as a demonstration of its potential application.

2. METHODS AND MATERIALS

2.A. High-contrast and high-spatial resolution
imaging task

The high-contrast and high-spatial resolution CT imaging
task used in this work is shown in Fig. 1. The task is to dis-
criminate two hypotheses: the null hypothesis h0 is a straight
0.3-mm-wide gap in a range-shaped object (inner and outer
diameters are 10 and 17 mm, respectively); for the alternative

(a) (b) (c)

FIG. 1. High-contrast and high-spatial resolution imaging task used in this work. (a) Null hypothesis (h0). (b) Close-up of the completely disconnected gap in the
null hypothesis. (c) Close-up at the connected region across the gap in the alternative hypothesis (h1).
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hypothesis h1, a 0.3 9 0.3 mm2 component connects a por-
tion of the gap. For both hypotheses, the contrast between the
ring and the background is 1000 HU. In the spatial domain,
this signal-known-exactly, background-known exactly, and
binary discrimination task can be written as

tðxÞ ¼ h1ðxÞ � h0ðxÞ; (1)

and the corresponding form in the spatial frequency domain
is given by

TðkÞ ¼ FT½h1ðxÞ � h0ðxÞ�: (2)

This high-spatial resolution imaging task was used in both
the observer model and human observer studies, so that
results of these studies could be directly compared.

2.B. Human observer studies

2.B.1. Image preparation

To match the experimental conditions between the human
observer and observer model studies while having precise
control and fine-tuning of the imaging task, the following
image preparation approach was used: Both types of observer
studies used the same set of experimental noise-only CT
images. For the human observer studies, the experimental
noise-only images were fused to one of the two hypotheses
shown in Fig. 1. For the observer model studies, the experi-
mental noise-only images were used to measure the noise
power spectrum (NPS).

To acquire the noise-only CT images, a Catphan 600
phantom (Module CTP591, The Phantom Laboratory, Green-
wich, NY, USA) was repeatedly scanned using a 64-slice
diagnostic MDCT system (Discovery CT750 HD, GE Health-
care, Waukesha, WI, USA) with the following scan parame-
ters: 120 kV, 400 mAs, axial mode, small focal spot (1.0 9

0.7 mm), large body bowtie filter, and 20 mm detector colli-
mation width. Both conventional and Hi-Res scan modes
were used; for each scan mode, 80 repeated scans were per-
formed. Images acquired using the conventional scan mode
were reconstructed using four different kernels, while images
acquired using the Hi-Res mode were reconstructed using
five high-definition (HD) kernels (Table I). The reconstructed
images have a slice thickness of 5 mm, pixel size of 0.1 mm,
and a matrix size of 512 9 512. For each scan mode and
reconstruction kernel, the ensemble average across the 80
repeated scans was calculated, which was then used to
detrend the background and obtain noise-only images.

To prepare images for the reader studies, the imaging task
and experimental noise-only background were fused in the
following approach: First, each of the two hypotheses in
Fig. 1 was filtered by convolving with a point spread function
(PSF), which was experimentally measured using the same
scan technique and reconstruction kernel as those used to
generate the noise-only background.41 This process can be
described by

h0j xð Þ ¼ hj xð Þ � PSFðxÞ; (3)

where ⊗ denotes the 2D convolution operator, j took values
of 0 and 1 for the null and alternative hypothesis, respec-
tively. Next, the filtered hypothesis was added to each (ith) of
the 80 independent realizations of the noise background,
namely

gi xð Þ ¼ h0j þ niðxÞ; (4)

where i 2 [1,80]. This image fusion process was repeated for
each of the nine scan model-kernel combinations listed in
Table I, producing a total of 9 9 80 = 720 images for the
human reader studies. Figure 2 shows some examples of
these images.

In order to confirm the hybrid images accurately repre-
sented true experimental CT images, we compared hybrid
and experimental images of a bar pattern in the CTP528
Module of the Catphan 600 phantom, generated with differ-
ent reconstruction kernels under the conventional scan mode.
As illustrated by Fig. 3, for a given reconstruction kernel, the
hybrid image closely resembled the true experimental CT
image.

2.B.2. Image reading and scoring

Three medical physicists with 7–14 yr of experience in
clinical CT research served as human observers in the study.
The reading was conducted in a darkened room using a moni-
tor calibrated for clinical diagnosis. The image display win-
dow and level were 2000 and 300 HU, respectively. The
observers were instructed to keep a viewing distance of
approximately 60 cm from the monitor. Each observer first
underwent a training session, in which images and the true
state of the hypothesis (either 0 or 1) were presented to the
observer, so that the observer had a basic idea of how the
image looks like for each hypothesis, each scan mode, and
each reconstruction kernel. A total of 18 images (two for each
scan mode-reconstruction kernel combination) were used for
the training.

After the training session, each observer read a total of
360 images (40 for each scan mode-reconstruction kernel
combination) fetched from the pool of 720 images. To reduce
observer bias, the order of the images was randomized, and a
black screen was displayed between two consecutive images.
The observer scored each image using the 5-point Likert
scale listed in Table II. The recorded scores were analyzed
using a multireader and multicase receiver operating charac-
teristic software (OR-DBM MRMC 2.5, The University of

TABLE I. Scan modes and reconstruction kernels included in both the human
observer and observer model studies.

Conventional mode Hi-Res mode

Standard HD Standard

Lung HD Lung

Bone plus HD Bone Plus

Edge HD Ultra

HD Edge
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Iowa).42–46 The interobserver consistency was estimated with
the Cohen’s kappa coefficient.

2.C. Observer model studies

2.C.1. Conventional observer models

To demonstrate that conventional observer models have
poor correlation with human observers for the high-contrast

and high-spatial resolution imaging task, a total of five con-
ventional observer models were used to estimate the observer
performance for the task.

We first evaluated the ideal observer model, which uses
the Bayes theorem to combine all available a priori informa-
tion with the image data to obtain probabilistic estimates of
the correctness of a given hypothesis (signal present or
absent).6,7,47 Its performance can be quantitated, without
being dependent on the observer’s decision criterion, using
the ideal observer detectability index d0ideal. The square of
d0ideal can be calculated in the Fourier domain as follows:47

d0ideal
� �2 ¼

Z Z
TðkÞj j2MTF2ðkÞ

N kð Þ d2k

¼
Z Z

FT½tðxÞ � PSFðxÞ�j j2
N kð Þ d2k:

(5)

In Eq. (5), k and x are frequency and spatial vectors, respec-
tively, N denote the NPS and was calculated from the ensem-
ble of experimental noise-only images. A larger d0ideal value
indicates better observer performance. In other words, one
should expect a strong and positive correlation between d0ideal
and human observer performance metrics (such as AUC) if
the observer model can accurately predict human observer
behavior.

In addition to the ideal observer, several other popular
observer models were also used in this work, including pre-
whitening observer with eye filter and internal noise (PWEi),
nonprewhitening (NPW) observer, and nonprewhitening
observer with eye filter and internal noise (NPWEi). The eye
filter and internal noise used in PWEi and NPWEi take into
account of the nonuniform response of the visual system to
different spatial frequencies and the internal fluctuation of
the visual system. The parameter c in the eye filter formula, E
(f) = f exp(�cf), was selected such that the maximum
response of E occurred at 4 cycles/deg18,48 for a viewing dis-
tance of 70 cm, c = 3.1. The static internal noise was imple-
mented as white noise given by Nint = 0.02N0L

2, where
L = 0.70 is the viewing distance in meters, and N0 is the
amplitude of the white noise-equivalent NPS of the

FIG. 2. Close-up images used in the human observer study. One representative image was selected for each of the nine scan mode-reconstruction kernel combi-
nations and the two hypotheses. The display window and level are 2000 and 300 HU, respectively.

FIG. 3. Validation of the hybrid image generation method. The top row
shows images of a bar pattern (6 lp/cm) generated by the hybrid method
(simulated signal + experimental noise background). The bottom row shows
experimental images of the bar pattern. The image display window and level
are 2000 and 300 HU, respectively.

TABLE II. 5-point image rating scale used in the human observer study.

Score Criteria

1 The gap is definitely disconnected

2 The gap is probably disconnected

3 Unclear if the gap is disconnected or connected

4 The gap is probably connected

5 The gap is definitely connected
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background, given by N0 ¼ R R
NðkÞd2k= R R

d2k. The
induced internal noise was included by multiplying the NPS
by a scaling factor of (1+φ), where φ = 0.3.7,10,49

2.C.2. Proposed modified ideal observer model
(MIOM)

The ideal observer gives the upper bound of human obser-
ver detection performance, as it assumes the human observer
can perfectly decorrelate (i.e., prewhiten) the image noise.
One of the fundamental assumptions behind the ideal obser-
ver is that all the spatial components of the input signal con-
tribute with equal weight to the observer’s discrimination
performance [Eq. (5)]. While this assumption is valid for
low-contrast signal detection tasks, it may be violated for
high-contrast and high-spatial resolution discrimination tasks,
in which the importance of signal recognition may bias cer-
tain spatial components of the signal, for example, high-con-
trast edges. Therefore, the following modified ideal observer
model (MIOM) was proposed in this work:

d0MIOM

� �2¼
Z Z

FT½t0ðxÞ � wðxÞ�j j2
N kð Þ d2k: (6)

The weight function w(x) aims to penalize regions of the sig-
nal that are likely to have less contribution to the overall
observer performance for high-contrast and high-spatial reso-
lution discrimination tasks. The proposal is based on two
assumptions about the human vision that were previously
introduced:50,51 (a) the spatial integration of image informa-
tion is often limited to a spatial window; (b) the observer gen-
erates a tailored discriminator for the signals in question
using available information. Throughout the paper this model
is referred to as modified ideal observer model (MIOM).

The weighting function used to calculate d0MIOM is shown
in Fig. 4(a); it is defined as the alternative hypothesis itself
(h1) (defined in next subsection) bounded by a rectangular
window with softened edges and centered on the task func-
tion. Both the width of the window and the degree of edge

blurring are optimized, such that the resulting detectability
index is as close as possible to the actual human observer per-
formance. The weight function design followed two objec-
tives: (a) to put reduced or zero weight on pixels far away
from the task function, since when an actual human observer
performs a recognition task, he/she is likely to primarily
focus on a region whose size is scaled according to the actual
dimensions of the imaging task; (b) to penalize the signal
blurring due to the limited spatial resolution of the imaging
system, as illustrated in Figs. 4(b)–4(f). The necessity of
using this weighting function was confirmed by the results of
the human observer experiments in this work.

2.D. Quantitation of correlation between human
observer and observer model

The correlation between the human observer performance,
described by the AUC, and the observer model performance,
described by d0, was quantitated using the Spearman rank
correlation test, which is a measure of statistical dependence
between the ranking of two variables, and it assesses how
well the relationship between two variables can be described
using a monotonic function, whether their relationship is lin-
ear or not.

2.E. Example application of MIOM

After confirming satisfactory correlation between human
observer and the proposed MIOM, it was used to select the
kernel-scan mode combination that led to the highest perfor-
mance for a high-contrast, high-spatial resolution CT imaging
task. As illustrated by Table III, the introduction of the Hi-
Res mode to the 750HD MDCT system provides an addi-
tional 15 scan mode-kernel combinations, in addition to the
eight kernels provided by previous GE scanner models. Pre-
vious studies also demonstrated that the spatial resolution
performances of CT systems may also depend on the object
position within the scan field of view (SFOV). Optimizing
the kernel and scan mode selection for each object position

FIG. 4. Functions of interest in spatial and frequency domain representations. (a) Weight model used in the proposed MIOM observer. (b) Task function. (c) and
(e) show the task function filtered by the PSF, that is, t0, of two different scan modes and reconstruction kernels at the centered position. (d) and (f) show t0

weighted by the function w for two different scan modes and reconstruction kernels at the centered position. The dashed lines in the spatial domain images indi-
cate the position of each function relative to h0 and h1 (shown in Fig. 1). The units for the spatial domain and frequency domain color bars are HU and HU mm2,
respectively. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 44 (9), September 2017

4500 Cruz-Bastida et al.: MIOM for high spatial resolution tasks 4500



would be time consuming to a human observer. In contrast,
the MIOM provides an efficient way to rank the order of ker-
nel-scan mode combinations for nasal cavity CT imaging. In
this work, the ranking was performed for each of the eight
object positions shown in Fig. 5. To corroborate ranking pro-
vided by the MIOM, an in vivo canine subject (2-yr-old 10-
kg male adult beagle) was scanned under an Institutional
Animal Care and Use Committee (IACUC)-approved proto-
col. Both conventional and Hi-Res scan modes were used,
and other acquisition parameters are listed as follows: tube
potential = 80 kV, beam collimation = 20 mm, medium
body bowtie filter, axial mode, rotation time = 0.5 s, tube
current = 430 mA, and large focal spot. Images were recon-
structed with a display field of view of 5 cm, a slice thickness
of 0.625 mm, and different reconstruction kernels.

3. RESULTS

3.A. Human observer results

Each observer took approximately 5–10 s per image
including both reading and scoring. The measured areas
under the ROC curve (AUCs) for individual observer, scan
mode, and reconstruction kernels are listed in Table IV. The
Cohen’s kappa coefficient was found to be j = 0.22, which
indicates “fair” interobserver agreement. The average AUC
across the three human observers is plotted in Fig. 6. The
error bars indicate standard error. Among the nine scan
mode-reconstruction kernel combinations, the conventional
scan mode with the Standard kernel led to the lowest AUC,
since it generated the most blurred image as shown in Fig. 2.
The AUC was improved by using the combination of the Hi-
Res scan mode and the HD Standard kernel, which improves
spatial resolution.41 Meanwhile, the most aggressive edge-
preserving kernel HD Edge did not generate the highest
human observer performance. Instead, its AUC is similar to
that of the HD Standard kernel. This is due to the dramatic
noise amplification associated with this kernel, despite the
fact that it led to the highest MTF.41 This example shows the
importance of taking noise and task-based overall image qual-
ity into account when evaluating the HD kernels, even if they
are designed with high-spatial resolution imaging tasks in
mind. Figure 6 also shows that the highest human observer
performance was achieved with intermediate kernels such as
Bone Plus and HD Lung. These kernels generated higher spa-
tial resolution compared with the Standard (or HD Standard)
kernel, and they only led to moderate noise amplification that
was still tolerable for the high-contrast and high-spatial reso-
lution imaging task (Fig. 2).

3.B. Correlation between human observers and
observer model results

Average AUC values generated by the human observers
and the observer models were compared using scatter plots
shown in Fig. 7. The ideal observer led to a Spearman’s rank
correlation coefficient (q) of only 0.05 (P = 0.904), and the

TABLE IV. Human observer ROC performance for the high-spatial resolution
imaging task. AUC: area under the ROC curve; SE: standard error.

Scan mode Kernel

Observer 1 Observer 2 Observer 3

AUC SE AUC SE AUC SE

Conventional Standard 0.55 0.03 0.53 0.02 0.69 0.06

Conventional Lung 0.86 0.05 0.81 0.06 0.90 0.04

Conventional Bone Plus 0.89 0.05 0.89 0.05 0.92 0.05

Conventional Edge 0.92 0.04 0.75 0.07 0.72 0.08

Hi-Res HD Std 0.81 0.05 0.58 0.06 0.73 0.08

Hi-Res HD Lung 0.89 0.06 0.85 0.06 0.92 0.04

Hi-Res HD Bone Plus 0.78 0.07 0.69 0.08 0.82 0.07

Hi-Res HD Ultra 0.94 0.04 0.75 0.07 0.80 0.07

Hi-Res HD Edge 0.69 0.08 0.67 0.07 0.74 0.08

TABLE III. Scan modes and the associated reconstruction kernels provided
by the GE Discovery CT750 HD CT system.

Conventional mode Hi-Res mode

Non-HD kernels HD kernels Non-HD kernels HD kernels

Soft Soft HD Standard

Standard Standard HD Detail

Detail Detail HD Lung

Lung Lung HD Bone

Chest Chest HD Bone Plus

Bone Bone HD Ultra

Bone Plus Bone Plus HD Edge

Edge Edge

FIG. 5. The proposed MIOM was used to optimize reconstruction kernel
and scan mode selection for eight different off-centered positions shown in
this figure. The ROI used to calculate d0MIOM was indicated by the solid
square. [Color figure can be viewed at wileyonlinelibrary.com]
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NPW observer actually generated a weak negative correlation
(q = �0.18, P = 0.0634). Here, the null hypothesis for the P
value is that, the human observer AUC and observer model d0

are not correlated. Correlation coefficients for other conven-
tional observer models are listed in Table V and are no greater
than 0.30. In comparison, MIOM achieved a much stronger
correlation with the human observer (q = 0.88, P = 0.003).

3.C. Example application: optimal kernel selection

Having validated the proposed MIOM observer model, we
used it to select optimal scan mode and reconstruction kernel
as a function of object positions. Figure 8 provides a map of
the measured detectability index (d0MIOM) for the imaging task
shown in Fig. 1. In general, d0MIOM was very sensitive to the
off-centered position; at severe off-centered positions, d0MIOM
dropped considerably for a given acquisition mode and
reconstruction kernel. For the specific imaging task used in

FIG. 7. Correlation between human observer and observer models. (a) AUC
values paired with d0 for the four conventional observer models. (b) AUC val-
ues paired with d0 for the proposed MIOM. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 6. Average human observer AUCs for different reconstruction kernels.
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE V. Spearman rank correlation values for different observer models.

Observer model q P

Ideal 0.05 0.904

PWEi 0.05 0.904

NPW �0.18 0.634

NPWEi 0.30 0.427

MIOM 0.88 0.003

FIG. 8. Summary of the detectability index (d0MIOM) of the high-spatial reso-
lution imaging task shown in Fig. 1 for all the scan modes, reconstruction
kernels, and object positions. For a given object position, the particular scan
mode-reconstruction kernel combination that achieved the highest detectabil-
ity was marked with a black dot. The second highest scan mode-reconstruc-
tion kernel combination is also indicated, with a cross. The given color scale
corresponds to values of d0MIOM. [Color figure can be viewed at wileyonlineli-
brary.com]
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this work, the Hi-Res scan mode combined with the Lung
kernel generates the highest d0MIOM values for most off-cen-
tered positions. At the iso-center, Hi-Res mode with the HD
Ultra kernel generates the highest d0MIOM value, which is con-
sistent with the human observer results. The intermediate
edge-preserving kernels such as Bone Plus and HD Bone
Plus showed good balance between spatial resolution and
noise. Although the Hi-Res scan mode with the HD Edge ker-
nel led to the highest spatial resolution in all object posi-
tions,41 the large increase of image noise generated by this
scan mode-reconstruction kernel combination strongly
degraded its overall performance for the high-contrast and
high-spatial resolution imaging task.

Images of the nasal cavity of the canine subject generated
using the two scan modes (conventional and Hi-Res) and dif-
ferent reconstruction kernels are shown in Fig. 9. Small nasal
ducts (or meatuses) were resolved with different levels of
detail in these images. The Hi-Res scan mode with the HD
Ultra kernel allowed one to clearly identify the convoluted
cartilage structure of the nasal conchae. Hi-Res mode with
HD Bone Plus kernel also allowed a clear identification of
such structures, although with less sharpness. Compared to
the Hi-Res mode with HD kernels, Hi-Res mode alone (with-
out HD kernels) led to images of slightly lower sharpness.
However, noise levels in such images were considerably
lower, which resulted in a better balance between spatial reso-
lution and image noise. This was consistent with the opti-
mization results provided by MIOM.

4. DISCUSSION

This work demonstrated that traditional observer models
have limited capability in predicting human observer perfor-
mance for high-contrast and high-spatial resolution CT imag-
ing task. Therefore, it is necessary to modify conventional
observer models for this type of task. By introducing a weight
function to the ideal observer framework, a modified ideal

observer model (MIOM) was developed for high-contrast and
high-spatial resolution task. Experimental results showed the
improved correlation between the proposed observer model
and human reader performance.

Results of the observer studies showed that even for high-
spatial resolution imaging task, its performance is not entirely
determined by spatial resolution, as the kernel with the best
MTF did not necessarily lead to the highest observer perfor-
mance. Noise amplification associated with those kernels
may degrade the overall imaging performance. This explains
why intermediate kernels such as the Lung and HD Lung ker-
nel generated better performance for the task, since they
maintained good balance between spatial resolution enhance-
ment and noise amplification, particularly at off-centered
positions.

An in vivo animal study was included in this work to cor-
roborate predictions made based on MIOM. Results of the
animal study were qualitatively consistent with the predic-
tions. However, it is important to recognize that the animal
study was only qualitative rather than quantitative, and obser-
vations should not be arbitrarily generalized until evaluated
with more subjects, imaging tasks, radiation dose levels, and
body sizes.

While the use of the MIOM has been justified by the
results of the human observer experiments, there are some
important limitations that need to be investigated in future
studies: First, the proposed modification of the ideal observer
was based on empirical assumptions rather than a formal
derivation. In particular, the weight function was determined
empirically and heuristically, and a more rigorous theoretical
modeling of human observer performance for high-contrast
and high-spatial resolution imaging tasks needs to be per-
formed. Second, the observer model and human observer per-
formances were compared in terms of rank correlation
coefficient, which did not strictly describe the quantitative
agreement for individual data pair. Third, only a single imag-
ing task and a limited number of readers with non-clinical

FIG. 9. Axial images of the nasal cavity of the canine subject. ROI images are displayed for both conventional and Hi-Res modes combined with different ker-
nels. The display window and level are 2000 and 300 HU, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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training were used in this study. Additional validation studies
should include a large number of imaging tasks and physician
readers. Fourth, high-density metal objects such as metal
implants may introduce streak artifacts to CT images. Like
other observer models, the proposed MIOM does not take
these artifacts into account. Finally, the discussion about
MIOM assumed linear and shift invariant CT systems with
linear reconstruction algorithms and kernels. Nonlinear CT
systems, particularly those with iterative reconstruction (IR)
algorithms, are beyond the scope of this work. Although IR
is gaining popularity for low-contrast detection tasks, its clin-
ical use for high-spatial resolution applications is yet to be
fully explored. If a high-spatial resolution clinical application
does involve the use of IR, the applicability of MIOM must
be reexamined.

5. CONCLUSIONS

A modified ideal observer model (MIOM) was developed
and validated to predict human observer performance for
high-contrast and high-spatial resolution CT imaging tasks.
Spatial resolution improving technologies such as the Hi-Res
scan mode and the associated HD reconstruction kernels can
potentially be better utilized in routine clinical practice under
the guidance of MIOM.
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