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Controllable Moderate Heating 
Enhances the Therapeutic Efficacy 
of Irreversible Electroporation for 
Pancreatic Cancer
Chelsea M. Edelblute1, James Hornef2, Niculina I. Burcus1, Thomas Norman2, Stephen J. 
Beebe1, Karl Schoenbach1, Richard Heller1, Chunqi Jiang1,2 & Siqi Guo1

Irreversible electroporation (IRE) as a non-thermal tumor ablation technology has been studied for the 
treatment of pancreatic carcinoma and has shown a significant survival benefit. We discovered that 
moderate heating (MH) at 43 °C for 1-2 minutes significantly enhanced ex vivo IRE tumor ablation of 
Pan02 cells by 5.67-fold at 750 V/cm and by 1.67-fold at 1500 V/cm. This amount of heating alone did 
not cause cell death. An integrated IRE system with controllable laser heating and tumor impedance 
monitoring was developed to treat mouse ectopic pancreatic cancer. With this novel IRE system, we 
were able to heat and maintain the temperature of a targeted tumor area at 42 °C during IRE treatment. 
Pre-heating the tumor greatly reduced the impedance of tumor and its fluctuation. Most importantly, 
MHIRE has been demonstrated to significantly extend median survival and achieve a high rate of 
complete tumor regression. Median survival was 43, 46 and 84 days, for control, IRE with 100 μs, 1 Hz, 
90 pulses and electric fields 2000–2500 V/cm and MHIRE treatment respectively. 55.6% of tumor-bearing 
mice treated with MHIRE were tumor-free, whereas complete tumor regression was not observed in the 
control and IRE treatment groups.

Pancreatic cancer, with an overall 5-year survival of 5%1, is one of most deadly cancer types. The mortality 
rate from pancreatic cancer has increased in both Europe2 and the US3. While research and clinical trials have 
enhanced knowledge about this disease, there is limited progress on improving patient survival. Late stage disease 
with micro- or macro-metastases, large tumor burden with multiple signaling pathways involved, and molecular 
heterogeneity4 make conventional therapies rarely successful and current targeting therapies, which often target 
a single pathway, insufficient. Pancreatic cancer is notoriously resistant to chemotherapy as are cancer stem cells, 
which are common in pancreatic cancer5,6. New effective therapeutic strategies are desperately needed for this 
deadly disease.

In the last decade Irreversible electroporation (IRE) as a non-thermal ablation technology has been developed 
and studied in animal models for normal/diseased tissue7–9 and tumor ablation10,11. Recently IRE has reached 
clinical trials (ClinicalTrials.gov) for liver12, rectal, renal13, stomach, pancreatic cancers14–17, etc. most of which are 
unresectable or metastatic cancers. Survival extension of 6–8 months was achieved in patients treated with IRE. 
This a significant improvement for locally advanced pancreatic cancer18. A systematic review showed significant 
survival benefits when treating advanced pancreatic cancer with IRE19. IRE is seen as a safer ablation technology 
than the alternative: hyperthermia, which is associated with high morbidity and mortality due to thermal dam-
age to adjacent structures. However, incomplete ablation with local recurrence18,20–22 as well as major complica-
tions17,18,21 associated with IRE protocols and needle placement are two major issues that limit the potential of 
IRE. Obviously, technology or approaches, which can improve complete tumor ablation and/or reduce adverse 
events, will benefit patients and potentially broaden the applications of IRE.

Temperature dependent electric properties of biological tissues have been studied for over three decades23. 
Our hypothesis is that a moderate increase in the temperature of the target tumor can decrease tumor impedance, 
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thereby sensitizing the target tumor for IRE tumor ablation. To test this hypothesis, a 3D agarose gel cell-culture 
model was studied for ex vivo IRE tumor ablation. A novel electric pulse delivery system which includes an infra-
red laser for controlled heating of the treatment area has been developed. The system contains also components 
which allow monitoring temperature and impedance changes of the treated tissue. Therapeutic efficacy of moder-
ate heating IRE (MHIRE) was evaluated in an ectopic murine pancreatic adenocarcinoma model.

Results
Development of an integrated controllable laser heating IRE system.  We have developed a novel 
electric pulse (EP) delivery system that can heat and maintain certain surface temperatures on target tissue/
tumor, deliver EPs and monitor the impedance in real time. This system consists of three units as seen in Fig. 1, 
an electric pulse supplier, a laser heating and control system and a voltage/current monitoring system. In this 
study, we used an ECM 830 Square Wave Electroporation System as EP supplier. The laser heating and control 
system was made up of a laser power supply, a laser optic fiber, a thermopile temperature sensor and a custom 
made laser control box connected to a laptop computer, allowing the user to set a target surface temperature and 
monitor the surface temperature in real time. Both the laser optic fiber and a thermopile sensor are integrated 
into a four-needle electrode, and both were able to operate while pulsing. The temperature control system was 
isolated electrically, in order to prevent electrical interference from the high voltage pulsing, which allowed it to 
be used during the pulsing treatment. Before testing, a thermocouple was inserted into tissue or tumor in order to 
correlate the surface temperature with the internal tissue temperature for calibration of laser control model. The 
temporal development of voltage across the treated tissue between the electrodes and the current are monitored 
with a multi-channel oscilloscope and the temporal change in impedance was deduced from the voltage and 
current data.

Enlargement of ex vivo tumor ablation of IRE with a controllably moderate heating.  First, 
we compared IRE tumor ablation at room temperature or pre-heating samples on a heat block. A 3D agarose 
cell-culture model was utilized to study ex vivo IRE tumor ablation. Pre-heating Pan02 tumor cells to 43 °C can 
significantly enhance IRE tumor ablation with a two-needle electrode, while tumor cells with 2 minutes of heating 
at 43 °C did not result in any observable cell death. The ablation zone, indicated by integrated fluorescence density, 
increased 5.67-fold with IRE pulses at an electric field of 750 V/cm (p < 0.001) and 1.67-fold with IRE pulses at an 
electric field of 1500 V/cm (p < 0.01) when cells were preheated to 43 °C. (Fig. 2A and B).

The same phenomenon occurs when focused heating with a laser was applied to the treated area. As seen 
in Fig. 2C and D, pre-heating the treatment area to 43 °C using our novel four-needle electrode, significantly 
enlarged the tumor ablation zone. In contrast to IRE with 750 V/cm alone, moderate heating IRE increased the 
integrated fluorescence density 1.4-fold (p < 0.05).

Simulation of electric field distribution and laser beam profile.  Electric field distribution of the 
5 × 7 mm four-needle electrode with 525 V applied between the left and right electrodes, corresponding to an 
average field strength of 750 V/cm (for a parallel-plate electrode), was calculated, as shown in Fig. 3A (left). 
The electric field strength, expressed in color contour and labeled in kV/cm, decreased rapidly with distance 
away from each electrode surface; within 0.5 mm radial distance from the electrode, the electric field decreases 

Figure 1.  Schematic diagram of MHIRE system. Laser control system consists of a laser power supply, a laser 
optic fiber placed at the center of a four-needle electrode, a thermopile or thermocouple with feedback of tumor 
temperature and a laptop with temperature monitoring and laser control software. Electric pulses are generated 
by a BTX ECM 830 Square Wave Electroporation System (IRE Pulsar) and delivered with a four-needle 
electrode. The configuration of electrode is shown. Impedance analysis is done with a voltage probe, current-
viewing resistor, which we call a VI box, and a multi-channel oscilloscope.
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from >2 kV/cm to 600–700 V/cm. Overlapping of the electric field distribution with the in vitro cell fluorescence 
image shows that the region of cell death corresponds to an electric field > 645 V/cm (Fig. 3A, right). The use of 
the four-needle array is able to increase the region of treatment by four times, compared to a single needle elec-
trode arrangement. However, the center and the middle regions between the needles have relatively weaker field 
(~500 V/cm in this case). Application of moderate heating is able to compensate for the lower field strength, and 
enhance the ablation zone as shown in Fig. 3C (right).

Calibration of the laser irradiation-based heating system was first performed on pig skin tissue samples under 
similar conditions as the tumor ablation treatment, and the optimal settings of the heating system were identified 
to obtain 43 °C on the target surface. As the temperature sensor, i.e. the thermopile, only provides a mean tem-
perature based on the viewing region, the temperature distribution as a result of instant heating distribution is 
unknown from these measurements.

In order to provide a more accurate view on how the tumor has been heated during the treatment, the profile 
of the laser beam was measured using the knife-edge technique24. A sharp razor blade was moved transversely 
across the beam in an increment of 5 µm and the transmitted power after the knife-edge was recorded by a power 
meter. The trend line collected using this technique results in the 2D Gaussian profile (Fig. 3B) by integrating of 
the displacement of the knife-edge. In order to get the width of the beam, the derivative of the trend data was 
taken and a 2nd order Gaussian fit was applied to the resulting data. In this way, the laser beam profile was identi-
fied to have a beam width of about 2 mm (from 10–90% value). We were able to create a 3D intensity plot follow-
ing the Gaussian distribution using the beam width (Fig. S1). The irradiation of the laser beam was normalized 
after applying a logarithmic scale, as indicated in the color mapping of Fig. 3B.

Temperature and impedance monitoring of tumor with the novel controllably heating IRE sys-
tem.  With our MHIRE system, the surface temperature of the target tumor can be monitored by a thermopile 
temperature sensor. In order to make sure there is a temperature increase occurring inside the tumor and not just 
on the surface, a pretest was done to determine the laser control setting necessary to heat the inside of the tumor 
to the target temperature. A thin thermocouple with tip size 2.5 × 2.5 ± 0.1 mm was inserted in the bottom part of 

Figure 2.  Enlargement of ex vivo tumor ablation zone with moderate heating IRE. A 3D agarose gel Pan02 
tumor model was treated by IRE with a two-needle (A,B) or a four-needle (C,D) electrode. Area with red 
color was zone of dead cells indicated by Propidium Idide (PI) staining. IRE parameters: pulse duration 100 µs, 
frequency 1 Hz, pulse number 80 and applied electric fields 750 V or 1500 V/cm. RT: room temperature; 43 °C: 
samples preheated at 43 °C by heat block (A,B) or laser (C,D). 5 mm or 2 mm: Scale bar. Corrected Total Cell 
Fluorescence (CTCF), as a measure of cell death, was analyzed by ImageJ software. CTCF = integrated density 
– (area x mean fluorescence of background). Number of repetition (n) per treatment group = 3–4. *p < 0.05, 
**p < 0.01 and ***p < 0.001 for RT vs 43 °C by t-test.

http://S1
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tumor and the time it took the reading to reach 42 °C was recorded. It took 20–60 seconds for the internal tumor 
temperature to reach 42 °C when the surface target temperature was set to 45 °C by laser heating. So, based on 
the calibration results, we decided that pre-heating tumor for 60 seconds before EPs were delivered would allow 
the inside of the tumor to be at the correct internal temperature. Each representative surface temperature curve 
for four MHIRE protocols are shown in Fig. 4. An average surface temperature of 44–45 °C was achieved with a 
fluctuation within 42 °C to 47 °C. The rise time to reach 45 °C was varied for each tumor because of the difference 
in tumor shape and whether there was a center necrosis or ulceration. In general, an ulceration will slow down 
the heating process. Noticeably, a much longer pre-heating time was needed for MHIRE with 2 kV/cm or 2.5 kV/
cm (Fig. 4C,D). This is because ultrasound gel was applied on the tumor surface to prevent potential electrical 
breakdown. The ultrasound gel caused the surface temperature to decrease and the heating time to increase, since 
the laser had to heat the gel before heating the tumor itself.

Figure 3.  A complementation between electric field distribution and laser beam profile for MHIRE tumor 
treatment. (A) Electric field distribution (left) of a 5 × 7 mm four-needle electrode with 525 V applied between 
the anode and cathode (corresponding to 750 V/cm), and the electric field-only in vitro result (right); (B) 
Normalized laser beam profile in log scale (left) and the corresponding heating-only result (right); (C) 
Combination of the electric field and the laser beam profile (left) and the significantly improved, more 
uniformly treated outcome. Both the electric field distribution and laser beam Gaussian profiling were from 
computational results using Comsol Multiphyics and Matlab softwares. The electric field is strongest around 
the needles, which surround the tumor. The intensity of the laser is highest at the center, resulting in a higher 
temperature in the center of the tumor. A 3D agarose gel Pan02 tumor model was used for the in vitro study. 
Area with red color was zone of dead cells indicated by Propidium Iodide (PI) staining.
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With this novel design, a temperature increase of the tumor due to IRE alone was observed. Maximal tem-
perature increase of the tumor was 7.5 °C for IRE with 2.5 kV/cm (p =  < 0.001) and 4.7 °C for IRE with 2 kV/cm 
(p = 0.002) (Fig. 4E–G). Because of the relative low base temperature of the tumor, which was between 23 °C to 
27 °C, especially when the dielectric gel was applied, the temperature increase due to IRE is likely not to impact 
the tumor ablation.

Impedance monitoring during IRE or MHIRE treatment was done with a combination of a voltage probe 
and current-viewing resistor, which used the voltage and current at the load, or tumor/tissue, to determine the 
resistance at that pulse. From the impedance curves (Fig. 5), we know that the baseline impedance of each tumor 
varied but a moderate heat could reduce it by 200–300 Ω or 15–38% of the baseline impedance, 750 to 1100 Ω. 
The reduction of the impedance was correlated to strength of the electric fields. The higher electric field, the more 
the impedance was reduced by the end of the treatment. Additionally, it appears that MH also reduces the fluctu-
ation of impedance changes, which may indicate that MH enhances uniformity of the tumor dielectric property. 
The average drop of impedance was 39.1 to 46.6% for MHIRE with 2000 to 2500 V/cm and 22.4 to 30.5% for IRE 
with the same electric field. Because complete tumor ablation only occurred with MHIRE group, this indicates 
that a large reduction of impedance maybe necessary for complete tumor ablation.

Figure 4.  Temperature monitoring during in vivo MHIRE treatment. The temperature trends were taken by 
the thermopile system using the four needle electrode (5 × 7 mm) during treatment. Target surface temperature 
was set to 45 °C, which allows the surface tumor temperature to reach and be maintained at 43 °C on average. 
Heating time was set to 60 seconds and then the electric field was applied while maintaining the heating. IRE 
parameters: 100 µs pulse width, 90 pulses, frequency of 1 Hz and applied electric fields 750 V/cm (A), 1.5 kV/cm 
(B), 2 kV/cm (C,E,G) and 2.5 kV/cm (D,F,G). The slower temperature increase and increased variations shown 
in (C,D) were due to ultrasonic gel to reduce electrical breakdown and the electrical breakdown that did occur 
respectively. Using this system, a heating effect was observed with pulsing alone (E–G). One representative 
sample from 4 to 8 tumors is shown here.

Figure 5.  Tumor impedance measurement during MHIRE treatment. Impedance trends were taken from 
the voltage probe and current-viewing resistor readings over the 90 pulses applied. Each data point represents 
an average impedance reading of 4 to 5 tumors for that pulse. IRE parameters: 100 µs pulse width, 90 pulses, 
frequency of 1 Hz and applied electric fields of 1.5 kV/cm (left), 2 kV/cm (middle) and 2.5 kV/cm (right). 
Standard deviations for the 1st, 10th and 80th pulses are indicated with error bars.
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Enhancement of the therapeutic efficacy of IRE with MH for ectopic pancreatic cancer.  First, 
we treated the tumors with either IRE or MHIRE with parameters: 100µs pulse width, 1 pulse per second, 90 
pulses and 750 V/cm or 1500 V/cm. Both IRE treatments alone had little impact on the tumor growth. However, 
a synergistic effect was seen in the IRE treatment when the tumor was preheated to 42 °C (internal temperature) 
for both 750 V/cm and 1500 V/cm IRE protocols (Fig. 6A). A significant decrease of tumor size was seen in ani-
mals treated with MHIRE at 750 V/cm only at one-time point at post-treatment day 8 (p < 0.05) whereas tumors 
treated with MHIRE at 1500 V/cm were all significantly smaller than control group or the IRE alone group at all 
time points on post-treatment days 4, 7, 11, 13 and 14 (p < 0.05, 0.05, 0.05, 0.01 or 0.001, separately). As shown in 
Fig. 6B, at post-treatment day 2, typical central necrosis of tumor occurred after IRE with 1500 V/cm, whereas a 
larger tumor necrosis was observed in MHIRE with 1500 V/cm. Nevertheless, no complete tumor regression was 
obtained under these two IRE or MHIRE protocols.

We then treated tumors with IRE or MHIRE at elevated electric fields within 2000–2500 V/cm. The 
Kaplan-Meier survival curves are shown in Fig. 7. Despite the higher electric fields, IRE treatment alone could 
not achieve tumor free animals. It only extended medial survival for 3 days with 46 days median survival com-
pared to 43 days median survival for the control tumor animals. However, MHIRE significantly extended median 
survival by almost two times with 84 days compared to control mice (p < 0.001). More importantly, 55.6% of the 
tumor-bearing mice that were treated with MHIRE were tumor-free.

Figure 6.  Pancreatic tumor growth after IRE or MHIRE treatment. Pan02 pancreatic tumors with the size 
of 8 to 10 mm were treated with IRE or MHIRE at day 28 or 31 indicated by black arrow. IRE parameters: 
pulse duration 100 µs, frequency 1 Hz, pulse number 90 and applied electric fields 750 V or 1500 V/cm. Ctr: 
no treatment (n = 4 mice per treatment group); Laser: tumor heated with laser at 42 °C for 2 minutes; 750 V, 
1500 V: IRE at 750 V/cm or 1500 V/cm (n = 4 mice per treatment group); 750 V + Heat or 1500 V + Heat: tumor 
preheated with laser at 42 °C with IRE at 750 V/cm (n = 7 mice per treatment group) or 1500 V/cm (n = 8 mice 
per treatment group). A: tumor growth curve. B: Pictures taken at post-treatment day 2. *p < 0.05, or p < 0.01 
or p < 0.001 for MHIRE vs IRE or Ctr by One Way ANOVA.

Figure 7.  Kaplan-Meier survival curves of mice treated with IRE or MHIRE. Pan02 pancreatic tumors with 
the size of 8 to 10 mm were treated with IRE or MHIRE at day 31 indicated by arrow. IRE parameters: pulse 
duration 100 µs, frequency 1 Hz, pulse number 90 and applied electric fields 2000–2500 V/cm. Ctr: no treatment 
(n = 8 mice per treatment group); IRE: treated with IRE (n = 8 mice per treatment group); MHIRE: tumor 
preheated with laser at 42 °C with IRE (n = 9 mice per treatment group). ***p < 0.001 for MHIRE vs IRE or Ctr 
by LogRank test.
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No severely sick animals were found for IRE or MHIRE treatment at 750–1500 V/cm, however, at high electric 
field 2000–2500 V/cm 5/13 mice in IRE group and 2/11 mice in MHIRE group were euthanized due to severe 
dehydration, high pain scores or severe sickness. The causes of serious adverse events were likely related to large 
tumor necrosis or intestine/adjacent tissue necrosis.

Discussion
Moderate heating itself is not the same as hyperthermia tumor ablation utilized in other studies. Typical duration 
of MH at a target temperature of 42–43 °C is 2 minutes (Fig. 4). 43 °C was chosen as a target temperature because 
elevating the temperature above 43 °C could induce cell death25, which we wanted to avoid. Heating tumor cells 
in a 3D culture model for 2 minutes did not cause any cell death (Fig. 2), and moderate heating alone had a slight 
impact on in vivo tumor growth but no effect on survival and tumor regression (Fig. 6). Compared to 1 hour or 
longer of hyperthermia treatment26, direct effect of our MH on tumor cell death is expected to be minimal or neg-
ligible. However, synergistic effect between MH and IRE has been demonstrated in both ex vivo tumor ablation 
and in vivo tumor reduction. MH is able to significantly enlarge tumor ablation zone in vitro (Fig. 2) and reduce 
tumor growth in vivo (Fig. 6).

A simple explanation for this synergistic effect between MH and IRE is the increase of tumor conductivity, 
indicated by a large decrease in impedance (Fig. 5). Correspondingly, current is elevated so actual dose of pre-
cipitate energy to the tumor is higher for MHIRE than that of IRE alone at the same electric field (Fig. S1). A 
correlation of impedance decrease and the efficiency of tumor ablation was suggested from clinical data27. If this is 
the case, the efficacy of MHIRE should be equivalent to IRE with an elevated electric field. Giving a 40% increase 
of tumor conductivity, theoretically MHIRE at 2500 V/cm should be identical to IRE at 3500 V/cm. That means 
using MHIRE could reduce the electric field necessary to achieve the same level of therapeutic efficacy as IRE. 
With MHIRE, the focused laser beam heats only tumor tissue. This coupled with a reduction in the applied elec-
tric field minimizes damage to surrounding tissues and organs, a disadvantage of current IRE ablation therapies. 
Another effect of MH is the decrease of impedance fluctuation of the tumor. This phenomena might contribute to 
more complete tumor ablation. Because a tumor is not a homogenous structure with multiple types of cells and 
extracellular matrix28,29, a heterogeneous impedance map of tumor tissue30 is expected and as a result the tumor 
impedance during IRE treatment fluctuates. Any approach to enhance the uniformity of tumor physical property 
could result in more tumor cells being exposed to the lethal dose of electric field and consequently a higher rate 
of complete tumor ablation.

In contrast to other studies of IRE for xenograft murine pancreatic cancer models, identical or similar param-
eters were adopted but higher complete tumor ablation was achieved in those reports. An extension of medial 
survival from 42 days in control mice to 88 days with 25% of complete tumor ablation after IRE treatment was 
reported by Jose et al.31. In that study, a matched IRE protocol (100 µs, 1 Hz, 2500 V/cm and pulse number 90) 
was applied but smaller (2–5 mm) xenograft human BxPC-3-luc orthotopic pancreatic tumors in athymic nude 
mice were treated. Philips et al. claimed that 74.4% of complete tumor ablation was obtained histologically, but 
no survival study was conducted. A large (1–1.5 cm) ectopic human Panc-1 pancreatic cancer in the skin of hind 
thigh of Balb/c nude mice was treated by a two-needle electrode with a 4 mm gap. IRE parameters were 100 µs, 
1800–2000 V and 90 pulses. Though tumor size, choice of electrodes and IRE parameters all influence therapeutic 
efficacy, the sensitivity of tumor cells to electric pulses and the received dose of electric pulses would determine 
the fate of tumor cells. Therefore physical properties of the target tumor, especially impedance is a critical factor 
for IRE treatment. Unfortunately, there was no impedance data from these two reports. In contrast to 750 to 800 
Ω impedance (Fig. 5C,D) of PAN02 murine pancreatic cancer in this study, 100 to 120 Ω of human pancreatic 
cancer was reported by Dr. Martin’s group27. The received current or energy dose of human pancreatic cancers is 
6-7-fold higher than murine pancreatic cancers. That explains why mouse Pan02 cancer was more resistant with 
a similar IRE protocol.

It is suggested that IRE is a novel ablation modality better than hyperthermia based ablation technologies to 
avoid unselective tissue damage and “thermal sink”32. Nevertheless, adverse events including severe complica-
tions did occur with IRE treatment in clinical trials14–18,33. High-grade complications, such as bile leak15,18, portal 
vein thrombosis15, duodenal leak15,18, pancreatic leak18, pancreaticoduodenal fistula14, are associated with IRE 
protocols. Though the imprecise needle placement is thought to be a major cause of those serious complications, 
the contribution of electric pulses could not be ruled out. A recent study demonstrated that placement of elec-
trodes could cause damage to the adjacent normal tissue without direct needle insertion34. Adjacent muscle/skin 
damage and intestine necrosis (data not present here) was evidenced from necropsy of ectopic pancreatic cancer 
mice treated with IRE at high electric fields (2000–2500 V/cm) in this study as well. Additionally, 26.2% (17/65)27 
or 27.8% (15/54)18 of local failure or recurrence also limits the benefit of this treatment. Certainly, there is still a 
space for the improvement of this novel ablation technology. Here we intended to improve the efficiency of the 
current IRE approach for tumor ablation. An integrated EP delivery system with capacity of controllable, focused 
tissue heating and multi-parameter monitoring has been constructed and tested in a syngeneic mouse pancre-
atic cancer model. We have demonstrated that moderate heating significantly enhanced the therapeutic efficacy 
of IRE for pancreatic cancer ablation. Preliminary data also suggest that MHIRE has the potential to eliminate 
local tumors at lower electric fields with less serious adverse events. IRE as a novel ablation technology has been 
studied in clinical trials for liver35,36, pancreatic15,33, kidney13,37 and prostate cancers38,39, however, there is no 
standardized protocols or dose definition and monitoring for completion of treatment. A concern of inadequate 
delivery of energy that could result in incomplete ablation and consequently increase of residual tumor growth 
rates27 was brought up by Dr. Martin’s group40. Standardized delivery of energy was suggested as a solution to 
improve the safety and efficacy of IRE treatment40. Change of tissue resistance was measured and defined as the 
endpoint of procedures in several groups17,27,33. The system built here can be utilized to monitor energy delivery 
(Fig. S2) and the changes in tumor resistance/impedance. More importantly, it can sensitize the IRE treatment 
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by pre-heating tumor. This feature is particularly important for those tumor tissues with high impedance due to 
the heterogeneous nature of cancer or the difference of tissue types. In those cases, standardized energy would be 
hard to achieve with the current IRE protocol. Another advantage of our MHIRE protocol, is the reduction in the 
applied electric field of IRE.

We have to emphasize that our current MHIRE system is a prototype for performing a proof of concept study. 
One issue that is commonly raised is how to get uniform temperature increase in the target tumor with laser heat-
ing. Thermo-distribution of tumor with laser heating has been studied by other groups41,42. A typical bell-shape 
of thermo-distribution is obtained in tumor or tissue with laser heating41. It’s obviously central-focused heating. 
However, considering that electric field of IRE is never evenly distributed with weak spots at the center among 2 
or 4 needle prints (Fig. 3), focused laser heating at the tumor center actually corresponds to the electric field dis-
tribution of IRE (Fig. 2C). Significant cell death at the center spot with ex vivo tumor ablation of MHIRE (Fig. 2C) 
may ease the concern of the non-uniformity of laser heating. Currently, we are able to treat a target tumor with a 
size of 8–10 mm, which is not big enough for most clinical tumors. Technically, we can modify the electrode with 
additional optic lens, increase of needle gap and length to treat 2-3 cm tumor. However, laser heating might be 
an issue for deep, large tumor tissue. In this case, other heat sources, such as focused ultrasound43, microwave44 
or radiofrequency45, could be utilized to pre-heat and maintain moderate temperature increases of large tumor 
tissue. Another issue is to heat and maintain tumors encasing large vessels. In this case, more complicated designs 
or even systemic hyperthermia could be adopted to elevate the temperature of blood or the whole body.

In summary, we have developed an integrated MHIRE system with controllable tumor heating, 
multi-parameter monitoring and electric pulse delivery. We found that the impedance of preheated tumor was 
greatly reduced as well as its fluctuation. The ablation zone of tumor was significantly enlarged after preheated to 
43 °C which alone could not cause any cell death. IRE alone was not sufficient to ablate Pan02 pancreatic cancer 
at both low and high electric fields, whereas MHIRE significantly reduced tumor size at a lower electric field and 
resulted in high rate of complete tumor regression at a higher electric field. MHIRE may have the potential to 
enhance IRE tumor ablation at lower voltages.

This is a first study that has demonstrated a synergistic effect between moderate heating and IRE for tumor 
ablation and animal survival. This novel concept and technology has the potential to improve therapeutic efficacy 
of IRE for local tumor eradication.

Materials and Methods
Materials and Instruments.  Class 4 Laser Power Supply, Wavelength: 980 nm, Output Power: >8 W 
(Lasermate Group Inc.), a laser optic fiber Model: M79L005 (Thor Labs Inc.), a thermopile based temperature 
sensor Model: ZTP-135SR model (Amphenol Advanced Sensors), Type K Thermocouple (REOTEMP Instrument 
Corporation), oscilloscope Model Waverunner 64xi (Teledyne LeCroy), laptop computer Lenovo ThinkPad: I7 
Core laptop computer (Lenovo) and ECM 830 Square Wave Electroporation System (BTX-Harvard Apparatus) 
was purchased from the corresponding vendor.

Reagents.  Low-gelling temperature agarose (Sigma-Aldrich), Propidium iodide solution (Sigma-Aldrich), 
Bulter Schien animal health aquasonic ultrasound gel (Fisher Scientific), Carprofen (Rimadyl® Injectable, 50 mg/
ml) (Patterson Companies) was purchased separately from the corresponding vendor.

Cell lines.  A murine pancreatic adenocarcinoma Pan02 cell line was obtained from the Division of Cancer 
Treatment and Diagnosis (DCTD), NCI and maintained in RPMI-1640 (ATCC® 30–2001TM) supplemented with 
10% FBS (Atlantic Biological), 100 IU of penicillin and 100 µg/ml streptomycin. Cells were kept in a 37 °C incu-
bator supplied with 5% CO2.

Mice and tumor models.  Female C57BL/6 mice (6–8 weeks of age) were purchased from Jackson 
Laboratory or Harlan Laboratories. Mice were injected with 1 × 106 Pan02 cells in 50 μL Dulbecco’s phosphate 
buffered saline (DPBS) on the left flank. The size of primary tumor was assessed by digital calipers twice a week. 
Tumor volume was determined using the following formula: V = πab2/6, where (a) is the longest diameter and 
(b) is the shortest diameter perpendicular to (a)46. Mice were euthanized at the end of the follow-up period or 
when they met criterion described at experimental endpoints. All experimental protocols were approved by Old 
Dominion University Institutional Biosafety Committee (IBC) and Institutional Animal Care and Use Committee 
(IACUC). And all experiments were performed in accordance with relevant guidelines and regulations.

Electrode configuration.  Two types of electrode configurations were used in the study: a 2-needle elec-
trode with a 5 mm gap and a 4-needle electrode arranged in an array of 7 mm × 5 mm spacing. The electrodes 
were partially covered with polytetrafluoroethylene tubes to prevent surface flashover during in vivo treatment. 
The exposed area of the needles were the parts inserted and remained in the biological sample/tissue during 
treatment. For the purposes of the experiments in this study, the length of the insulating tubing was set to allow 
3 mm of bare needle for insertion.

Laser heating and control system.  To achieve controlled heating and maintain a relatively constant sur-
face temperature of the treatment object at 43 °C during the time of treatment, a programmable and automatically 
adjustable heating system was developed. The heating system consists of an infrared laser whose optical emission 
can be modulated in time, an optical fiber that delivers the infrared laser light to the treatment surface, a temper-
ature sensor (a thermopile (ZTP-135SR) or a thermocouple) that reads the instantaneous surface temperature, 
and a programmable control circuit that provides the laser modulation as well as the temperature information 
to the readout such as a LabVIEW platform in a laptop or a computer. The surface temperature of the target is 
maintained by applying a time-modulated laser heating based on the temperature readout by the sensors. When 
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the temperature measured by the sensor exceeds the desired temperature, the heating source shuts off and the 
heat loss due to heat exchange between the target tissue and the ambient environment will cause the temperature 
to go down. When the temperature of the target is below the set temperature, the laser irradiation is turned on 
again and the feedback loop repeats. This temporally modulated system utilizes short laser pulses and the rapid 
response time in millisecond time scale to achieve the desired temperature of the target tissue with precisions of 
±2 °C.

Electrical diagnostics.  The square wave electroporation system listed in section “materials and instru-
ments” provided pulses of 100 µs duration and up to 5 kV amplitude to the electrodes. Measurements of the 
voltage across the treated tissue area between the electrodes were performed by means of a voltage probe. The 
voltage probe consists of a resistive voltage divider with a divider ratio of 1:100. The current was measured by 
means of a current-viewing resistor, which was placed within the voltage probe and was calculated using Ohm’s 
Law. At the beginning of testing, the current limiting resistor was set to 50 Ohms but it was later discovered that 
this value gave low resolution results at lower input voltages (<1,500 kV). This resistor was then changed to 150 
Ohm, which increased the resolution of the reading. Both, voltage and current signals were recorded with the 
digital oscilloscope. The ratio of the measured voltage and current provided information on the temporal change 
in impedance of the biological load. The pulsed voltage values, current and impedance were recorded in real time 
using a custom-designed LabVIEW program.

Ex vivo IRE tumor ablation.  A 3D agarose cell-culture model47 was adopted for ex vivo tumor ablation. 
Solutions of 1% and 2.5% low-gelling temperature agarose in complete media were prepared and kept at 37 °C. 
A base layer of 900 µL 2.5% low-gelling temperature agarose was applied to individual wells of a 12 well tis-
sue culture plate. The plate was then chilled at 4 °C until addition of cell suspension. Briefly, 3 × 106 Pan02 cells 
were resuspended in 1 mL of 1% low-gelling agarose and overlaid on the 2.5% layer. The plate was immediately 
returned to 4 °C for 4 minutes, after which the 3D cell models were incubated at 37 °C for 20 minutes.

Electric pulses were delivered to tumor using either a two-needle electrode or a four-needle electrode at either 
room temperature or 43 °C. A heat block was used to reach and maintain 43 °C. Temperature was monitored 
either with a thermocouple inserted in the edge of the agarose if cells were heated on the heat block, or with a 
thermopile integrated into the electrode adjacent to a fiber optic laser for those cells which were laser-heated. The 
pulse parameters were pulse duration 100 µs, frequency 1 Hz, 80 pulses, and applied electric fields of 750 V or 
1500 V/cm for the two-needle electrode and 750 V/cm for the four-needle electrode.

Quantification of ex vivo tumor ablation.  Immediately after IRE treatment, 1 mL fresh media was added 
to each treated well, and the plate was transferred to an incubator at 37 °C with 5% CO2 for 1.5 hours. Propidium 
Idodide (PI, 4 µg/ml) was then added to the cell culture media and returned to the incubator. After 30 minutes 
of staining, culture media was replaced with DPBS and images of the ablation zone were obtained using a Leica 
MZFLIII fluorescence stereomicroscope (Leica) equipped with a Leica DFC420 C CCD camera. All images were 
taken at the same exposure parameters. Fluorescence images were quantified with ImageJ software (downloaded 
from imagej.nih.gov/ij/). Quantification of ablation zone was reported as integrated fluorescence density in rela-
tive fluorescence units (RFUs).

Electric field modeling of the needle-electrodes.  A two-dimensional electrostatic model was com-
piled using a Comsol Multiphysics AC/DC module. The electric field distribution of a four-needle electrode 
configuration immersed in water was calculated. Water was used in the simulation as the medium here since 
the agarose gel can be assumed to have high content of water and its dielectric property is close to water (relative 
permittivity; conductivity μS/m). An area of 20 × 20 mm2 that is more than one order of magnitude higher than 
the needle array was used for the computation to ensure the boundary effect (if any) has negligible impact on the 
field mapping results. The field distribution is obtained by solving the finite element AC/DC model under a steady 
state condition where the voltage across the anode (the left two needles) and cathode (the right two needles) is 
constant.

In vivo IRE treatment.  For in vivo IRE tumor ablation, EPs were delivered to tumor tissue using a four 
needle electrode array (Fig. 1) with 5 × 7 mm gaps when tumor size reached 8–10 mm in diameter with an aver-
age tumor volume of 250–300 mm3. There is a 7 mm gap between the anode and the cathode pins and a 5 mm 
gap between the two anodes or the two cathodes. The pulse parameters were pulse duration 100 µs, frequency 
1 Hz, pulse number 90 and applied electric fields 750 V/cm to 2500 V/cm, dependent on experimental design. 
Carprofen (Rimadyl, 5 mg/kg) was given subcutaneously immediately before procedure and every 24 hours for 4 
days to prevent/reduce pain caused by tumor necrosis.

Statistical analysis.  All values are presented as the mean ± standard deviation (SD). Analysis of tumor vol-
ume at different time points will be completed by One Way ANOVA. Animal survival was analyzed with Kaplan–
Meier Survival Analysis (LogRank test). 2-tailed Student’s t-test (2 groups) was utilized to analyze quantitative 
ex vivo tumor ablation and in vivo tumor temperature increase due to IRE. Statistical significance is assumed at 
p < 0.05. All statistical analysis including Kaplan-Meier Survival Analysis will be completed using the SigmaPlot 
12.0 (Aspire Software International).
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