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Abstract

In this paper, we introduce a novel computational method for constructing protein networks based 

on reverse phase protein array (RPPA) data to identify complex patterns in protein signaling. The 

method is applied to phosphoproteomic profiles of basal expression and activation/

phosphorylation of 76 key signaling proteins in three breast cancer cell lines (MCF7, LCC1, and 

LCC9). Temporal RPPA data are acquired at 48h, 96h, and 144h after knocking down four genes 

in separate experiments. These genes are selected from a previous study as important determinants 

for breast cancer survival. Interaction networks are constructed by analyzing the expression levels 

of protein pairs using a multivariate analysis of variance model. A new scoring criterion is 

introduced to determine relevant protein pairs. Through a network topology based analysis, we 

search for wiring patterns to identify key proteins that are associated with significant changes in 

expression levels across various experimental conditions.
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I. Introduction

In cancer, genetic and epigenetic changes are often associated with disease development. 

Studying epigenetic changes such as protein phosphorylation will greatly aid in 

understanding the causes and determining effective treatment of cancers and other diseases. 

With the development of personalized therapeutics for oncology, the systematic and targeted 

analysis of selected proteins including phosphorylated proteins in tumor tissues is receiving 

increasing interest [1]. Reverse-phase protein arrays (RPPAs) have emerged as a useful tool 

for the large-scale analysis of protein expression and protein activation, allowing for the 

specific detection and quantification of proteins in a reproducible and highly parallelized 

manner [2]. Besides monitoring differential expression, RPPAs allow the profiling of 

differential protein modification. Due to the dependency on dot blot compatible antibodies, 

the number of detectable proteins is limited, but a large number of samples can be profiled 

due to the reverse array format. Therefore, RPPAs can be used in complex studies, where the 

impact of multiple experimental factors (e.g., multiple treatments, doses, and time points) on 

protein expression and cellular signaling is investigated [3].

RPPA data analysis is still a growing area of research. Studies utilizing RPPA data have 

employed a diverse range of data pre-processing and benchmarking methods, but no single 

protocol for processing RPPA data has been universally accepted [4–8]. Some of the tools 

include a web-based data analysis pipeline RPPApipe [3] and an R-package RPPanalyzer 

[9]. A review of the tools and software approaches developed for RPPA data normalization 

and data analysis can be found in ref. [10]. In a typical RPPA data analysis, proteins are 

analyzed individually and expression values are considered to be of primary interest. 

However, since proteins function in networks and interact with many partners, a network-

based approach is desired to analyze the RPPA-based protein expression data. For example, 

RPPA were used to analyze the expression of 203 proteins in cells taken from acute myeloid 

leukemia (AML) patients using a network-based approach [11]. Dominant overlapping 

protein networks between subtypes of AML patients were characterized using a paired t-test 

and lasso regression analysis. Signaling networks were constructed from the protein pairs 

that were significantly different. Predicted networks were also compared to known networks 

from public protein–protein interaction and signaling databases. In a recent study, the levels 

of 134 proteins measured in 21 breast cancer cell lines stimulated with IGF1 or insulin for 

up to 48 hours were evaluated by network analysis [8]. Specifically, directed protein 

expression networks named as time translation models were constructed using lasso 

regression, conventional matrix inversion, and entropy maximization. The inferred 

interactions were ranked by differential magnitude to identify pathway differences.

In this study, we introduce a method that performs statistical analysis of protein-pairs to 

construct protein networks, unlike most studies where proteins are analyzed individually. 

Instead of taking the ratio of the expression levels of the proteins, we analyze the protein 

pairs via a multivariate analysis of variance (MANOVA) to test for patterns, where the 

expression levels of a protein pairs are considered as a bivariate outcome. This approach 

allows a higher power of identifying significant changes than the ratio comparison. In 

addition, we introduced a new scoring criterion that utilizes the significance and the 

correlation of each protein pair, as well as the importance of each protein, for construction of 
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a network. This differs with information-theoretic methods, which constructs networks 

based on the associations of protein pairs using metrics such as correlation, and mutual 

information [12–13]. These information-theoretic methods will not work well on this dataset 

since only limited samples exist for each condition while our proposed method will perform 

well under this restriction. Another typical network based method is weighted gene co-

expression network analysis (WGCNA), which mainly focuses on identifying clusters [14]. 

This differs with our aim to identify protein markers. In addition, it is unclear how well 

WGCNA performs under small sample size restrictions. To explore the mechanisms of 

resistance to therapies targeting estrogen pathways in the treatment of estrogen receptor 

(ER) positive breast cancer, we previously performed a systemic biological screening of a 

library of siRNAs targeting an ER- and aromatase-centered network [15]. We identified 46 

genes that are dispensable in the estrogen-dependent MCF7 cell lines, but are selectively 

required for the survival of estrogen-independent MCF7-derived cell lines (LCC1 and 

LCC9). Based on viability data, we selected four genes: Transducer of ERBB2, 1 (TOB1), 

Polymerase (RNA) II subunit B (POLR2B), Proteasome 26S Subunit ATPase 5 (PSMC5), 

and Cysteine Rich Angiogenic Inducer 61 (CYR61). These genes were knocked down 

individually in each cell line to explore their role in the survival of estrogen-independent ER 

positive cells and the impact on the signaling architecture of cancer-focused pathways.

We evaluated the proposed computational method using RPPA data derived from breast 

cancer cells with activation/phosphorylation of 76 key signaling proteins in MCF7, LCC1 

and LCC9 cells. Interaction networks between the proteins and phosphorylated proteins 

were constructed to determine the proteins that significantly changed when a gene was 

knocked down. The networks were built through the recognition of protein-protein 

interactions by identifying those pairs of proteins whose expression levels changed in each 

knockdown at 48h, 96h, and 144h compared to the negative control (without gene 

knockdown) for cell lines MCF7, LCC1 and LCC9 [11]. A topological analysis of the 

networks identified key proteins in each network that can play an important role in estrogen-

dependent and estrogen-independent cell lines.

The rest of the paper is organized as follows. Section II describes the cell lines, the workflow 

for the analysis of RPPA data, the proposed MANOVA model for network construction, the 

protein-protein pair correlative analysis, and topological analysis of the resulting networks. 

Section III presents the networks generated by the analysis of temporal RPPA data and the 

key proteins identified for each network. Finally, Section IV summarizes the work and 

discusses future goals.

II. Materials and methods

A. Reverse phase protein array (RPPA) expression data

To explore the roles of POLR2B, TOB1, CYR61 and PSMC5 genes in the survival of 

estrogen-independent cells and the impact on the signaling architecture of cancer-focused 

pathways, basal expression and activation of 76 key signaling proteins in MCF7, LCC1 and 

LCC9 cells were analyzed using RPPA. MCF7 is an ER positive and estrogen-dependent 

breast adenocarcinoma cell line and sensitive to treatment with the anti-estrogen (AE) 

reagents: tamoxifen and fulvestrant. LCC1 is derived from MCF7 and selected in vivo for 

Varghese et al. Page 3

Methods. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estrogen-independence, which commonly reflects resistance to aromatase inhibition (AI), 

but remains sensitive to tamoxifen and fulvestrant. LCC9, further derived by selection from 

LCC1 cells, is resistant to both tamoxifen and fulvestrant [16, 17].

The four genes for knockdown in each cell line were selected from a previous study [15] that 

aimed to identify new points of vulnerability in estrogen-independent, AE/AI-resistant 

breast cancers. The study identified a group of genes with action specifically required for the 

survival of estrogen independent cells. Tumor suppressor gene TOB1 was identified as a 

critical determinant of estrogen-independent ER-positive breast cell survival. In addition to 

TOB1 gene, other 45 genes presented potential function in estrogen-independent growth of 

ER positive breast cancer. In order to broaden the understanding of the mechanisms of 

estrogen-independent growth, based on viability data, TOB1 and three genes (POLR2B, 
CYR61, and PSMC5) were selected for knockdown experiments and RPPA based analysis. 

These knocked-down genes in the estrogen-independent breast cancer cell lines also 

demonstrated varying levels of apoptotic activity, and were chosen for RPPA based analysis 

to compare signaling pathways affected by knockdown of each gene. TOB1, POLR2B 
CYR61, PSMC5, or negative scrambled siRNAs with a final concentration of 10nM were 

reverse transfected into cells for 48h, 96h and 144h. Triplicates of each transfection were 

collected for analysis by RPPA [18]. We used 76 antibodies listed in ref. [15] for acquisition 

of RPAA data as described previously [19].

B. Protein-protein pair correlation analysis and protein network construction

Figure 1 presents the overall workflow for the analysis of RPPA data. Following 

normalization of the RPPA data, protein pairs were created and the expression levels were 

analyzed for each protein pair.

The expression level of each protein pair was considered as a bivariate outcome to build a 

three-way MANOVA model with knockdown, time, and cell line as factors, as well as all the 

possible interactions. Eq. (1) presents the three-way MANOVA model.

Eq. (1)

where

• yijkl is the two-dimensional protein pair observation

• μ is the overall mean across all the observations

• αi is the cell line effects for MCF7, LCC1, and LCC9, such that Σαi = 0

• βj is the group effects of siNEG and the knockdown genes POLR2B, TOB1, 

CYR61, and PSMC5, such that Σβj = 0

• γk is time point effects at 48h, 96h, and 144h, such that Σγk = 0

• (αβ)ij is the interaction between cell line and group effects, such that Σi(αβ)ij = 

Σj(αβ)ij = 0
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• (αγ)ik is the interaction between cell line and time points, such that Σi(αγ)ik = 

Σk(αγ)ik = 0

• (βγ)jk is the interaction between group and time points, such that Σj(βγ)jk = 

Σk(βγ)jk = 0

• (αβγ)ijk is the interaction between cell lines, group, and time points, such that 

Σi(αβγ)ijk = Σj(αβγ)ijk = Σk(αβγ)ijk = 0

• εijkl is the random error independent and identically distributed from a bivariate 

normal distribution with mean vector 0, and variance covariance matrix Σ.

For example, y1111 is the first measurement of cell line MCF7 siNEG group at 48h; α1 is the 

cell line effect of MCF7; β1 is the group effect o siNEG; and γ1 is the effect of time point 

48h.

To control false discovery rate (FDR) in multiple testing, adjusted p-values were calculated 

following the Benjamini and Hochberg procedure [20]. This is the first step to select the 

protein pairs that are different across time points, cell lines, or knockdown experiments. To 

select the protein pairs for the pair-wise group comparisons, we estimated the quantile 

values of the adjusted p-values of testing α, β, γ, α β, α γ, β γ and α β γ. These protein 

pairs were then chosen for the pair-wise group comparisons and to construct the networks. 

This was based on a global test to determine the in- group comparisons, the difference 

between the negative controls (siNEG) and the knockdown for each gene is compared for all 

three cell lines at each of the time points, separately. Significant protein pairs were selected 

based on the Hotelling’s T2 test comparing each knockdown vs. negative controls, i.e., to 

test

where μijk = μ + αi + βj + γk is the mean of cell line i, group j at time point k, and j=1 

denotes the siNEG group. Under H0, the test statistic
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where ȳijk· is the sample mean of cell line i, group j at time point k; E is the error sum of 

squares matrix; T2(2,vE) is the Hotelling’s T2 distribution with degrees of freedom (2,vE); 

F(2,vE − 2 + 1) is the F-distribution with degrees of freedom (2,vE − 2 + 1); and vE = abc(n 
− 1)is the error degrees of freedom, a = 3 is the number of cell lines, b = 5 is the number of 

groups, c = 3 is the number of time points, and n = 3 is the number of replicates.

For each knockdown gene, nine comparisons were performed. For example, for the 

knockdown gene TOB1, the comparisons are siNEG vs. siTOB1 for LCC1, LCC9, and 

MCF7, at each of the three time points (48h, 96h, and 144h). Each protein pair was then 

scored based on its significance level in the group comparisons, correlation coefficient, and 

the number of times each protein is significant in a pair in the three-way MANOVA model. 

Eq. (2) illustrates how the score was calculated.

Eq. (2)

where  is the Pearson correlation coefficient between protein x and protein y in cell line 

i at time point k of knockdown group j;  is the p-value of testing H0: μijk = μi1k 

for protein pairs x and y; and #x and #y are the number of times proteins x and y are 

significant in the three-way MANOVA analysis, respectively.

A threshold value was used to select the high scoring protein pairs, with a score > mean 

+ 2SD (SD: standard deviation). This scoring criterion aids in the construction of interaction 

networks which takes into account the significance as well as the correlation between the 

proteins. It helps to identify those proteins or phosphorylated proteins that appear in a large 

number of significant pairs. The prevalence of these proteins in significantly different pairs 

will make them potential targets or that could be affecting signaling networks. Figure 2A 

shows a schematic representation of the protein pair analysis using MANOVA. The 

expression level of each protein pair is represented as a bivariate input to the MANOVA 

model. For the 76 proteins from our study, 2850 protein pairs will be generated. Figure 2B 

represents how the top scoring protein pairs that are significantly selected in MANOVA 

analysis and pair-wise analysis using Eq (2) are used to construct the networks.

As described above, we considered the paired expression levels as bivariate outcomes 

instead of taking the ratio for univariate analysis (e.g., the paired t-test). In the following, we 

discuss one of the shortcomings of constructing a network based on the ratio of a pair of 

proteins. We assume the case in which the ratio of effect size compared to negative control is 

the same as the ratio of expression level in the knockdown group, based on the relationship
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where X is the expression level of protein x in the gene knockdown group and XC is the 

expression level in the negative control group. From this, we can conclude that the difference 

of the ratio comparing the knockdown group and negative control is zero, which is 

insignificant in the paired t-test. However, the difference in the expression levels X − XC 

and/or Y − YC can be significant. By conducting tests on the ratio, it may fail to identify this 

significant change and result in an inflated p-value. Second, for proteins with large effect 

size, the significance of the ratio may depend on whether it serves as the numerator or the 

denominator, influencing the times of the protein to be significant in the definition of the 

score (Eq. (2)). For example, the expression level of the negative control group is (XC, YC) = 

(2,1), considering two cases of the gene knockdown group: (1) (X1,Y1) = (2,1); and (2) 

(X2,Y2) = (22,11). For all three pairs, the ratio is two. If we compare knockdown group with 

the negative control group, the difference is zero. If we do a bivariate comparison, the 

difference between knockdown group and the negative control is (1) (X1,Y1) − (XC, YC) = 

(0,0) and (2) (X2,Y2) − (XC, YC) =(20,10). For case (1), there is no difference between 

knockdown and negative control, while case (2) the difference is significant.

C. Topological analysis of the networks

Given a network, topological analysis can help discover hidden patterns to identify key 

nodes in that network [21]. Common metrics for network topological analysis include node 

degree, node betweenness, node closeness, node eigenvector centrality, etc. Node degree 

measures the number of connections for a node. Node betweenness counts how many times 

a node acts as bridge in the shortest path between two other nodes. Node closeness is 

defined as the reciprocal of the total distance from one node to all others. For a node located 

more centrally in the network, its total distance to the others is smaller and thus its closeness 

is larger. Node eigenvector centrality reveals the importance of a node by assigning relative 

scores to all nodes based on the idea that connections to high-scoring nodes contribute more 

to the score than connections to low-scoring nodes. Google’s PageRank algorithm is one 

variant of the node eigenvector centrality metric [22]. Past studies have used these network 

topological metrics as complements to individual gene or gene sets as features to build 

classification models and achieved improved performance in predicting phenotype-gene 

association in breast cancer [23]. In our analysis, we mainly focus on node centralities for 

protein marker identification. However, metrics such as node betweenness can also provide 

meaningful information from edges in the network. Other edge centralities and advanced 

node centrality metrics such as “party” and “date” hubs can be used for further evaluation 

and might provide complementary information in addition to the above metrics we used 

[24].

When multiple networks are available, it is desirable to identify key nodes in each network 

and compare them across different networks to generate hypothesis for further validation. 

Selecting the key proteins based on visual observation is one way. But networks can be 

complicated and visual observation are prone to be biased. Considering this, we prefer to use 
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the metrics mentioned above to select key proteins in each network. In our study, four gene 

knockdown experiments were conducted (i.e., TOB1, POLR2B, CYR61 and PSMC5). Nine 

networks were constructed for each gene knockdown experiment involving three cell lines 

(i.e., MCF7, LCC1 and LCC9) at three time points (i.e., 48h, 96h and 144h). By using node 

degree, node betweenness, node closeness, and node eigenvector centrality metrics, we 

identified key proteins that consistently showed up across three time points for each gene 

knockdown experiment. For each network, we selected the top five proteins according to the 

above four network topological metrics. Then, we identified proteins that are among the top 

five for at least three of the four metrics as key proteins for that network. The same 

procedure was applied to all nine networks for each knockdown experiment.

D. Implementation

The MANOVA code and pairwise comparisons script were written in Matlab (MathWorks). 

Network representations were graphed in Cytoscape, version 3.5.0-RC2 [25], and DyNet 

Cytoscape application [26]. Topological analysis was performed by using R package igraph 

[27]. Programs were run on Windows 7 desktop (i-2600 CPU @ 3.40GHz, 16GB RAM, 64-

bit Operating system). The source code and related data used are available at https://

github.com/Hurricaner1989/RPPA-Matlab-R-codes.

III. Results and discussion

Figure 3 depicts a heatmap of the changes in expression levels of each protein in MCF7, 

LCC1 and LCC9 for all knock-down experiments compared to it siNEG controls. The figure 

gives us an overall representation of how a protein has changed its expression for a particular 

condition (time point and knock-down experiment) when compared to its negative control. 

Figure 4 shows the nine interaction networks generated for each group comparison when 

TOB1 was knock-down. Similar networks were constructed for POLR2B, CYR61, and 

PSMC5 (not shown). Nine group comparisons were performed for each knockdown gene for 

MCF7, LCC1, and LCC9 cells at 48h, 96h, and 144h against its corresponding siNEG. We 

focused on the proteins that appear in a large number of significant pairs. The ubiquity of 

these proteins in significantly different pairs between siNEG and knockdown group will 

make them potential targets that could broadly affect signaling in the cells. We used 

Cytoscape to build the networks. Red nodes represent upregulated proteins and blue nodes 

represent downregulated proteins when compared with siNEG. The node size is proportional 

to the number of times the protein appears in significant pairs. A red edge in the network 

depicts positive correlation between the pairs and a blue edge depicts negative correlation. 

The edge thickness is proportional to the score defined in Eq. (2) for the protein pair. There 

was no protein pair selected as significant in the comparison against siNEG at 144h for 

LCC9 when PSMC5 was knocked down. Therefore, no network was constructed for this 

comparison.

In order to compare the differences between estrogen dependent network (MCF7) and 

estrogen independent network (LCC1 and LCC9), we combined the interaction networks 

derived from LCC1 and LCC9 data and compared it against the MCF7 network generated 

for TOB1 at 48h. Figure 5 shows the networks generated using DyNet to compare MCF7 vs. 
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LCC1-LCC9. To view the networks graphically, we used DyNet, a Cytoscape application to 

import and compare multiple graph files. A central reference network is generated first from 

the union of the networks. A pair-wise comparison is then performed by calculating the log2 

fold-change of the attribute value. A score is computed and used to highlight the most 

variable nodes and edges on the central reference network, using a color gradient (Figure 

5A). The Dn-score, is a rewiring metric to support the identification of the most rewired 

nodes [25]. Figure 5A represents the combined network which shows the most rewired 

proteins. Figure 5B shows a differential network for MCF7 and LCC1- LCC9 combined 

network focusing only on the most important nodes. The edges specific to LCC1-LCC9 

combined network is colored in red and those unique to MCF7 are colored in green. In this 

comparison, we can see that CCND1 has more signaling activity in estrogen independent 

network compared to MCF7, and phosphorylated protein RPS6KB1 and phosphorylated 

MAPK14 have more activity in MCF7, the estrogen dependent network. These nodes are 

candidates that can be used to further investigate the differences between estrogen dependent 

and independent cell lines.

A total of 36 protein networks were generated from all four knock-down experiments. In 

order to discover hidden patterns and identify key nodes, we performed a topological 

analysis of these individual networks. Table 1 shows the results of topological analysis of 

networks for all four gene knock-down experiments (e.g., Figure 4). The table lists the top 

five proteins from each metric for all nine networks in each gene knock-down experiment. 

Table 2 presents a summary of the key proteins for each gene knock-down experiment using 

each cell line across three time points. The unique key proteins for each cell line in each 

gene knock-down experiment are marked in red. In Figure 5, rewiring proteins are 

highlighted based on a rewiring score (i.e., Dn-score), defined to represent the variation of 

that node across multiple networks. The rewiring proteins are specific to one comparison. In 

contrast, Tables 1–2 selected key proteins in each network. As a complement to network 

analysis in Figure 5, they can be used to help generate various hypotheses for further 

validation. For example, in comparing MCF7 vs LCC1 and LCC9, from the networks 

constructed using protein pair analysis for TOB1 knockdown, we can see that p21 

(CDKN1A) and cyclin D1 (CCND1) were inferred as major signaling activation nodes in the 

TOB1-regulated network of LCC1 and LCC9 cells. Both protein expressions were up-

regulated after TOB1 knockdown and experimental data proved that p21 and cyclin D1 were 

positively correlated (Figure 6). Expression of p21 and Cyclin D1 was both induced by 

TOB1 knockdown consistent with RPPA analysis. Knockdown of p21 decreased Cyclin D1 

level in the absence or presence of siTOB1, which presented a positive correlation between 

p21 and Cyclin D1. Pathway analysis using Ingenuity Pathway Analysis (IPA) following the 

network construction inferred p21 and cyclin D1 as major signaling activation nodes in the 

TOB1-regulated network of LCC1 and LCC9 cells [15]. HMOX1 (Heme oxygenase 1), 

which is known to be involved in stress responses, was significantly activated at 48h and 96h 

following transfection of siPOLR2B, siPSMC5 and CYR61, as compared with non-silencing 

siRNA. We hypothesize that HMOX1 is a key driver in the pro-survival signaling LCC1 and 

LCC9 cells following transfection with POLR2B and PSMC5 (Tables 1 and 2). pACACA is 

highly activated after 48h gene knockdown of CYR61 in LCC1 cells. In breast cancer, 

chromosome 17q, the location of ACACA, has increased copy number in HER2 and luminal 
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A classified breast cancer tumors. ACACA is over expressed in LCC1 compared to MCF7 

cells. ACACA is known to be involved in invadopodia formation.

IV. Conclusions

We propose a novel method for statistical analysis of protein-pairs to construct protein 

networks as an alternative to the typical analysis of individual proteins. This is accomplished 

by using a multivariate analysis of variance and a new scoring criterion. In contrast to using 

the ratio between a pair of proteins, our method considers the expression levels of a protein 

pair as the bivariate outcome, which can yield a higher power of identifying significant 

changes than the univariate ratio comparison. The method is used to construct networks 

based on temporal RPPA data acquired from four gene-knockdown experiments in three 

breast cancer cell lines. Using a topological comparison of the constructed networks, the top 

five proteins from each network metric are identified. Additional analysis of these proteins 

helps to select key proteins that are uniquely associated with each cell line, when compared 

across the three time points. Future work will focus on validation of the key proteins 

discovered in this study and identification of other proteins that are associated or unique to 

knockdown genes or the cell lines to help generate new hypotheses.
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Highlights

• A novel computational method is proposed for constructing protein networks 

based on reverse phase protein array (RPPA) data to identify complex patterns 

in protein signaling.

• Protein networks are constructed by analyzing the expression levels of protein 

pairs using a multivariate analysis of variance model.

• A new scoring criterion is introduced to select relevant top protein pairs.

• Key proteins that are associated with significant changes in expression levels 

across various experimental conditions are identified through network 

topology analysis.
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Figure 1. 
An overview of the workflow for RPPA data analysis.
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Figure 2. 
A: a schematic representation of the protein pair analysis using MANOVA. The expression 

level of each protein pair is represented as a bivariate input to the MANOVA model. B: the 

construction of protein networks for each group comparison. The top scoring protein pairs 

that are significantly selected in MANOVA analysis and pair-wise analysis are used to 

construct the protein networks.
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Figure 3. 
Heatmap of changes in protein expression for siRNA-transfected MCF7, LCC1, and LCC9 

cells at 48h, 96h and 144h for TOB1, POLR2B, PSMC5, and CYR61 knock down genes 

using the corresponding negative controls (siNEG) as references.
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Figure 4. 
Protein networks constructed using significant protein-pairs (TOB1 knockdown vs. negative 

control) for each cell line and each time point.

Varghese et al. Page 16

Methods. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
A: Combined network with most varying nodes and edge changes highlighted for MCF7 vs. 

LCC1-LCC9. B: Differential network for the most re-wired nodes showing the edge changes 

in MCF7 vs. LCC1-LCC9.
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Figure 6. 
P21 positively correlated with cyclin D1 after TOB1 knockdown. 20 nM siRNAs against 

negative, p21 or TOB1 were transfected in LCC1 cells for 48 h and 96 h. Western blot was 

used to detect protein expression.
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