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Abstract

In this paper, we introduce a novel computational method for constructing protein networks based
on reverse phase protein array (RPPA) data to identify complex patterns in protein signaling. The
method is applied to phosphoproteomic profiles of basal expression and activation/
phosphorylation of 76 key signaling proteins in three breast cancer cell lines (MCF7, LCC1, and
LCC9). Temporal RPPA data are acquired at 48h, 96h, and 144h after knocking down four genes
in separate experiments. These genes are selected from a previous study as important determinants
for breast cancer survival. Interaction networks are constructed by analyzing the expression levels
of protein pairs using a multivariate analysis of variance model. A new scoring criterion is
introduced to determine relevant protein pairs. Through a network topology based analysis, we
search for wiring patterns to identify key proteins that are associated with significant changes in
expression levels across various experimental conditions.
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[. Introduction

In cancer, genetic and epigenetic changes are often associated with disease development.
Studying epigenetic changes such as protein phosphorylation will greatly aid in
understanding the causes and determining effective treatment of cancers and other diseases.
With the development of personalized therapeutics for oncology, the systematic and targeted
analysis of selected proteins including phosphorylated proteins in tumor tissues is receiving
increasing interest [1]. Reverse-phase protein arrays (RPPASs) have emerged as a useful tool
for the large-scale analysis of protein expression and protein activation, allowing for the
specific detection and quantification of proteins in a reproducible and highly parallelized
manner [2]. Besides monitoring differential expression, RPPAs allow the profiling of
differential protein modification. Due to the dependency on dot blot compatible antibodies,
the number of detectable proteins is limited, but a large number of samples can be profiled
due to the reverse array format. Therefore, RPPAs can be used in complex studies, where the
impact of multiple experimental factors (e.g., multiple treatments, doses, and time points) on
protein expression and cellular signaling is investigated [3].

RPPA data analysis is still a growing area of research. Studies utilizing RPPA data have
employed a diverse range of data pre-processing and benchmarking methods, but no single
protocol for processing RPPA data has been universally accepted [4-8]. Some of the tools
include a web-based data analysis pipeline RPPApipe [3] and an R-package RPPanalyzer
[9]. A review of the tools and software approaches developed for RPPA data normalization
and data analysis can be found in ref. [10]. In a typical RPPA data analysis, proteins are
analyzed individually and expression values are considered to be of primary interest.
However, since proteins function in networks and interact with many partners, a network-
based approach is desired to analyze the RPPA-based protein expression data. For example,
RPPA were used to analyze the expression of 203 proteins in cells taken from acute myeloid
leukemia (AML) patients using a network-based approach [11]. Dominant overlapping
protein networks between subtypes of AML patients were characterized using a paired #test
and lasso regression analysis. Signaling networks were constructed from the protein pairs
that were significantly different. Predicted networks were also compared to known networks
from public protein—protein interaction and signaling databases. In a recent study, the levels
of 134 proteins measured in 21 breast cancer cell lines stimulated with IGF1 or insulin for
up to 48 hours were evaluated by network analysis [8]. Specifically, directed protein
expression networks named as time translation models were constructed using lasso
regression, conventional matrix inversion, and entropy maximization. The inferred
interactions were ranked by differential magnitude to identify pathway differences.

In this study, we introduce a method that performs statistical analysis of protein-pairs to
construct protein networks, unlike most studies where proteins are analyzed individually.
Instead of taking the ratio of the expression levels of the proteins, we analyze the protein
pairs via a multivariate analysis of variance (MANOVA) to test for patterns, where the
expression levels of a protein pairs are considered as a bivariate outcome. This approach
allows a higher power of identifying significant changes than the ratio comparison. In
addition, we introduced a new scoring criterion that utilizes the significance and the
correlation of each protein pair, as well as the importance of each protein, for construction of
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a network. This differs with information-theoretic methods, which constructs networks
based on the associations of protein pairs using metrics such as correlation, and mutual
information [12-13]. These information-theoretic methods will not work well on this dataset
since only limited samples exist for each condition while our proposed method will perform
well under this restriction. Another typical network based method is weighted gene co-
expression network analysis (WGCNA), which mainly focuses on identifying clusters [14].
This differs with our aim to identify protein markers. In addition, it is unclear how well
WGCNA performs under small sample size restrictions. To explore the mechanisms of
resistance to therapies targeting estrogen pathways in the treatment of estrogen receptor
(ER) positive breast cancer, we previously performed a systemic biological screening of a
library of siRNAs targeting an ER- and aromatase-centered network [15]. We identified 46
genes that are dispensable in the estrogen-dependent MCF7 cell lines, but are selectively
required for the survival of estrogen-independent MCF7-derived cell lines (LCC1 and
LCC9). Based on viability data, we selected four genes: Transducer of ERBB2, 1 (7OBI),
Polymerase (RNA) Il subunit B (POLRZ2B), Proteasome 26S Subunit ATPase 5 (PSMC5),
and Cysteine Rich Angiogenic Inducer 61 (CYR61). These genes were knocked down
individually in each cell line to explore their role in the survival of estrogen-independent ER
positive cells and the impact on the signaling architecture of cancer-focused pathways.

We evaluated the proposed computational method using RPPA data derived from breast
cancer cells with activation/phosphorylation of 76 key signaling proteins in MCF7, LCC1
and LCC9 cells. Interaction networks between the proteins and phosphorylated proteins
were constructed to determine the proteins that significantly changed when a gene was
knocked down. The networks were built through the recognition of protein-protein
interactions by identifying those pairs of proteins whose expression levels changed in each
knockdown at 48h, 96h, and 144h compared to the negative control (without gene
knockdown) for cell lines MCF7, LCC1 and LCC9 [11]. A topological analysis of the
networks identified key proteins in each network that can play an important role in estrogen-
dependent and estrogen-independent cell lines.

The rest of the paper is organized as follows. Section Il describes the cell lines, the workflow
for the analysis of RPPA data, the proposed MANOVA model for network construction, the
protein-protein pair correlative analysis, and topological analysis of the resulting networks.
Section 111 presents the networks generated by the analysis of temporal RPPA data and the
key proteins identified for each network. Finally, Section IV summarizes the work and
discusses future goals.

[l. Materials and methods

A. Reverse phase protein array (RPPA) expression data

To explore the roles of POLR2B, TOB1, CYR61 and PSMC5 genes in the survival of
estrogen-independent cells and the impact on the signaling architecture of cancer-focused
pathways, basal expression and activation of 76 key signaling proteins in MCF7, LCC1 and
LCC9 cells were analyzed using RPPA. MCF7 is an ER positive and estrogen-dependent
breast adenocarcinoma cell line and sensitive to treatment with the anti-estrogen (AE)
reagents: tamoxifen and fulvestrant. LCCL1 is derived from MCF7 and selected in vivo for
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estrogen-independence, which commonly reflects resistance to aromatase inhibition (Al),
but remains sensitive to tamoxifen and fulvestrant. LCC9, further derived by selection from
LCC1 cells, is resistant to both tamoxifen and fulvestrant [16, 17].

The four genes for knockdown in each cell line were selected from a previous study [15] that
aimed to identify new points of vulnerability in estrogen-independent, AE/Al-resistant
breast cancers. The study identified a group of genes with action specifically required for the
survival of estrogen independent cells. Tumor suppressor gene TOB1 was identified as a
critical determinant of estrogen-independent ER-positive breast cell survival. In addition to
TOBI1 gene, other 45 genes presented potential function in estrogen-independent growth of
ER positive breast cancer. In order to broaden the understanding of the mechanisms of
estrogen-independent growth, based on viability data, 7081 and three genes (POLRZB,
CYR61, and PSMC5) were selected for knockdown experiments and RPPA based analysis.
These knocked-down genes in the estrogen-independent breast cancer cell lines also
demonstrated varying levels of apoptotic activity, and were chosen for RPPA based analysis
to compare signaling pathways affected by knockdown of each gene. 7OB1, POLR2B
CYR61, PSMC5, or negative scrambled siRNAs with a final concentration of 10nM were
reverse transfected into cells for 48h, 96h and 144h. Triplicates of each transfection were
collected for analysis by RPPA [18]. We used 76 antibodies listed in ref. [15] for acquisition
of RPAA data as described previously [19].

B. Protein-protein pair correlation analysis and protein network construction

Figure 1 presents the overall workflow for the analysis of RPPA data. Following
normalization of the RPPA data, protein pairs were created and the expression levels were
analyzed for each protein pair.

The expression level of each protein pair was considered as a bivariate outcome to build a
three-way MANOVA model with knockdown, time, and cell line as factors, as well as all the
possible interactions. Eq. (1) presents the three-way MANOVA model.

Yiki=ptai+B;+7+(aB);;+(0r) 4+ (BY) i +(@BY) i teiju Eq. (1)

where
. Yijks 18 the two-dimensional protein pair observation
. W is the overall mean across all the observations

. a;is the cell line effects for MCF7, LCC1, and LCC9, such that Za.;=0

. B is the group effects of SINEG and the knockdown genes POLR2B, TOBL,
CYR®61, and PSMCS5, such that 28,= 0

. Y« is time point effects at 48h, 96h, and 144h, such that Zy,=0

. (ap),jis the interaction between cell line and group effects, such that Z{ap) ;=
Z[aB);=0
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. (ay) jk is the interaction between cell line and time points, such that Z{a.y) x =
Zay) k=0

. (B),« is the interaction between group and time points, such that Z{By) x =
ZiBY)jk=0

. (aPy) ik is the interaction between cell lines, group, and time points, such that
ZAaBy) k= Z aPy) k= ZKaBy)jk=0

. &jjk/1s the random error independent and identically distributed from a bivariate

normal distribution with mean vector 0, and variance covariance matrix Z.

For example, J4111 is the first measurement of cell line MCF7 siNEG group at 48h; a; is the
cell line effect of MCF7; By is the group effect 0 SINEG; and 1 is the effect of time point
48h.
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To control false discovery rate (FDR) in multiple testing, adjusted p-values were calculated
following the Benjamini and Hochberg procedure [20]. This is the first step to select the
protein pairs that are different across time points, cell lines, or knockdown experiments. To
select the protein pairs for the pair-wise group comparisons, we estimated the quantile
values of the adjusted p-values of testing a, B, y, a B, a v, p vy and a B y. These protein
pairs were then chosen for the pair-wise group comparisons and to construct the networks.
This was based on a global test to determine the in- group comparisons, the difference
between the negative controls (SINEG) and the knockdown for each gene is compared for all
three cell lines at each of the time points, separately. Significant protein pairs were selected
based on the Hotelling’s 72 test comparing each knockdown vs. negative controls, i.e., to
test

Ho:pg=t15, Haipbyp # M1
where W= W+ aj+ B+ yyis the mean of cell line / group /at time point & and /=1

denotes the sINEG group. Under Hg, the test statistic
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X J— — T — — p—
Ti?k:_NLQE (Yijk-*}’ﬂk:.) E! (ijk-*Yilkz.) NTQ(Z’/UF]>
—2{1
Fyp=-t =T~ F(2,v,~2+1)

where § jix is the sample mean of cell line / group /at time point &; E is the error sum of
squares matrix; 72(2,vg) is the Hotelling’s 72 distribution with degrees of freedom (2, vg);
F2,ve- 2 + 1) is the ~distribution with degrees of freedom (2,ve- 2 + 1); and ve= abo(n
- 1)is the error degrees of freedom, a = 3 is the number of cell lines, 6 =5 is the number of
groups, ¢ = 3 is the number of time points, and 7= 3 is the number of replicates.

For each knockdown gene, nine comparisons were performed. For example, for the
knockdown gene TOB1, the comparisons are siNEG vs. siTOBL1 for LCC1, LCC9, and
MCF7, at each of the three time points (48h, 96h, and 144h). Each protein pair was then
scored based on its significance level in the group comparisons, correlation coefficient, and
the number of times each protein is significant in a pair in the three-way MANOVA model.
Eq. (2) illustrates how the score was calculated.

#a X #Y
pfvalue;jﬁy Eq. (2)

gk _ | ik
Scorewfy_mwfyl X 1OglO <

where p:ffy is the Pearson correlation coefficient between protein xand protein yin cell line

/at time point & of knockdown group J; p—valueﬁ{fg is the p-value of testing Ho: ik = Mk
for protein pairs xand y; and #xand #y are the number of times proteins xand yare

significant in the three-way MANOVA analysis, respectively.

A threshold value was used to select the high scoring protein pairs, with a score > mean

+ 2SD (SD: standard deviation). This scoring criterion aids in the construction of interaction
networks which takes into account the significance as well as the correlation between the
proteins. It helps to identify those proteins or phosphorylated proteins that appear in a large
number of significant pairs. The prevalence of these proteins in significantly different pairs
will make them potential targets or that could be affecting signaling networks. Figure 2A
shows a schematic representation of the protein pair analysis using MANOVA. The
expression level of each protein pair is represented as a bivariate input to the MANOVA
model. For the 76 proteins from our study, 2850 protein pairs will be generated. Figure 2B
represents how the top scoring protein pairs that are significantly selected in MANOVA
analysis and pair-wise analysis using Eq (2) are used to construct the networks.

As described above, we considered the paired expression levels as bivariate outcomes
instead of taking the ratio for univariate analysis (e.g., the paired #test). In the following, we
discuss one of the shortcomings of constructing a network based on the ratio of a pair of
proteins. We assume the case in which the ratio of effect size compared to negative control is
the same as the ratio of expression level in the knockdown group, based on the relationship
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where X'is the expression level of protein xin the gene knockdown group and X is the
expression level in the negative control group. From this, we can conclude that the difference
of the ratio comparing the knockdown group and negative control is zero, which is
insignificant in the paired #test. However, the difference in the expression levels X - X
and/or Y- Y can be significant. By conducting tests on the ratio, it may fail to identify this
significant change and result in an inflated p-value. Second, for proteins with large effect
size, the significance of the ratio may depend on whether it serves as the numerator or the
denominator, influencing the times of the protein to be significant in the definition of the
score (Eq. (2)). For example, the expression level of the negative control group is (Xg Yo =
(2,1), considering two cases of the gene knockdown group: (1) (X1, Y1) = (2,1); and (2)

(X5, Y2) = (22,11). For all three pairs, the ratio is two. If we compare knockdown group with
the negative control group, the difference is zero. If we do a bivariate comparison, the
difference between knockdown group and the negative control is (1) (X3, Y1) — (X Yo =
(0,0) and (2) (X2, Y2) — (Xa Yo =(20,10). For case (1), there is no difference between
knockdown and negative control, while case (2) the difference is significant.

C. Topological analysis of the networks

Given a network, topological analysis can help discover hidden patterns to identify key
nodes in that network [21]. Common metrics for network topological analysis include node
degree, node betweenness, node closeness, node eigenvector centrality, efc. Node degree
measures the number of connections for a node. Node betweenness counts how many times
a node acts as bridge in the shortest path between two other nodes. Node closeness is
defined as the reciprocal of the total distance from one node to all others. For a node located
more centrally in the network, its total distance to the others is smaller and thus its closeness
is larger. Node eigenvector centrality reveals the importance of a node by assigning relative
scores to all nodes based on the idea that connections to high-scoring nodes contribute more
to the score than connections to low-scoring nodes. Google’s PageRank algorithm is one
variant of the node eigenvector centrality metric [22]. Past studies have used these network
topological metrics as complements to individual gene or gene sets as features to build
classification models and achieved improved performance in predicting phenotype-gene
association in breast cancer [23]. In our analysis, we mainly focus on node centralities for
protein marker identification. However, metrics such as node betweenness can also provide
meaningful information from edges in the network. Other edge centralities and advanced
node centrality metrics such as “party” and “date™ hubs can be used for further evaluation
and might provide complementary information in addition to the above metrics we used
[24].

When multiple networks are available, it is desirable to identify key nodes in each network
and compare them across different networks to generate hypothesis for further validation.
Selecting the key proteins based on visual observation is one way. But networks can be
complicated and visual observation are prone to be biased. Considering this, we prefer to use
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the metrics mentioned above to select key proteins in each network. In our study, four gene
knockdown experiments were conducted (i.e., TOB1, POLR2B, CYR61 and PSMC5). Nine
networks were constructed for each gene knockdown experiment involving three cell lines
(i.e., MCF7, LCC1 and LCC9) at three time points (i.e., 48h, 96h and 144h). By using node
degree, node betweenness, node closeness, and node eigenvector centrality metrics, we
identified key proteins that consistently showed up across three time points for each gene
knockdown experiment. For each network, we selected the top five proteins according to the
above four network topological metrics. Then, we identified proteins that are among the top
five for at least three of the four metrics as key proteins for that network. The same
procedure was applied to all nine networks for each knockdown experiment.

D. Implementation

The MANOVA code and pairwise comparisons script were written in Matlab (MathWorks).
Network representations were graphed in Cytoscape, version 3.5.0-RC2 [25], and DyNet
Cytoscape application [26]. Topological analysis was performed by using R package igraph
[27]. Programs were run on Windows 7 desktop (i-2600 CPU @ 3.40GHz, 16GB RAM, 64-
bit Operating system). The source code and related data used are available at https://
github.com/Hurricaner1989/RPPA-Matlab-R-codes.

[1l. Results and discussion

Figure 3 depicts a heatmap of the changes in expression levels of each protein in MCF7,
LCC1 and LCCQ for all knock-down experiments compared to it SINEG controls. The figure
gives us an overall representation of how a protein has changed its expression for a particular
condition (time point and knock-down experiment) when compared to its negative control.
Figure 4 shows the nine interaction networks generated for each group comparison when
TOB1 was knock-down. Similar networks were constructed for POLR2B, CYR61, and
PSMCS5 (not shown). Nine group comparisons were performed for each knockdown gene for
MCF7, LCC1, and LCC9 cells at 48h, 96h, and 144h against its corresponding SiNEG. We
focused on the proteins that appear in a large number of significant pairs. The ubiquity of
these proteins in significantly different pairs between siNEG and knockdown group will
make them potential targets that could broadly affect signaling in the cells. We used
Cytoscape to build the networks. Red nodes represent upregulated proteins and blue nodes
represent downregulated proteins when compared with siNEG. The node size is proportional
to the number of times the protein appears in significant pairs. A red edge in the network
depicts positive correlation between the pairs and a blue edge depicts negative correlation.
The edge thickness is proportional to the score defined in Eq. (2) for the protein pair. There
was no protein pair selected as significant in the comparison against siNEG at 144h for
LCC9 when PSMC5 was knocked down. Therefore, no network was constructed for this
comparison.

In order to compare the differences between estrogen dependent network (MCF7) and
estrogen independent network (LCC1 and LCC9), we combined the interaction networks
derived from LCC1 and LCC9 data and compared it against the MCF7 network generated
for TOBL1 at 48h. Figure 5 shows the networks generated using DyNet to compare MCF7 vs.
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LCC1-LCC9. To view the networks graphically, we used DyNet, a Cytoscape application to
import and compare multiple graph files. A central reference network is generated first from
the union of the networks. A pair-wise comparison is then performed by calculating the /og,
fold-change of the attribute value. A score is computed and used to highlight the most
variable nodes and edges on the central reference network, using a color gradient (Figure
5A). The D -score, is a rewiring metric to support the identification of the most rewired
nodes [25]. Figure 5A represents the combined network which shows the most rewired
proteins. Figure 5B shows a differential network for MCF7 and LCC1- LCC9 combined
network focusing only on the most important nodes. The edges specific to LCC1-LCC9
combined network is colored in red and those unique to MCF7 are colored in green. In this
comparison, we can see that CCND1 has more signaling activity in estrogen independent
network compared to MCF7, and phosphorylated protein RPS6KB1 and phosphorylated
MAPKZ14 have more activity in MCF7, the estrogen dependent network. These nodes are
candidates that can be used to further investigate the differences between estrogen dependent
and independent cell lines.

A total of 36 protein networks were generated from all four knock-down experiments. In
order to discover hidden patterns and identify key nodes, we performed a topological
analysis of these individual networks. Table 1 shows the results of topological analysis of
networks for all four gene knock-down experiments (e.g., Figure 4). The table lists the top
five proteins from each metric for all nine networks in each gene knock-down experiment.
Table 2 presents a summary of the key proteins for each gene knock-down experiment using
each cell line across three time points. The unique key proteins for each cell line in each
gene knock-down experiment are marked in red. In Figure 5, rewiring proteins are
highlighted based on a rewiring score (i.e., D,-score), defined to represent the variation of
that node across multiple networks. The rewiring proteins are specific to one comparison. In
contrast, Tables 1-2 selected key proteins in each network. As a complement to network
analysis in Figure 5, they can be used to help generate various hypotheses for further
validation. For example, in comparing MCF7 vs LCC1 and LCC9, from the networks
constructed using protein pair analysis for TOB1 knockdown, we can see that p21
(CDKN1A) and cyclin D1 (CCND1) were inferred as major signaling activation nodes in the
TOB1-regulated network of LCC1 and LCC9 cells. Both protein expressions were up-
regulated after TOB1 knockdown and experimental data proved that p21 and cyclin D1 were
positively correlated (Figure 6). Expression of p21 and Cyclin D1 was both induced by
TOB1 knockdown consistent with RPPA analysis. Knockdown of p21 decreased Cyclin D1
level in the absence or presence of siTOB1, which presented a positive correlation between
p21 and Cyclin D1. Pathway analysis using Ingenuity Pathway Analysis (IPA) following the
network construction inferred p21 and cyclin D1 as major signaling activation nodes in the
TOBJ1-regulated network of LCC1 and LCC9 cells [15]. HMOX1 (Heme oxygenase 1),
which is known to be involved in stress responses, was significantly activated at 48h and 96h
following transfection of siPOLR2B, siPSMC5 and CYR61, as compared with non-silencing
siRNA. We hypothesize that HMOX1 is a key driver in the pro-survival signaling LCC1 and
LCC9 cells following transfection with POLR2B and PSMC5 (Tables 1 and 2). pACACA is
highly activated after 48h gene knockdown of CYR61 in LCC1 cells. In breast cancer,
chromosome 17q, the location of ACACA, has increased copy number in HER2 and luminal
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A classified breast cancer tumors. ACACA is over expressed in LCC1 compared to MCF7
cells. ACACA is known to be involved in invadopodia formation.

V. Conclusions

We propose a novel method for statistical analysis of protein-pairs to construct protein
networks as an alternative to the typical analysis of individual proteins. This is accomplished
by using a multivariate analysis of variance and a new scoring criterion. In contrast to using
the ratio between a pair of proteins, our method considers the expression levels of a protein
pair as the bivariate outcome, which can yield a higher power of identifying significant
changes than the univariate ratio comparison. The method is used to construct networks
based on temporal RPPA data acquired from four gene-knockdown experiments in three
breast cancer cell lines. Using a topological comparison of the constructed networks, the top
five proteins from each network metric are identified. Additional analysis of these proteins
helps to select key proteins that are uniquely associated with each cell line, when compared
across the three time points. Future work will focus on validation of the key proteins
discovered in this study and identification of other proteins that are associated or unique to
knockdown genes or the cell lines to help generate new hypotheses.
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Highlights

A novel computational method is proposed for constructing protein networks
based on reverse phase protein array (RPPA) data to identify complex patterns
in protein signaling.

Protein networks are constructed by analyzing the expression levels of protein
pairs using a multivariate analysis of variance model.
A new scoring criterion is introduced to select relevant top protein pairs.

Key proteins that are associated with significant changes in expression levels
across various experimental conditions are identified through network
topology analysis.
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RPPA data for all
knock down genes
(KDG)

76 proteins

+3 cell lines (MCF7,LCC1, LCC9)

+5 groups (NEG, CYR61, POLR2B,
PSMC5, TOB1)

+3 time points (48h, 96h, 144h)
*3 replicates

Create protein pairs (multivariate)

Analysis of protein
pairs using MANOVA

2850 protein pairs

Pair-wise comparison
(siKDG vs. sINEG)

36 comparisons

Compute score for protein pairs in each comparison

score > mean+2SD

Construct network for each comparison

Topology analysis of networks

Figure 1.

An overview of the workflow for RPPA data analysis.
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Figure 2.
A: a schematic representation of the protein pair analysis using MANOVA. The expression

level of each protein pair is represented as a bivariate input to the MANOVA model. B: the
construction of protein networks for each group comparison. The top scoring protein pairs
that are significantly selected in MANOVA analysis and pair-wise analysis are used to
construct the protein networks.
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Cell time point

LcC1 [ 144h
W LCCo [ 48h
W mcF7 M 96h

Protein name

pBcl-2 S70
PFKHRL1 §253
Bax

021 Waf1/Cip1
DErbB3 Y1289
Cyciin D1

PRet Y905
PpAurora A/B/C T288/232/198
DPRAS40 T246
PAMPKB1 S108
PPLK1 T210
plkBa S32/36
DPPKA CT197
BIM

DErbB2 Y877

P4EBP1 T70

Ki67

DFADD S194

pp70 SE Kinase S371

PBAD S112

DPBAD S155

PPTEN $380

D4EBP1 S65

pS6 Ribosomal Protein S240/244

PmMTOR S2448
oB-Raf 5445

Survivin
pAcetyl-CoA Carboxylase S79
Kit Y703

pe-
DLKB1 5334
plak1 Y1022/23

027 Kip1

pSrc Y527
pc-Raf S338
PRSK3 T356/5360
DPPYORSK S380

53
PErbB2 Y1248
PIGF-1R/IR Y1135/36/1150/51
pe-Kit Y719
pSrc Family Y416
Cleaved Caspase 6 D162
Cleaved Caspase 7 D198
Heme-Oxyaenase-1

dducin S662
PGSK-3a/B S21/9
PERK1/2 T202/Y204
DPSAPK/INK T183/Y185
PCREB 5133
phlet Y1234/35

k2 Y402

DStatS Y694
PEGFR Y1173
PFKHR 5256

EGFR
Cleaved Caspase 9 D330

pTuberin/TSC Y1571

DPFAK YS76/577

pp38 MAPK T180/Y182

PAMPKa1 S485

pVav3 Y173

DPMEK1/2 S217/221
VEGFR2 Y996

pStat3 S727

pSmad1/5/8 SS/SS/SS

Sox2

DNFKB p65 S536
pShc Y317
PSvk Y525/526

Gene Symbol

Heatmap of changes in protein expression for siRNA-transfected MCF7, LCC1, and LCC9
cells at 48h, 96h and 144h for TOB1, POLR2B, PSMC5, and CYR61 knock down genes

using the corresponding negative controls (SINEG) as references.
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TOB1 Network

Figure 4.
Protein networks constructed using significant protein-pairs (TOB1 knockdown vs. negative

control) for each cell line and each time point.
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A: Combined network with most varying nodes and edge changes highlighted for MCF7 vs.
LCC1-LCC9. B: Differential network for the most re-wired nodes showing the edge changes

in MCF7 vs. LCC1-LCCo.
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48 h 96 h
siRNA(20 nM) Neg p21 Tob1 P+T Neg p21 Tob1 P+T

p21 - — - -

CyclinD1 | === s > o o P

GAPDH -------.I

Figure 6.
P21 positively correlated with cyclin D1 after TOB1 knockdown. 20 nM siRNAs against

negative, p21 or TOB1 were transfected in LCCL1 cells for 48 h and 96 h. Western blot was
used to detect protein expression.
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