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Abstract

We report G-quadruplex formation between peptide nucleic acids (PNAs) composed of LKγ-PNA-

G monomers and a known portion of human telomeric DNA that adopts three G3 tracts via 

intramolecular hydrogen bonding. The resulting complex is a bimolecular PNA–DNA 

heteroquadruplex. In this report, we show that introduction of a γ-modification and addition of a 

peptide ligand does not disrupt the heteroquadruplex. Although the unmodified PNA1 forms a 

quadruplex with itself, the γ-substituted PNAs (PNA2 – PNA6) do not form G-quadruplexes on 

their own, at even high concentrations. The selectivity of these PNAs could influence the design of 

new quadruplex-targeting molecules or allow the quadruplex structure to be used as a scaffold for 

multivalent display of protein binding ligands.
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Guanine-rich oligonucleotides have shown the ability to form alternative secondary 

structures by utilizing Hoogesten base pairs to form guanine tetrads that are stabilized in the 

presence of potassium or sodium cations (Figure 1a).1, 2 These guanine tetrads are able to 

πstack, thereby forming stable secondary structures referred to as guanine quadruplexes (G-

Quadruplexes).3, 4 These G-Quadruplexes have been proposed to assist in biological 

functions such as gene regulation5–8 and chromosomal stability.9, 10 Several studies have 
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explored the biophysical and structural properties of quadruplexes both in vivo9, 11 as well as 

in vitro.10, 12, 13 There are many strategies for targeting quadruplexes, including small 

molecules14, engineered DNA-binding proteins15, 16, and complementary oligonucleotides 

such as locked nucleic acids (LNAs)17, 18 and peptide nucleic acids (PNAs).19–21

In addition to complimentary binding, a quadruplex can be targeted by exploiting 

homologous recognition. By replacing one or more G3 tracts with a short, guanine-rich 

PNA, a stable heteroquadruplex can be formed. An assortment of heteroquadruplexes have 

been reported with various structures and stoichiometries (i.e. DNA2:PNA2).19, 22–28 

Previous studies have investigated an alternative stoichiometry where a short G3 PNA can 

form a heteroquadruplex with a DNA containing three G3 tracts.29 This asymmetric design 

suggests the possibility of building scaffolds with ligands appended to the PNA.

Much research in recent years has focused on improving the original design of 

aegPNA.30–32 Current research has focused on improving the binding properties while 

eliminating some of the inherent weaknesses (i.e. solubility, bioavailability, and 

functionality). Some common strategies include conjugating moieties to PNA termini21 

and/or modifying the PNA backbone.33–37 Modifications at the -position of the PNA 

backbone have been well-documented to increase binding affinity and solubility, as well as 

to provide a convenient handle to attach additional functionality. Previously, we have shown 

that LKγ-PNA (Figure 1b) is a versatile scaffold to attach a range of functional groups and 

small molecules without compromising the ability of PNAs to bind to a complementary 

nucleic acid sequence.38–41 Previous work has demonstrated the advantageous properties of 

using a PNA to target proteins via multvalent display.38, 39, 42–47

A family of short G-rich LKγ-PNAs with a varying number of -modifications was designed 

to explore the effect on a 3+1 bimolecular quadruplex binding (PNA 4–6). Furthermore, to 

explore the possibility of PNA-DNA heteroquadruplexes as scaffolds for ligand display, an 

integrin-targeting ligand, cRGDfK, was attached to the free amine at the position (PNA 2–3) 

and the effects on the bimolecualar G-quadruplex with a truncated telomeric DNA (DNA1) 

were studied. A LKγ-PNA-G monomer (Figure 2) was synthesized and conjugated to a 

small peptide (cRGDfK) via the free amine of the side chain. Then, the potential for several 

different PNAs (both with and without a ligand on the LKγ-PNA sidechains) to bind to the 

telomeric DNA was investigated.

The LKγ-PNA backbone (1) was synthesized as reported previously.25 The G(Cbz)-acetic 

acid was then coupled to LKγ-PNA backbone (1) producing the LKγ-PNA-G monomer 

ester (2) in high yield (70%). Removal of the allyl group using catalytic palladium provided 

the LKγ-PNA-G monomer (3) (Scheme 1). The family of PNAs (Table 1) was synthesized 

using a standard PNA procedure on Applied BioSystems 433A automated peptide 

synthesizer, purified by HPLC, and characterized by mass spectrometry as previously 

reported.26 To attach the ligand, the purified PNA was reacted with diethyl squarate to form 

an amide with the amines on the -sidechains. Then, the purified intermediate was reacted 

with an amine-modified cRGDfK ligand to yield the RGD-PNA conjugate.
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The thermodynamic properties were assessed using UV melting curve analysis monitoring 

the hypochromic shift at 295 nm and 305 nm. The Tm was defined as the temperature at 

which half of the oligonucleotides were folded and was determined by the minimum of the 

1st derivative. First, the thermal stability of the truncated telomeric DNA (DNA1) alone was 

determined to be 58.9 °C. Then, the truncated DNA1 was hybridized to the unmodified 

PNA1 (1:1 / PNA1 : DNA1), and the Tm was 57.3 °C. The Tm values are consistent with 

results obtained by Paul. Et al.29 Next, the effect of increasing - modifications with PNA 4–6 

was analyzed. When annealed with DNA1, PNAs with increasing LKγ-PNA-G monomers 

bearing a free amine at the - position (PNA4, PNA5, PNA6) showed a melting transition (Tm 

= 60.2, 58.4, and 59.1 °C, respectively). The recorded Tm’s were similar, suggesting that a - 

modification has minimal effect on the quadruplex stability. Introducing one or two LKγ-

PNA-G-RGD monomers (GR) in PNA (PNA2 and PNA3) has very minor effects on the 

melting transition when annealed with DNA1 (Tm = 58.7 °C and Tm = 57.3 °C, 

respectively). Overall, the UV melting curve analysis indicates that the bimolecular 

quadruplex was formed and addition of a LKγ-PNA-G monomer and/or a ligand does not 

perturb the stability.

The secondary structures of the oligonucleotides were analyzed using CD 

spectropolarimetry. DNA1 exhibited a CD signature with two maxima at λ260 and λ295 

nm, which are characteristic of a mixture of parallel and antiparallel G-quadruplex 

conformations, respectively (Figure 5). The CD profile of the unmodified PNA1-DNA1 

quadruplex showed a slightly larger maxima at λ 260 nm and λ 295 nm compared to DNA1 

alone (Figure 3). Likewise, the CD profile of PNA2-DNA1 and PNA3-DNA1 showed strong 

maxima at λ260 nm and λ295 nm, although PNA2 and PNA3 also exhibited strong CD 

signals alone (Figure S1). The CD profile of PNA4, PNA5, and PNA6, in complex with 

DNA1 showed strong maxima at λ 260 nm and λ295 nm and weaker signals in the absence 

of DNA, thus indicating formation of a hybrid PNA-DNA quadruplex structure.

It was observed that PNA1 forms quadruplex with itself at high concentrations, (Figure S3) 

and does not have a significant CD signal (Figure S4). These properties were consistent with 

the literature48. Interestingly, the UV-temperature profile of PNA2 and PNA3 at 295 nm 

indicates that they do not form quadruplexes in the same buffer at concentrations up to 200 

µM. Likewise, the UV-temperature profiles of PNA4, PNA5, and PNA6 at 295 nm indicate 

they do not form quadruplexes in the absence of DNA1, even at high concentrations.

We have reported the synthesis of LKγ-PNA-G monomers to target a human telomeric DNA 

sequence, and we have shown that γ-substituted PNA can form a hybrid quadruplex with the 

DNA. Interestingly, LKγ-PNAs do not form G-quadruplexes alone, even at high 

concentrations, while unmodified PNA1 forms a quadruplex at 200 µM. The selectivity of 

these PNAs could open up new possibilities to design quadruplex-targeting ligands. This 

work broadens the types of secondary structures that can be used for ligand display and 

future studies should explore the efficacy of these PNA-DNA heteroquadruplexes as 

scaffolds for ligand display.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Arrangement of guanines around a central cation (M+) resulting in guanine tetrad 

eliciting G-quadruplex formation. B) Comparison of aminoethylgycine (aeg) PNA, LKγ-

PNA and DNA. C) Proposed PNA-RGD conjugate binding to G-rich DNA region.
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Figure 2. 
The Boc-aeg PNA-G(Cbz) and Boc LKγ-PNA-G(NH2/(mPEG)2-RGD) monomers suitable 

for Boc mediated solid-phase peptide synthesis.
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Figure 3. 
CD spectra DNA1 and DNA1:PNA complexes (20 µM) in 100 mM potassium phosphate 

buffer containing 100 mM KCl at pH 7.4 (x-axis is wavelength (nm), y-axis is millidegrees).
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Scheme 1. 
Reagents and conditions: (i) 2-N-(Benzhydryloxycarbonyl)guanine-9-acetic acid, DHBT, 

EDC, DMF, 40°C, 12h, 87%; (ii) Pd(PPh3)4, N-ethyl aniline, THF, RT, 3h, 70%.
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Table 1

List of DNA/PNA used in this study.

DNA/PNA Sequencea # of γ units

DNA 1 d(GGGTTAGGGTTAGGGT) N/A

PNA 1 Ac-HN -TGGGT-Lys-CONH2 0

PNA 2 Ac-HN -TGGRGT-Lys-CONH2 1

PNA 3 Ac-HN -TGRGGRT-Lys-CONH2 2

PNA 4 Ac-HN-TGGGT-Lys-CONH2 1

PNA 5 Ac-HN-TGGGT-Lys-CONH2 2

PNA 6 Ac-HN-TGGGT-Lys-CONH2 3

a
PNA oligomers are written from N terminus to C terminus. The LKγ-PNA-G-RGD monomers (GR) are bold and underlined for clarity, LKγ-

PNA-G monomers (G) have a free amine on the side chain.
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Table 2

Melting temperatures (Tm) of DNA and DNA/PNA quadruplexes in 100 mM potassium phosphate buffer 

+ 100 mM KCl (pH 7.4). [DNA]= 20µM; [PNA]= 20µM.

Complex TM [°C]

DNA1 58.9±0.3

DNA1 + PNA1 57.3±0.4

DNA1 + PNA2 58.7±2.2

DNA1 + PNA3 57.3±0.3

DNA1 + PNA4 60.2±1.2

DNA1 + PNA5 58.4±0.3

DNA1 + PNA6 59.1±0.7
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