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Abstract

A generalization to arbitrary large amplitude motions of a recent approach to the evaluation of 

diffusion tensors [J. Comput. Chem., 2009, 30, 2-13] is presented and implemented in a widely 

available package for electronic structure computations. A fully black-box tool is obtained, which, 

starting from the generation of geometric structures along different kinds of paths, proceeds 

toward the evaluation of an effective diffusion tensor and to the solution of one-dimensional 

Smoluchowski equations by a robust numerical approach rooted into the discrete variable 

representation (DVR). Application to a number of case studies shows that the results issuing from 

our approach are identical to those delivered by previous softwares (in particular DiTe) for rigid 

scans along a dihedral angle, but can be improved by employing relaxed scans (i.e. constrained 

geometry optimizations) or even more general large amplitude paths. The theoretical and 

numerical background is robust and general enough to allow quite straightforward extensions in 

several directions (e.g. inclusion of reactive paths, solution of Fokker-Planck or stochastic 

Liouville equations, multidimensional problems, free-energy rather than electronic-energy driven 

processes).

1 Introduction

Interpretation of experimental (especially spectroscopic) data in terms of structural and 

dynamical characteristics of molecular systems of increasing complexity is of paramount 

interest, but remains often not straightforward. In this connection, the role of computational 

simulations is constantly increasing in parallel with the improvement of hardware and, 

especially, of theoretical models and of the corresponding software. In several cases motions 

of the whole molecular system (e.g. global tumbling of the solute in a solvent) and internal 

degrees of freedom can be defined as diffusive parameters, which, in turn, can be effectively 

described in terms of an effective tensorial quantity, the diffusion tensor.

Several proposals have been published in recent years, which employ different general 

assumptions and hydrodynamic models. A comprehensive review of the most interesting 

approaches has been recently published by Torre and Bloomfield.1 The main limitation of 

* andrea.piserchia@sns.it; Tel: +39 050 50 9347. 

Europe PMC Funders Group
Author Manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2017 September 19.

Published in final edited form as:
J Chem Theory Comput. 2016 August 09; 12(8): 3482–3490. doi:10.1021/acs.jctc.6b00388.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



these models is that they can be applied either to rigid molecules (e.g. the HYDRONMR 

software2) or offer a quite limited choice of large amplitude internal motions (essentially 

torsions like, e.g., in the DiTe approach3). However, chemists are often faced with diffusive 

problems involving motion along more general paths, which can be parametrized only in 

terms of a generalized coordinate lacking an overall analytical expression, but rather 

described only numerically by a non-linear combination of local (curvilinear) coordinates.

A general approach for building such a generalized coordinate involves three main steps. 

The first one is the generation of an ordered series of geometrical structures visited by the 

system under study. The simplest way of obtaining these structures involves a rigid or 

relaxed (i.e. constrained optimization of all the other variables) scan along a predefined 

internal coordinate. More refined strategies range from steepest-descent paths originating 

from first-order saddle points (the length along this path is the well-known intrinsic reaction 

coordinate, IRC)4 to principal component analyses (PCA) of molecular dynamics (MD) 

simulations.5 In the second step, the variation of angular momentum between pairs of 

successive structures must be minimized, in order to minimize the coupling between the 

generalized coordinate and the overall rotations of the molecular system. Note that this step 

leads also to the minimization of the corresponding couplings in the diffusion tensor. Finally, 

the generalized coordinate is computed as the distance in mass-weighted Cartesian 

coordinates between successive structures. This choice leads to kinematic computations 

characterized by a unitary reduced mass. Once the generalized coordinate has been 

computed, it can be used, for instance, in a quantum mechanical (QM) context to compute 

vibrationally averaged values of observables solving an effective one-dimensional 

Schrödinger equations.

Several applications of this approach have been reported for different spectroscopies mostly 

employing a relaxed scan definition of the generalized coordinate.6–9 Of course, the IRC 

route has been pioneered by Fukui and further developed by Miller in terms of the so-called 

reaction path Hamiltonian.4,10,11 Much less work has been performed along these lines in a 

classical mechanical context, especially in connection with diffusion problems.

This is the main topic of the present work, in which we have implemented in the context of 

the Gaussian package12 an extension to generalized coordinates of the diffusion tensor 

approach proposed in previous works.3,13,14 Although the specific applications presented 

in the following employ rigid or relaxed scans, the implementation permits also the use of 

IRC or PCA5 paths. The final goal is to build a reliable framework for setting up and solving 

the one-dimensional Smoluchowski equation along any generalized coordinate, making use 

of a quite powerful solution method based on the so called Discrete Variable Representation 

(DVR).15 Once both the main pieces of information (dissipation and energetics) are given 

and after the diffusive problem solved, some specific quantities (e.g. time correlation 

functions) can be connected to the dynamical quantities of interest (e.g. magnetic relaxation 

times). Furthermore, in some cases, it becomes possible to establish a connection between 

the continuum diffusive process along a generalized coordinate and the discrete kinetic 

process between well separated potential energy minima, thus enabling the calculation of 

rate constants,13–16 which have a close connection with the phenomenological parameters 

extracted from experimental data.
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In our opinion the diffusion tensor approach sketched above can be applied, in addition to 

the Smoluchowski equation, also in the context of the stochastic Liouville equation (SLE), 

which is at the heart of the most refined integrated models for the simulation of electronic 

paramagnetic resonance (EPR) spectra17–22or in connection with the Fokker-Planck 

equation, which plays a comparable role in the simulation of nuclear magnetic resonance 

(NMR) spectra.23–25

The paper is organized as follows. The section “Modeling” provides a short description of 

the approach used to compute the diffusion tensor along a generalized coordinate. The 

sections “Implementation” and “Case studies” give essential details about the actual 

numerical implementation of the approach and the main results obtained for a couple of 

specific cases of chemical interest. Finally, the section “Conclusions” is devoted to some 

general considerations and most interesting perspectives.

2 Modeling

A molecular system made of N material points (see Fig. 1) is considered, representing the 

atoms of a molecule without constraints, immersed in a continuous medium with viscosity 

η. The Cartesian positions rα (α = 1, … , N) of the atoms are referred to a Laboratory Frame 

(LF) and the associated velocities vα = ṙα as well. Also a Molecular Frame (MF) is defined 

and placed on the center of mass of the system, with new atom coordinates cα. The 

Cartesian forces acting on the material points are associated to velocities via the 3N × 3N 
friction matrix Ξ

(1)

For the constrained system an external coordinate set [ρ, Ω, q] is defined, where ρ represents 

the distance of the system center of mass from the LF, Ω collects the three Euler angles that 

bring the LF to the MF and q are the 3N − 6 internal coordinates. Now a subset of the 

internal coordinates x : x1, … , xn with n < 3N − 6 is selected and the remaining ones, y : y1, 

… , y3N − 6−n are kept frozen; a new set of external coordinates  = [ρ, Ω, x] is now 

considered. Associated to the external coordinates there is the velocity set  = [υ, ω, ẋ], 

including, the translational velocity, the angular velocity and the internal moments. The total 

force is composed as well of three contributions ℱ = [f, τ, τx], namely, the translational 

force, the torque and the internal forces. Now, the new relation is

(2)
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with ξ the (6 + n) × (6 + n) friction matrix for the constrained system.

It can be easily shown14,26 that ℱ = A F and v= B , where A and B are matrices of 

dimension, (6 + n) × 3N and 3N × (6 + n) respectively that depend only on instantaneous 

molecular geometry. Also it can be shown that B = Atr and after some algebra we arrive to

(3)

where the subscripts T, R, I stand, respectively, for translational, rotational, internal 

contributions. In order to find the expression for the B matrix the Cartesian velocities vα are 

expressed with respect to the external coordinates, using simple classical mechanics 

relations27

(4)

with E(Ω) the Euler matrix that brings the LF into the MF. Therefore,

(5)

where  is the 3 × 3 matrix with elements  and where εmln is the 

Levi-Civita symbol. It can be readily noticed that B is dependent only on the instantaneous 

geometry and, in principle, knowledge of the derivatives  is required. In the case one 

wants to deal just with natural internal coordinates, as dihedrals,3 bond angles and/or bond 

lengths, analytical expressions28 for the derivatives  are well known.

In our treatment the subset x is reduced to a single generalized coordinate, hereafter called s, 

found by one of the methods sketched in the Introduction. Equation (5) still holds; the 

derivatives will be now 

Once B is constructed, the remaining task is to model the unconstrained friction tensor Ξ. 

The simplest model is that of independent beads, i.e.
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(6)

with Ξ0 = CRe η π, Re being the hydrodynamical radius and C = 4, 6 the slip or stick, 

respectively, boundary condition coefficient. The constrained friction tensor is so

(7)

and the requested diffusion tensor is easily calculated using Einstein relation

(8)

where G now stand for generalized. Since we are dealing with just one generalized 

coordinate, DGG is a scalar function of s, and hereafter we shall name it simply DGG(s). 

More sophisticated models can be chosen in order to take into account the effects of 

hydrodynamic interactions among the beads, using for example the Oseen29,30 or the 

Rotne-Prager31 model. When evaluating the friction exerted by the medium over a generic 

bead, these models account for the perturbative effect of the other particle motion over the 

fluid velocity field. Here, we adopt the Rotne-Prager model since it has the advantage to 

always provide positive-definite diffusion tensors. Considering two generic atoms α, β the 3 

× 3 blocks of the unconstrained diffusion tensor (here called Δ) are then given by

(9)

where rαβ = rα − rβ, rαβ = |rαβ| and ⊗ the dyadic product. From eqn (7) using again 

Einstein relation (eqn (8)), D is easily found as

(10)

3 Implementation

Here we just provide a short overview about the implementation. In a separate code 

embedded in the framework of the Gaussian package we have merged the computation of 

the potential (or free, vide infra) energy along the generalized coordinate with the 

calculation of the diffusion tensor along the same path. In particular during the scan along 

the internal coordinate, the molecular geometry can be optimized or not (relaxed and non-
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relaxed scan). In both cases at each step of the scan, the generalized coordinate s is 

calculated and the new Cartesian coordinates referred to the MF are given. The MF is 

chosen at the initial geometry to be fixed on the molecule center of mass and in Eckart 

orientation; all the following coordinates c are referred to this MF; in the present version of 

the code the derivatives  are calculated numerically, although implementation of analytical 

derivatives is under way. Several checks have been anyways performed to verify the stability 

of the numerical approach.

After the boundary conditions are chosen, the only free-parameter is the hydrodynamic 

radius of the beads Re. Following ref3 we chose an effective sphere radius as the weighted 

arithmetic mean

(11)

where nX is the number of atoms of type X and RX is the associated van der Waals (vdW) 

radius (we use the UFF set of vdW radii32). From this computation and the whole diffusion 

tensor calculation we only take into account non-hydrogen atoms, since the hydrogen ones 

are negligible from the consideration of exposed surface “wetted” by the solvent and 

typically they end up only with numerically spurious contributions.

4 Case-study calculations

In this section we apply the method sketched above in the Modeling section to some case-

study molecules. Our goal is to determine DGG(s) from the integrated calculation of the 

potential scan along the generalized coordinate with the calculation of the diffusion tensor 

along the same path. In some cases we shall use these two pieces of information to set up 

and solve a one-dimensional Smoluchowski equation for the generalized coordinate treated 

as a diffusive one and making use of the novel DVR solving approach.15 The interested 

reader can find all the details about the DVR implementation in that reference; here we just 

briefly recall the one-dimensional Smoluchowski equation that reads33–35

(12)

where p(x, t) is the probability density of finding a value of x at time t, with stationary limit 

limt→+∞p(x,t) = peq(x); in our case x could be the generalized coordinate s or the internal 

coordinate scanned with DiTe. Γ is the diffusion operator

(13)
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with D(x) a space-dependent diffusion coefficient. In this case

(14)

is the canonical (Boltzmann) distribution, for the potential V (x); with β = 1/kBT the 

Boltzmann factor and  the partition function. Technically, the potential V (x) 

has the meaning of an Helmholtz free energy at temperature T (in other words a “mean field 

potential”). Upon representing the symmetrized diffusion operator

(15)

in the DVR basis one solves the equation by diagonalization of the same. The eigenvalues λi 

associated to the diffusion operator are all real and positive (since Γ̃ is Hermitian and D(x) is 

a positive function) and they are characterized by the presence of a unique null eigenvalue 

λ0 = 0 associated to  eigenfunction. In the case of diffusive dynamics under the 

influence of a potential V (x) that presents sufficiently deep wells separated by an energy 

gap, we can associate to small λi values “jump” processes between wells (i.e. slow activated 

processes where it is required to overpass the energy gap); high λi values can be associated, 

instead, to fluctuation processes inside the wells (fast processes).

We shall examine three test cases of chemical interest in order to illustrate the applicability 

of the method, starting from the internal rotation around the central C-C bond of n-butane 

and we shall compare our results with those delivered by the DiTe software3 showing the 

reliability of the novel approach. Next, we investigate the inversion motion (envelope twist) 

of cyclopentene that couldn’t be treated with the previous softwares and finally the internal 

rotation of 3-chloro-2-(chloromethyl)toluene and 2,2’-bifuran. The hydrodynamic boundary 

constant has been always set equal to C = 6, (stick boundary conditions). Since the examined 

potential and diffusion profiles along s will result periodic, in Appendix A we provide the 

matrix elements of the diffusion operator expressed in the DVR basis with periodic 

boundary conditions for a generic range.

n-butane

The generalized coordinate s is calculated along the internal rotation of the central C-C bond 

θ, starting from the optimized geometry of n-butane, and performing both a non-relaxed and 

a relaxed scan of 100 steps in the range 0° < θ < 360°; where θ = 0° corresponds to the 

eclipsed conformation (see Fig. 2, panel a). Initially we have performed a non-relaxed scan 

that is useful in order to compare our results with DiTe ones for the same system. In fact, we 

can retrieve DII (θ) (quantity calculated by DiTe) from the knowledge of DGG(s) and of the 

variations of s with θ, i.e.  and this can be done inside our program, again carried out 

numerically. As it can be seen in panel a of Fig. 3 the two profiles are identical, confirming 
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the consistency of our approach and the linear variation of s with respect to θ (panel b), as 

expected from a non-relaxed scan.

Then we have performed a relaxed scan for the same system at the B2PLYP level36,37 using 

the aug-cc-pVTZ basis,38 adding dispersion corrections by the D3 empirical model39 and 

including bulk solvent effects of n-butane by the conductor version of the polarizable 

continuum model (C-PCM).40 Note that the energy issuing from this treatment has the 

status of a free energy41 and the only significant approximation (which can be lifted if 

needed) is to consider constant the frequencies of small amplitude motions perpendicular to 

the large amplitude path. The calculated energetics V (s) and diffusion DGG(s) profiles are 

shown in Fig. 4. We want to stress that there is no direct link between these two quantities. 

As stated before, they are essential ingredients to set up and solve the Smoluchowski 

equation for the generalized coordinate treated as a stationary diffusive process. Similarly to 

what we have done in ref.15 and in the past works of Moro and Nordio, 16,42 we use the 

two first lowest and non zero eigenvalues and the equilibrium populations in order to 

calculate the kinetic constants for the transitions between the three stable conformations 

(eqn (27) in Appendix B). These conformations can be identified with the three wells 

(marked with an asterisk in panel a of Fig. 4) separated by a sufficiently high energy gap and 

they geometrically correspond to the two equivalent gauche and the trans conformation 

(from now on respectively abbreviated as g± and t). Edberg and coworkers43 have calculated 

the kinetic constant kt→g± = 1.9 × 1010 s−1 and kg±→t = 2.9 × 1010 s−1 performing a 

nonequilibrium molecular dynamics simulation of bulk n-butane at T = 292 K. At the same 

temperature and using the viscosity of the medium as the one of n-butane44 we obtain kt→g± 

= 3.75 × 109 s−1 and kg±→t = 1.17 × 1010 s−1, while assuming the same potential in the [0°, 

360°] range but using DII (θ) calculated from DiTe we obtain kt→g± = 3.41 × 1010 s−1 and 

kg±→t = 1.07 × 1010 s−1. The kinetic constants calculated with our method and with Dite are 

very similar, confirming the reliability of our approach and showing that the relaxation 

effects of a small molecule like n-butane are quite irrelevant. With respect to the values 

reported in the work of Edberg and coworkers, our kt→g± in both cases are one order of 

magnitude smaller, while kg±→t are very close. We believe that this difference is mainly due 

to the fact that in our kinetic model we are not accounting for the solvent fluctuations around 

the molecule, in other words, we are considering the surrounding solvent molecules as if 

they are at equilibrium.

cyclopentene

The generalized coordinate s is calculated along the envelope movement regulated by a 

properly defined bending angle φ (see Fig. 2, panel b), performing a relaxed scan of 100 

steps in the range −60° < φ < 60° where φ = 0° correspond to the situation in which the 

envelope is completely opened (the energy minimum). We want to stress that this kind of 

computation was unfeasible using previous softwares like HYDRONMR and/or DiTe. The 

relaxed scan for the same system is performed at the B3LYP level45 adding the D3 

dispersion corrections and 6-31++G** basis including bulk solvent effects of carbon 

tetrachloride by the C-PCM. The potential and DGG(s) are shown in Fig. 5 and, as expected, 

it can be seen that V (s) is just a parabola inside which the system oscillates around the 

minimum along s. This is also confirmed after solving the Smoluchowski equation where 
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there is no neat separation (in terms of orders of magnitude) between the eigenvalues, and 

consequently they can only be associated to fast processes of fluctuations inside the well.

3-chloro-2-(chloromethyl)toluene and 2,2’-bifuran

The generalized coordinate s is calculated along the internal rotation of 3-chloro-2-

(chloromethyl)toluene C-C bond and the central one in 2,2’-bifuran (see Fig. 6), performing 

a relaxed scan of 100 steps in the range 0° < ω < 360° and −90° < ψ < 270° for 3-chloro-2-

(chloromethyl)toluene and 2,2’-bifuran molecules respectively. The relaxed scan for both 

systems is conducted at B3LYP level adding the D3 dispersion corrections and 6-31++G** 

basis including bulk solvent effects of carbon tetrachloride by the C-PCM. The potential and 

the generalized part of the diffusion tensor DGG(s) are shown in Fig. 7 and Fig. 8, as it can 

be seen they are both bistable with equivalent and nonequivalent minima respectively. 

Again, it is not possible to make direct inferences between the potential and diffusion 

profiles. We use them both to set up and solve the Smoluchowski equation for the 

generalized coordinate treated as a stationary diffusive process and, as in the n-butane case, 

we calculate the kinetic constant for the transitions between the wells. Since this time the 

number of possible jumps is reduced (the forward and backward jump between the two 

wells), the kinetic model is different than for the n-butane case and this is also the case for 

the expression that links the eigenvalues to the kinetic constants, kf and kb respectively (see 

eqns (28,29) in Appendix B). At room temperature T = 298.15 K and using the viscosity of 

the medium as the one of carbon tetrachloride44 we obtain kf = kb = 3.18 × 106 s−1 for the 

first molecule and kf = 4.30 × 107 s−1, kb = 2.67 × 108 s−1 for the second one. As expected, 

the huge barrier for 3-chloro-2-(chloromethyl)toluene gives the smallest kinetic constant, 

while for 2,2’-bifuran, considering that the backward jump faces an energy barrier similar to 

the ones of n-butane jumps, the lower magnitude of diffusion gives globally lower kinetic 

constants.

5 Conclusions

The main aim of this work is to propose and implement an effective approach for computing 

diffusion tensors depending on a generalized large amplitude coordinate. The proposed 

approach is obtained by the integration of previous proposals for diffusive processes (mainly 

the HYDRONMR and DiTe approaches) with the intrinsic reaction coordinate and reaction 

path Hamiltonian descriptions of general large amplitude motions. Numerical solutions 

based on a general implementation of the so called discrete variable representation (DVR) 

lead to a very effective way of solving one-dimensional Smoluchowski equations for the 

description of general one-dimensional diffusive processes. The analysis of some case 

studies involving medium-size molecular systems shows that the new implementation fully 

agrees with the DiTe results for non relaxed scans, whereas it allows to improve the 

agreement with experimental results due to its ability of including full relaxation along 

directions perpendicular to the generalized large amplitude coordinate.

A number of extensions of the approach is possible and already under way in our laboratory. 

The first step is the solution of systems of coupled Smoluchowski equations including 

reactive terms,46–51 of particular interest for the study of time resolved fluorescence 
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experiments or, more generally, of photochemical processes. In parallel, methods for solving 

stochastic Liouville or Fokker-Planck33 equations can be implemented along the same lines 

and can be of remarkable interest for instance in connection with magnetic (EPR and NMR) 

spectroscopies.

A more ambitious target is the extension of the approach to more than one internal 

generalized coordinate. Work along these lines has already been performed in the quantum 

mechanical community, leading to the so-called reaction surface Hamiltonian, in which all 

the remaining internal coordinates are optimized at selected values of two or three large 

amplitude coordinates.52,53 An alternative is to perform a principal component analysis of a 

trajectory obtained from e.g. molecular dynamics and to select a reduced number of 

eigenvectors of the covariance matrix (the so-called essential dynamics) as large amplitude 

coordinates.5 The theoretical machinery for all these approaches is well known and the 

corresponding stochastic equations can be solved by multidimensional extensions of the 

DVR approach, which are also well known in the quantum mechanical community.54,55

The numerical stability of the approach is an additional issue. Here, replacement of 

numerical derivatives by their analytical counterparts is already under way along the same 

lines one of us has recently followed in connection with vibronic contributions to electronic 

spectra.56,57 On the other hand, numerical issues connected with the DVR solution have 

been investigated in detail for one-dimensional problems15 and, in different contexts, also 

for many-dimensional problems.54,55

A final issue concerns the use of electronic energies in place of (the correct) free energies. 

From the one side, free-energies can be obtained by computing harmonic frequencies at 

different values of the large amplitude coordinate for all the remaining orthogonal (small 

amplitude) motions and employing well known statistical thermodynamics equations. Even 

leading anharmonicities can be included for those transverse motions by means of e.g. 
second order vibrational perturbation theory (VPT2).9,37,58,59 From another side true 

dynamical techniques like e.g. the so called dynamic reaction coordinate60 or 

metadynamics61 can be employed to obtain free energies as a function of the large 

amplitude generalized coordinate.

In conclusion we think that, also pending the further development sketched above, we 

already have a tour disposal a quite powerful machinery allowing to complement 

experimental studies for a number of problems of current fundamental and applicative 

interest.
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Figure 1. 
Sketch of an (un)constrained molecular system and physical quantities involved in the model 

construction. The dashed orange lines highlight the constraints, while the light blue 

background indicates the solvent.
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Figure 2. 
Sketch of n-butane (panel a) and cyclopentene (panel b) starting conformations for the scans 

along the highlighted internal coordinate.
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Figure 3. 
Panel a; calculated internal component of the diffusion tensor of n-butane from the non-

relaxed scan (black line) and from DiTe (red line) at T = 292 K; the two curves are 

coincident. Panel b; variation of the generalized coordinate s with respect to the internal 

rotation θ.
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Figure 4. 
Calculated potential energy of n-butane from the relaxed scan (panel a) and diffusion along 

the generalized coordinate (panel b). The asterisks on the potential wells highlight the stable 

conformations. The upper axis shows the corresponding internal coordinate upon which the 

scan is performed. (T = 292 K)
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Figure 5. 
Calculated potential energy of cyclopentene from the relaxed scan (panel a) and diffusion 

along the generalized coordinate (panel b). The upper axis shows the corresponding internal 

coordinate upon which the scan is performed. (T = 298.15 K)
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Figure 6. 
Sketch of 3-chloro-2-(chloromethyl)toluene (panel a) and 2,2’-bifuran (panel b) starting 

conformations for the scans along the highlighted internal coordinate.
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Figure 7. 
Calculated potential energy of 3-chloro-2-(chloromethyl)toluene from the relaxed scan 

(panel a) and diffusion along the generalized coordinate (panel b). The upper axis shows the 

corresponding internal coordinate upon which the scan is performed. (T = 298.15 K)
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Figure 8. 
Calculated potential energy of 2,2’-bifuran from the relaxed scan (panel a) and diffusion 

along the generalized coordinate (panel b). The upper axis shows the corresponding internal 

coordinate upon which the scan is performed. (T = 298.15 K)
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