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SRpHi ratiometric pH biosensors for super-
resolution microscopy
Douglas S. Richardson 1,2, Carola Gregor1, Franziska R. Winter1, Nicolai T. Urban1, Steffen J. Sahl1,

Katrin I. Willig1,3 & Stefan W. Hell1,4

Fluorescence-based biosensors have become essential tools for modern biology, allowing

real-time monitoring of biological processes within living cells. Intracellular fluorescent pH

probes comprise one of the most widely used families of biosensors in microscopy. One key

application of pH probes has been to monitor the acidification of vesicles during endocytosis,

an essential function that aids in cargo sorting and degradation. Prior to the development of

super-resolution fluorescence microscopy (nanoscopy), investigation of endosomal dynamics

in live cells remained difficult as these structures lie at or below the ~250 nm diffraction limit

of light microscopy. Therefore, to aid in investigations of pH dynamics during endocytosis at

the nanoscale, we have specifically designed a family of ratiometric endosomal pH probes for

use in live-cell STED nanoscopy.
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Endocytosis is an essential cellular process that directs the
internalization and intracellular trafficking of membrane
proteins, their ligands, and other soluble molecules

throughout the cell1. An important mechanism that allows the
endocytic machinery to carry out its functions is the gradual
acidification of endosomes as they mature from nascent
membrane-derived vesicles (pH ~7.4) to lysosomes (pH < 5)2.
Therefore, endosomal pH sensors have been essential tools of
many researchers investigating intracellular trafficking events
within the cell3–5. Unfortunately, the small size of endosomes has
hindered their investigation in live-cell microscopy studies. Many
structures in the endocytic pathway are <250 nm in size, placing
them below the diffraction limit of conventional light micro-
scopes and rendering it impossible to distinguish close-lying
structures such as densely packed endosomes or fine endosomal
projections known as tubules6. Often, researchers use genetically
modified model systems with enlarged endosomes to better
visualize these structures7. Recent advances in light microscopy
now allow imaging of cells at sub-diffraction resolutions of 50 nm
or better8.

Although a number of fluorescent pH probes exist (Table 1
and refs. 3–5), most have characteristics that make them difficult
or impossible to use for pH measurements in endosomes. For
example, some do not target the endocytic pathway and simply
diffuse throughout the cytoplasm. Others contain only a single
fluorophore that changes in fluorescence intensity. Once this
fluorescence is quenched, the probe or structure it resides in is
no longer visible. Ratiometric probes that utilize two fluor-
ophores may occupy a wide range of the visible spectrum (for
example, 500–700 nm for an EGFP/mCherry-based probe) that
is detectable by a fluorescence microscope, thereby reducing the
remaining spectrum available for co-labeling of other molecules
of interest. Some pH sensors are based on chromophores with
low brightness (lysosensor, SNARF) and high bleaching rates in
aqueous environments (fluorescein) or are not compatible with
the higher demands of super-resolution microscopy. Finally,
many have a rather limited dynamic range, or a near-neutral
pKa value that prevents the use of their full dynamic range in
acidic vesicles, making it difficult to detect modest changes in
pH. Here, we present a family of endosomal pH sensors that are
developed specifically for STED nanoscopy, namely, the super-
resolution pH indicators (SRpHi). STED was the super-
resolution method of choice as it acquires raw data with no
need for later computational analysis that would complicate
and possibly render data analysis (such as ratio calculations)
impossible.

The design focuses on three key factors. Due to the need for
high-speed scanning (to capture endosome dynamics in living
cells) and thus a need for high-fluorescence flux from these
structures (due to short pixel dwell times), we focus on pH-
sensitive fluorophores that are efficient in absorbing excitation
light (high extinction coefficient), converting excitation light to
fluorescence emission (high quantum yield), and are photostable.
All pH-sensitive fluorophores used here have a brightness value
between 22 and 51 (Table 1). Secondly, we develop an efficient
delivery method that functions across many cell types to rapidly
load pH sensors into endosomes while limiting their diffusion/
attachment to other regions of the cell. Thirdly, sensors are
designed to require a single STED laser, occupy a narrow region
of a fluorescent microscope’s detection band, and maintain a large
dynamic range over relevant pH values.

To best address these parameters, the SRpHi molecules are
designed as ratiometric pH probes based on the historical two-
fluorophore design in which one fluorophore displays a relatively
higher degree of pH-dependent fluorescence quenching than the
other9, 10. All of the fluorophores utilized here have been

previously characterized for use in STED microscopy and
are known to be sufficiently bright and photostable (Table 1 and
refs.11–13).

Results
The basic construction of a SRpHi molecule is presented in
Fig. 1a. In this design, a fluorescent protein with reversible, acid-
sensitive fluorescence quenching (Fig. 1b–d) is genetically fused
to the positively charged 10 amino acid cell-penetrating peptide
sequence from HIV-1 Tat (GRKKRRQRRR)14. TAT-fused
fluorescent proteins were purified from bacteria (Supplementary
Fig. 1a) and labeled with either Abberior STAR400, STAR410, or
STAR512 dye (Supplementary Fig. 1b). Table 1 contains addi-
tional details on the composition of the probes—SRpHi1,
SRpHi2, SRpHi3, and SRpHi4—presented here.

SRpHi targets to the endosomal pathway. A pulse/chase
experiment was performed to confirm the intracellular stability of
SRpHi. Although a decrease in SRpHi protein was detected
between the initial 10 min pulse and a chase of 30 min, no further
decrease was seen after a 60 min chase (Fig. 1e). Additionally, no
accumulation of free dye that would indicate SRpHi protein
breakdown was detected (Fig. 1e). Therefore, we attribute the
initial decrease in SRpHi protein levels between the pulse and 30
min chase to the loss of membrane-bound but not internalized
SRpHi during washing and fixation, and the possible recycling of
SRpHi to the extracellular space. Together, these data indicate
that the SRpHi probe is stable intracellularly for at least 60 min
post-internalization. In order to determine if the TAT sequence,
which interacts with the negatively charged plasma membrane,
correctly targeted the SRpHi probe to the endocytic pathway,
uptake of SRpHi was monitored in fixed mouse embryonic
fibroblast (MEF) and HeLa cells. Prior to fixation, HeLa cells were
incubated with SRpHi for 10 min at 37 °C, 4 °C, or at 37 °C after
the cells were pre-treated with 80 µM Dynasore for 45 min.
Figure 2a displays uptake of SRpHi into small, vesicle-like
structures. This uptake could be reduced by inhibiting endocy-
tosis by cooling the cells or through pharmacological methods
(using the dynamin inhibitor Dynasore). The probe-containing
vesicles were shown to rapidly colocalize with transiently
expressed tdTomato-RAB5a (Fig. 2b) and endogenous EEA1
(Fig. 2c), which are both commonly used markers of early
endosomes, after 10 min of continuous uptake. A significant
decrease in colocalization between SRpHi and tdTomato-RAB5a
or EEA1 was noted when the initial 10 min incubation (pulse)
was followed by a 60min incubation at 37 °C in SRpHi-free
growth medium (chase, Fig. 2b, c). Further, we observed a sig-
nificant increase in SRpHi colocalization after a 90 min chase
interval with the late endosome/lysosome marker LAMP2 in a
similar pulse/chase experiment (Fig. 2d). These results confirm
that SRpHi is efficiently targeted to early and late endosomes,
prior to delivery to the lysosomal compartment.

SRpHi probes are compatible with STED microscopy. Our
initial probe, SRpHi1, was comprised of the Abberior STAR410
dye and the fluorescent protein EYFP (Fig. 1a; Table 1). These
fluorophores were first analyzed in solution to determine their
effectiveness as indicators of pH. Figure 3a displays fluorescence
emission spectra of STAR410 and TAT-EYFP in solution at pH
7.0 and 5.0. At pH 5.0, EYFP is reduced to ~2% of its brightness
at pH 7.0. In comparison, STAR410 is only reduced to ~37%.
Comparison of the area under each curve (integral) across the
detection range of our microscope suggested a potential ratio-
metric intensity change (dynamic range) of nearly 10-fold.
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However, as differences in excitation wavelength and intensity,
the detection range and intracellular environment can all affect
biosensor performance, we moved to a live-cell model system in
order to fully characterize SRpHi. Live, intact MEF cells were
imaged using a custom-built STED microscope that has been
previously described11, 15. Two excitation lasers, at 405 and 490
nm, were used to excite the STAR410 and EYFP fluorophores
sequentially. A pulsed STED beam at 590 nm was used for
stimulated emission depletion (fluorescence silencing) of both
fluorophores. This setup produced excellent separation of both
dyes with only a minor (<10%) bleed-through of the EYFP signal
into the STAR410 channel (Supplementary Fig. 2). Due to the
relative intensities of the fluorophores, this bleed-through was
negligible and spectral unmixing resulted in no noticeable
improvement to either image (data not shown). Figure 3b
displays confocal and STED images of MEF cells loaded with
SRpHi1 for 10 min and imaged at room temperature in
phosphate-buffered saline (PBS). As expected, a quantifiable
resolution increase was observed for both the STAR410 and EYFP
channels. Although not all endosomes were below the diffraction

limit in size, STED imaging revealed a population of endosomes
<100 nm in diameter (examples in Fig. 3b–d). This was a
significant resolution improvement over diffraction-limited con-
focal imaging where endosomes appeared as objects more than
200 nm in size (Fig. 3b–d). STED microscopy proved particularly
useful for resolving clusters of tightly packed endosomes (Fig. 3c)
and tubular structures protruding from vesicles (Fig. 3d) that
were not resolved by traditional confocal microscopy.

In vivo characterization of SRpHi. In order to compare the
in vivo performance of SRpHi1 to our initial characterizations in
solution, MEF cells were loaded with SRpHi1 for 10 min followed
by incubation in a citric acid/phosphate buffer adjusted to various
pH values and supplemented with nigericin and KCl (140 mM).
This is an established method to equilibrate intracellular pH to an
extracellular buffer16. As expected, an obvious decrease in EYFP
fluorescence relative to STAR410 fluorescence was seen as the
intracellular pH was reduced (Fig. 4a). We further determined the
average signal intensity in each channel for over 150 endosomes
at each of the following pH values: 7.0, 6.5, 6.0, 5.5, and 5.0. These

Table 1 Properties of biological pH sensors

pH Probe Fluorophore #1 Fluorophore #2 Ratiometric QY/EC/Brightness
Fluorophore #1

QY/EC/Brightness
Fluorophore #2

pKa Usable
pH
range

Comments Ref

Non-ratiometric single fluorophore
FITC FITC No 0.93/75,000/69.7 6.1 5.0–9.0 Rapid bleaching

in aqueous buffer.
Protein
conjugation
decreases
fluorescence. No
fluorescence at
low pH. Primarily
a cytosolic pH
probe.

23

pHrodo pHrodo No 0.34/65,000/22.1 6.5 4.0–8.0 No fluorescence
at neutral/basic
pH

24

pHluorin Mutant GFP No 0.08/41,000/3.3 7.1 5.5–7.0 No fluorescence
at low pH.

25

sepHluorin EGFP mutant No NA/NA/22 7.2 6.0–7.5 No fluorescence
at low pH.

25

pHuji mApple mutant No 0.22/31,000/6.8 7.7 6.5–8.5 No fluorescence
at low pH.

26

Ratiometric single fluorophore
Ratiometric
pHluorin

GFP2 mutant Yes, dual
excitation

NA NA 6.0–7.5 27

BCECF BCECF Yes, dual
excitation

0.84/90,000/75.6 7.0 6.0–8.0 Primarily a
cytosolic pH
probe.

4

SNARF-4F SNARF-4F Yes, dual
excitation &
emission

0.09/47,100/4.2 6.4 6.8–7.4 Low fluorescence
at neutral pH

28

LysoSensor
yellow/blue

LysoSensor yellow/
blue

Yes 0.34/23,000/7.8 4.2 3.5–6.0 29

Ratiometric dual fluorophore
mCherry-
pHluorin

sepHluorin mCherry Yes NA/NA/22 0.22/72,000/15.8 7.1 5.5–7.0 9

SRpHi1 EYFP STAR410 Yes, dual
excitation

0.61/83,600/51.0 0.44/14,000/6.1 6.9 5.0–7.0

SRpHi2 EGFP STAR512 Yes, dual
excitation

0.60/56,000/33.6 0.82/92,000/75.4 5.9 4.5–6.5

SRpHi3 sepHluorin STAR512 Yes, dual
excitation

NA/NA/22.0 0.82/92,000/75.4 7.1 5.5–7.5

SRpHi4 EYFP STAR400 Yes, dual
excitation

0.61/83,600/51.0 0.86/20,900/18.0 6.9 5.0–7.0

Brightness in units of mM−1·cm−1; EC, extinction coefficient (M−1·cm−1); QY, quantum yield.
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data were used to produce the ratiometric standard curve pre-
sented in Fig. 4b. The log10 of the ratiometric data fit well to a
linear function (R2 = 0.99), and resulted in a greater than six-fold
change over the pH range tested. This is greater than the many
common ratiometric pH probes currently available (2–5-fold)3–5.
In addition, the high acid stability of the STAR410 dye ensures
endosomes remain visible over the full range of endosomal pH
values unlike single-dye pH sensors. A higher dynamic range is
possible, however the 405 nm laser power was specifically kept at
low levels to prevent excitation of EYFP by the 405 nm light, and
to prevent photobleaching and/or photodamage to the cells.
Figure 5a displays ratiometric images of endosomes equilibrated
to various pHs (5.0–7.0). Additionally, a pulse/chase experiment
further confirmed the accuracy of the standard curves and
SRpHi’s ability to produce live-cell super-resolution ratiometric
images. In the experiment, SRpHi correctly reported the decrease
in endosomal pH from 10 to 60 min after internalization
(Fig. 5b).

SRpHi2 and 3 have increased dynamic range. Based on our
original design, we produced additional pH probes with
enhancements to serve a broader range of endocytosis experi-
ments. SRpHi2 and 3 incorporated changes to enhance their
dynamic range, shift their excitation spectra away from the near
UV, and/or alter their optimal pH range. Both probes incorpo-
rated the highly acid-stable STAR512 dye that maintained per-
formance at pH values below 5.0 when paired with EGFP in
SRpHi2. Analysis of these probes was performed by modifying a

previously described STED microscope for two-color excitation
and detection17 (Supplementary Fig. 3). Measurements in solu-
tion and intact cells showed that SRpHi2 has a dynamic range of
more than 15-fold over a pH range of 6.5–4.5 during STED
imaging (Supplementary Fig. 4a–c). A similar analysis of SRpHi3
determined a dynamic range of over 20-fold from pH 7.5 to 5.5
(Supplementary Fig. 4d–f). This suggests that very large dynamic
ranges are attainable in live cells at STED resolution, far
exceeding the current complement of available pH probes. In
addition, SRpHi1-3 display unique optimal pH ranges, lending
themselves to the specific analysis of different stages of endocy-
tosis (Supplementary Table 1).

SRpHi fusions target probes to specific endosomal pathways.
SRpHi probes 1–3 were targeted to the endocytic machinery by
the short peptide TAT. As shown in Fig. 2, TAT directed inter-
nalization of the SRpHi probes through early and late endosomes
to the lysosome. Although useful for bulk cargo flow through the
endocytic pathway, TAT does not allow for the study of more
specialized intracellular movements such as recycling. For-
tunately, the design of the SRpHi probes is modular and they can
be easily targeted to other pathways. As a proof-of-principle
experiment, SRpHi4 was developed, in which the short TAT
sequence was replaced with the mature epidermal growth factor
(EGF) protein (Fig. 1a). A 34.4 kDa EYFP-EGF fusion protein
was purified (Fig. 6a) and labeled with STAR400, a shorter
Stokes-shift dye that is better suited to imaging on commercially
available microscopes. Figure 6b displays the rapid uptake of
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Fig. 1 SRpHi is a reversible and stable pH biosensor. a Diagrammatic representation of the SRpHi structure. SRpHi molecules consist of a fluorescent
protein backbone genetically fused to the cell-penetrating peptide TAT or epidermal growth factor (EGF). In addition, organic dye molecules are covalently
attached via an amide linkage in a ~2:1 ratio. b–d Normalized fluorescence emission spectra of TAT-EYFP b, TAT-EGFP c, or TAT-sepHluorin d were
obtained from purified protein dissolved in citric acid/phosphate buffer of pH 7.5 (blue line) or 5.0 (red line). Spectra were then reacquired after addition of
concentrated NaOH to return the pH 5.0 solution to ~pH 7.5 (green line). The wavelength of excitation light used for each experiment, and the fluorescence
maximum of each fluorophore is indicated. e Pulse-chase experiments were performed using an EGFP-based SRpHi molecule conjugated to the far-red dye
Alexa 647 (to prevent acquisition of signal arising from non-denatured EGFP). Lysates from MEF cells undergoing the indicated treatments were separated
by SDS-PAGE and run alongside a molecular weight marker and free Alexa 647 dye. The dye-front of the gel was analyzed for far-red fluorescence (>650
nm, red, bottom panel) prior to transfer to PVDF membrane and immunolabelling (top panel). Primary antibodies against gamma-tubulin were visualized by
reaction with secondary antibodies conjugated to Cy3 (green) and used as a loading control. SRpHi was visualized in the far-red spectrum, as the denatured
protein did not emit fluorescence
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SRpHi4 into early endosomes, with >30% of SRpHi4-containing
endosomes colocalizing with EEA1 after 10 min of loading. This
is similar to what was seen with the TAT fusion SRpHi2 protein
(Fig. 2c). In vivo standard curves were determined for this probe
(Fig. 6c) and STED imaging was performed. Once again, STED
imaging resolved a number of sub-resolution endosomes and
their individual pH values could be determined (Fig. 6d). Finally,
we sought to characterize the trafficking differences between our
SRpHi1 and SRpHi4 probes that use the TAT peptide and EGF to
initiate internalization, respectively. Figure 6e shows that SRpHi4
is found in endosomes with a significantly higher pH than
SRpHi1 after a 10-min pulse with each probe (pH = 6.0 vs. 5.7, p
< 0.05 by Student’s t-test). This proof-of-concept experiment
demonstrates the usefulness of the SRpHi probes for evaluating
pH levels in super-resolved vesicles and comparing them between
different cargos. The presence of SRpHi1 (which is internalized
via the TAT cell-penetrating peptide) in more acidic endosomes
most likely indicates a faster internalization relative to SRpHi4 (in
which internalization is facilitated by EFG ligand binding to a cell
surface receptor), or a faster progression from early to late
endosomes. Consistent with the TAT peptide’s previously
described tendency for lysosomal targeting18, we found that
SRpHi1 pulses followed by a 60-min probe-free chase resulted in
the movement of SRpHi1 to even more acidic compartments
(average pH= 5.4, Fig. 6e).

Discussion
A common difficulty in live-cell imaging of endocytic structures
involves resolving individual endosomes in tightly packed
regions, and observing the dynamics of tubule outgrowth from
early endosomes. Often, overexpression of various proteins that
enlarge endosomes is used to study these structures, with a
potential impact on the physiological relevance of the experi-
ment7. Recently, STED imaging has proven superior to standard
widefield and confocal analysis for investigating endosomal
dynamics in densely packed regions of the cell and in tubular
structures6, 19. Figures 3c, d, and 6d demonstrate the advantages
of STED imaging in areas of high endosome density. STED also
presented clear advantages for imaging tubular endosomal
structures (Fig. 3d). Tubular structures were rarely seen, perhaps
due to the targeting of most SRpHi probes to a degradative, and
not recycling pathway; however, tubules that were present were
imaged more clearly by STED (Fig. 3d). Most interestingly, a
number of structures that appeared as tubules in confocal
images, were found to be individual vesicles when visualized by
STED (Fig. 3d). Further investigations that fuse SRpHi probes to
ligands that are known to have non-canonical endosomal
trafficking properties may be able to address this question.
Together, these data affirm the necessity of fluorescence nano-
scopy for investigations of endosomal structure and pH
dynamics.
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Fig. 2 SRpHi is targeted to the endocytic pathway. a HeLa cells were untreated (top images) or incubated with 80 μM Dynasore (bottom image) for 45min.
Cells were then pulsed with SRpHi1 for 10min at 37 °C (left images) or 4 °C (right image) followed by fixation. The mean 8-bit intensity of all detectable
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The SRpHi probes enable sub-diffraction live-cell imaging of
pH changes within endosomes and their associated structures.
While they were primarily imaged on home-built STED instru-
mentation in this study, the fluorophores chosen are also com-
patible with commercial fluorescence, confocal, and STED
systems, making this assay widely adoptable. The large dynamic
range of these sensors provides a detection level greater than
many currently available pH probes.

However, care must be taken when reaching the lower limits of
the pH range of the probe. As shown in Figs. 4 and 6, and
Supplementary Fig. 4, when the fluorescent protein signal is weak
and approaches the background noise level, the variability of the
measured ratio at each endosome can begin to increase. There-
fore, pH ranges for all standard curves were chosen where even at
the lowest pH value the acid-sensitive fluorophore could still be

seen above background. Additionally, standard curves always
utilized the acid-stable organic dye as the denominator.

Supplementary Fig. 5 shows the average intensity of all endo-
somes analyzed at pH 5 to obtain the standard curve displayed in
Fig. 4b. Compared to 30 randomly chosen ROIs across all of these
images, the average signal within the endosomes is ~9-fold larger
(average pixel intensities equal to 161 and 18, respectively). In
fact, of the nearly 200 endosomes analyzed only one had an
average intensity (38) lower than the highest average intensity
found in a background ROI (41). Importantly, the variance of the
ratiometric measurements rapidly increases at pH values outside
of the ranges shown here. Therefore, we do not recommend
imaging outside of the optimal pH ranges for each SRpHi probe
(Supplementary Table 1). Also, we were concerned that the
increased variance may occur if the signal from small endosomes
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is not sufficient to exceed the noise floor of detection. Indeed, the
smallest endosomes are of the most interest as they are only
revealed by super-resolution imaging. Fortunately, we found
ratiometric variability cannot be attributed to the size of the
endosomes, as the average intensity was not directly proportional

to endosome size. Supplementary Fig. 5b shows that there is no
relation between endosome size and average intensity (R2= 0.10).

Additional advantages of the SRpHi probes include rapid tar-
geting to the endocytic pathway of all mammalian cells tested
here, including: lines derived from human, monkey, and mouse
and primary cultures of cortical neurons (data not shown). No
transfections or genetic modifications are required for SRpHi use.
Finally, uptake of SRpHi probes did not appear to affect normal
endosomal trafficking or have any other adverse effects on the
cells studied here. Together, this suggests these probes are
applicable to a wide range of endosomal pH studies. As changes
in pH are essential for many cellular functions related to endo-
cytic trafficking, and endosomal structures lie below the diffrac-
tion limit of light, these SRpHi probes have the potential to assist
in numerous studies of internalization and intracellular transport.

Methods
SRpHi probe construction. SRpHi probes were constructed using standard
cloning methods. Complementary DNA encoding EYFP, EGFP, or sepHluorin was
cloned in frame into the pGEX-6P-1 vector (GE Healthcare, Munich, Germany),
downstream of a GST tag, complementary DNA encoding a TAT peptide
(GRKKRRQRRR) and a flexible linker. For SRpHi4, EGF was fused to the C-
terminus of EYFP. SRpHi probes were expressed in BL21 Escherichia coli cells,
induced for 24–48 h with 1 mM IPTG, and isolated on GST-Sepharose beads
according to the manufacturer’s directions. GST tags were cleaved using PreScis-
sion Protease (GE Healthcare, Munich) and the GST moiety was removed by an
additional pass over a GST-sepharose column. Unconjugated NHS-ester contain-
ing STAR400, STAR410, or STAR512 dyes (Abberior GmbH, Göttingen) were
coupled to SRpHi probes according to the manufacturer’s directions. Various dye
concentrations were empirically tested to produce a labeling ratio of ~2:1 (dye:
probe). Free dye was removed via size exclusion column (illustra NAP-5, MW
cutoff = 5000 Da, GE Healthcare, Munich). SRpHi-containing fractions were
combined, dialyzed against PBS and concentrated.

Cell culture and SRpHi loading. MEF cells and HeLa cells were gifts from local
research groups and originally obtained from ATCC (Manassas, VA). African
Green Monkey (CV-1) cells were obtained from Life Technologies (Darmstadt). All
cell lines were cultured on 18 mm round coverslips for 2–3 days in DMEM sup-
plemented with 10% FBS (Life Technologies, Darmstadt) at 37 °C in 5% CO2.
SRpHi was loaded by placing the coverslip on 20 μL of SRpHi solution diluted in
cell growth media to ~30 µM on parafilm and returning this to the incubator for 10
min. Optionally, membrane-bound, uninternalized SRpHi was removed by three
washes with 1 mg/mL heparin (Sigma Aldrich, Munich) in PBS or culture medium.
Unbound SRpHi was removed by washing three times (one time if preceded by
heparin washes) in cold PBS prior to imaging in pre-warmed PBS or phenol-red-
free OptiMEM (Life Technologies, Darmstadt). An additional 60–90 min incuba-
tion in SRpHi-free growth medium was included for pulse/chase experiments.

Fixation and immunolabelling. Standard immunofluorescence staining protocols
were followed. Cells immunolabelled against LAMP2 were fixed in 100% methanol
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cooled to −80 °C. All others were fixed in 3–4% paraformaldehyde (w/v) while on
ice. Anti-EEA1 and LAMP2 antibodies were from BD Biosciences (Cat # 610456,
lot # 78952, Heidelberg) and Santa-Cruz Biotechnologies (Cat # sc-18822, Lot #
H0409, Santa-Cruz, CA) and used at dilutions of 1:1000 and 1:500, respectively.
Anti-γ-tubulin antibody was obtained from Sigma Aldrich (Cat #T6557, Munich)
and was used at a dilution of 1:2000.

Colocalization. Colocalization was determined by a custom Matlab (The Math-
works, Ismaning) script. The script identified the center of mass of each vesicle (at
least 5 pixels in size) in one color channel and determined its nearest neighbor in
the corresponding channel. Centers of mass less than the average endosome dia-
meter in pixels were considered colocalized.

Immunoblotting. Cell lysates were prepared using standard procedures in a
Tween-20 (Sigma Aldrich, Munich) containing cell lysis buffer. Cell lysates were
separated by SDS-PAGE and transferred to low-fluorescence PVDF membranes
(GE Health Sciences, Munich). Membranes were incubated overnight with anti-
bodies directed against gamma-tubulin (Sigma Aldrich, Munich) and imaged on a
custom-built gel dock with appropriate excitation and emission filters.

Imaging. Widefield imaging was performed on an upright Leica DM6000 B
fluorescence microscope (Leica, Mannheim). Confocal and STED imaging were
performed on a Leica SP8 confocal (Leica, Mannheim) and custom-built
systems11, 15, 17 (Supplementary Fig. 3).

Generation of ratiometric standard curves. MEF or CV-1 cells were pulsed as
above with SRpHi for 10 min. Cells were transferred to a citric acid/phosphate
buffer of specific pH supplemented with 140 mM KCl and 1 µM nigericin (both
Sigma Aldrich, Heidelberg) prior to STED imaging. A custom-written macro in
ImageJ/Fiji20, 21 was used to calculate the intensity ratio of fluorescent protein to
fluorescent dye in each endosome. Briefly, input images (16 bit) were set to
identical display levels. A mask of endosomes present in the fluorescence channel
was created using an Otsu threshold22. Using this mask, the average pixel intensity
in each endosome (over 150 for each pH value measured) was calculated for both
channels and exported to Microsoft Excel, where the logarithms of the ratios of
fluorescent protein to fluorescent dye intensity were calculated and graphed.

Generation of ratiometric images. A custom-written macro in ImageJ/Fiji20, 21

was used to produce ratiometric images. Briefly, endosomes in the fluorescence
channel were masked as described above. Only pixels contained within these masks
were analyzed further. A 32-bit ratiometric image was obtained by dividing the
intensity value of each pixel in the fluorescent protein channel with its corre-
sponding pixel in the fluorescent dye channel. A base 10 log of this image was
calculated and the image was rescaled (according to the SRpHi calibration curve)
and converted to 8 bit. A custom, linear Look Up Table (LUT) was then applied to
the image.

Statistics. All error bars represent standard error of the mean. Significant differ-
ences are indicated by * that represent a p-value of less than 0.05 as calculated by a
two-tailed Student’s t-test. At least three biological replicates were carried out for
every experiment. Computational automation allowed for large numbers of
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endosomes to be evaluated where statistics were needed. Therefore, all t-tests had a
power >0.80 and were able to account for slight deviations in each population from
normal distributions if they exist.

Code availability. All Matlab scripts and ImageJ macros are available from the
corresponding authors upon reasonable request.

Data availability. All relevant data that support the findings of this study are
available from the corresponding authors upon reasonable request.
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