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Active retrotransposons play important roles during evolution and continue to shape our genomes today, especially in
genetic polymorphisms underlying a diverse set of diseases. However, studies of human retrotransposon insertion
polymorphisms (RIPs) based on whole-genome deep sequencing at the population level have not been sufficiently
undertaken, despite the obvious need for a thorough characterization of RIPs in the general population. Herein, we present
a novel and efficient computational tool called Specific Insertions Detector (SID) for the detection of non-reference RIPs. We
demonstrate that SID is suitable for high-depth whole-genome sequencing data using paired-end reads obtained from
simulated and real datasets. We construct a comprehensive RIP database using a large population of 90 Han Chinese
individuals with a mean x68 depth per individual. In total, we identify 9342 recent RIPs, and 8433 of these RIPs are novel
compared with dbRIP, including 5826 Alu, 2169 long interspersed nuclear element 1 (L1), 383 SVA, and 55 long terminal
repeats. Among the 9342 RIPs, 4828 were located in gene regions and 5 were located in protein-coding regions. We
demonstrate that RIPs can, in principle, be an informative resource to perform population evolution and phylogenetic
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analyses. Taking the demographic effects into account, we identify a weak negative selection on SVA and L1 but an
approximately neutral selection for Alu elements based on the frequency spectrum of RIPs. SID is a powerful open-source
program for the detection of non-reference RIPs. We built a non-reference RIP dataset that greatly enhanced the diversity of
RIPs detected in the general population, and it should be invaluable to researchers interested in many aspects of human
evolution, genetics, and disease. As a proof of concept, we demonstrate that the RIPs can be used as biomarkers in a similar

way as single nucleotide polymorphisms.
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Transposable elements (TEs) are genomic sequences that can
replicate within the genome either autonomously or in conjunc-
tion with other TEs, resulting in insertion polymorphisms. Over
the evolutionary timescale, this process leads to drastic changes
in genomic structure. Current estimates suggest that approxi-
mately half of the human genome is derived from TEs [1]. Retro-
transposons, which constitute ~93% of TEs [2], can be subdi-
vided into those sequences that contain long terminal repeats
(LTRs) and those that do not (non-LTR). The majority of human
TEs result from the activity of non-LTR retrotransposons, in-
cluding long interspersed nuclear element 1 (L1), Alu, and SVA
elements, which collectively account for approximately one-
third of the human genome [1]. Although most retrotransposons
are inactive remnants prevalent among the human population,
younger retrotransposons account for much of the structural
variation among individual genomes [3]. Only a small proportion
of total L1s are highly active [4]. The current rate of retrotrans-
position in humans has been approximately estimated as 1 for
every 20 births for Alu, 1 for every 200 births for L1, and 1 for
every 900 births for SVA [5, 6].

Retrotransposon insertion is a disease-causing mechanism
[7], and next-generation sequencing (NGS) technology has been
widely used to explore the association between retrotranspo-
son insertions and disease, such as cancer [8-10]. In this respect,
a comprehensive retrotransposon insertion polymorphism (RIP)
dataset of a healthy population is necessary to serve as a ref-
erence for the identification of disease-related RIPs. Using the
database of the 1000 Genomes Project (1000GP), researchers per-
formed RIP detection on an unprecedented scale and detected
thousands of novel RIPs [11-14]. This finding implies that an in-
sertion allele present in multiple individuals would effectively
receive high coverage across the pooled dataset, leading to a de-
tection bias toward common insertions. It was previously es-
timated that at least x30 coverage of sequencing is needed
to detect heterozygous RIPs with high sensitivity using whole-
genome sequencing (WGS) [15].

Here, we developed the software Specific Insertions Detec-
tor (SID) to detect RIPs, which fulfilled our needs regarding de-
tection efficiency, accuracy, and sensitivity. We also generated a
non-reference TE insertion polymorphism database by employ-
ing SID to analyze the whole-genome sequences of 90 Han Chi-
nese individuals (YH90) acquired at a mean depth of x68.

We obtained B-lymphocyte cell lines from 90 Han Chinese in-
dividuals at the Coriell Institute (Camden, NJ, USA). These indi-
viduals were selected from Beijing, Hunan province and Fujian
province, respectively. We broadly separated the samples into a

“Northern group” (45 samples) and a “Southern group” (45 sam-
ples). DNA was extracted from the B-lymphocyte cells of each in-
dividual, and libraries were then constructed following the man-
ufacturer’s instructions. High-coverage paired-end 100 bp WGS
libraries were sequenced on the Illumina HiSeq 2000 Platform.
For more on this dataset, see the Data Note describing its pro-
duction published alongside this paper [16]. In addition, we also
used a Chinese sample [17] for which the data were previously
released in the European Nucleotide Archive (ENA) repository
(Additional file 1: Table S1). The Institutional Review Board on
Bioethics and Biosafety at BGI (BGI-IRB) approved the study.

Reads were aligned to the human genome reference (HG19,
Build37) using BWA (BWA, RRID:SCR.010910) [18]. Duplica-
tions were removed using Picard tools, and the quality val-
ues of each read were recalibrated using the Genome Analysis
Toolkit (GATK, RRID:SCR_001876) [19]. The resulting Binary Align-
ment/Map (BAM) files were used as input for SID (Additional file
2: Text S1).

SID is compiled in Perl and includes the following 2 steps: dis-
cordant reads detection and reads clustering. Generally, the first
step collects informative reads and generates other necessary
files, whereas the second step discovers the specific insertion
sites and exports the final results into plain text.

Detection of discordant reads

The “discordant reads” were extracted for the subsequent clus-
tering step. Paired-end reads were determined as “discordant
reads” if they met 1 of the following criteria: (i) 1 read mapped
to HG19 uniquely and the other read mapped to the retro-
transposon library (multi-mapped or unmapped to HG19); (ii) 1
read mapped to HG19 uniquely and the other soft-clipped read
mapped to HG19, and the clipped sequence could be mapped
to the retrotransposon library; (iii) 1 soft-clipped read mapped
to HG19, and the clipped sequence could be mapped to the
retrotransposon library. The other read mapped to the retro-
transposon library (multi-mapped or unmapped to HG19). The
retrotransposon library includes objective TE classes, such as L1,
Alu, and SVA. In this study, the TE reference database contains
known TE sequences collected from RepBase v. 17.07 [20], dbRIP
[21], and Hot L1s [4]. To reduce the long processing time due to
large volumes of WGS data, we implemented a parallel approach
to process all BAM files of samples simultaneously in the discor-
dant reads detection step.

Reads clustering and detection of breakpoints

First, the “discordant reads” were scanned and clustered into
blocks that supported potential RIPs based on the Maximal Valid
Clusters algorithm [22]. Second, we extracted all reads located
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within the cluster regions and determined the breakpoints.
Although high-depth, data-enabled RIP detection with high
sensitivity was possible given that more soft-clipped reads
neighboring target site duplication (TSD) could be detected,
alignments neighboring the TSDs apparently had lower depth
compared with the mean sequencing depth of the whole
genome due to occasional sequencing and system errors. This
feature made breakpoint detection difficult and increased the
false discovery rate (FDR). Thus, we added the recalibration pro-
cess of clipped points to determine breakpoints. Each read lo-
cated within the cluster regions flanking potential breakpoints
was used to confirm the precise location of the breakpoints.
Small deletions were extracted to perform breakpoint recalibra-
tion, and the mismatched bases were removed from the deletion
sequences.

The clipped sequences were realigned to local regions on
HG19 to determine the actual breakpoints. Breakpoints were
assigned as “clips” if greater than half of the new clipped se-
quences were discordant with the reference sequence and the
length of the gap within the new clipped sequence was less than
30%. The point would not be a candidate unless it was a “clip”
and the mismatch was less than 5 bp or contained poly-A/T.

Some terminals of reads containing mismatched bases may
be the clipped parts because these bases were treated as mis-
matches rather than clips. The breakpoint candidates were re-
estimated by SID if mismatches accounted for more than half of
the read terminals.

Notably, we implemented the Asynchronous Scanning al-
gorithm (Additional file 2: Text S2). Using this algorithm, once
the program clustered 1 possible insertion region by scanning
unique reads, the process of breakpoint detection in this region
was immediately performed, rendering it possible to detect TE
insertions in 1 chromosome in only a few minutes. The detailed
algorithm for RIP candidate determination is provided in Addi-
tional file 2: Text S2.

Orientation annotation for the TE insertions

We annotated the orientation of TE insertions based on the
BLAST results [23]. First, we extracted the discordant repeat an-
chored mate (RAM) reads and clipped reads that supported the
TE insertion and made the reads’ orientations the same as HG19.
Then, we realigned the supporting reads against the consen-
sus sequences of known active retrotransposons to identify the
mapped orientation in known active retrotransposons. The ori-
entations of TE insertions were judged by the reads’ orientation
(for details, see Additional file 2: Text S3). The accuracy of ori-
entation annotation was assessed by comparing 396 matched
insertions from dbRIP and 21 fully sequenced insertions from
polymerase chain reaction (PCR) validation experiments (Addi-
tional file 1: Table S2). In total, 326 insertions were verified, and
the FDR of orientation annotation was 21.82%.

Subfamily annotation for RIPs

The subfamily annotation of RIPs was performed according to
known active retrotransposons. We first constructed a compre-
hensive retrotransposons sequence library. Alu subfamily con-
sensus sequences were acquired from RepBase 17.07 [20]. L1
subfamily consensus sequences were acquired from Eunjung
Lee [10]. SVA and LTR consensus sequences were acquired from
Baillie [24]. Next, we performed multiple subfamily sequence
alignment for each type of retrotransposon and discovered the
diagnostic nucleotide for each subfamily (for details, see Addi-
tional file 1: Tables S3-S5). Specifically, we discovered the diag-

nostic nucleotide of L1 from previous studies [25-28]. We then
assembled the “discordant reads” of each RIP into contigs us-
ing CAP3 [29] and realigned them against all of the subfamily
sequences using BLAST (NCBI BLAST, RRID:SCR_004870) (Addi-
tional file 2: Text S3-S4) [30].

Length annotation for RIPs

While mapping the contigs to subfamily sequences, we identi-
fied the first mapped site of the 5’ and 3’ ends of the subfamily
sequence and accordingly counted the lengths from the initial
site (Lin and Lmax). The length of the inserted retrotransposon
(Lretro) Was calculated as the difference between the maximum
and minimum length of the aligned sequence, as follows:

Lyetro = Lmax_Lmin +1

In total, 761 TEs were randomly selected from our reference TE
database (see the “Annotation of TE insertions” section) and in-
serted into HG19 autosomes randomly to generate a new human
genome (for details, see Additional file 1: Table S6). The pIRS [31]
software was used to generate approximately x60 paired-end
100-bp reads; then, we mapped these reads to the HG19 genome
using BWA. Then, we used SID to detect these RIPs in the sim-
ulated genome. By repeating this process, we obtained results
from simulated data with different depths to assess the sensi-
tivity and specificity of RIP detection in the sequence data with
distinct depth using SID.

The reference RIPs were detected as a subset of deletions of the
samples relative to the HG19 reference (Additional file 2: Fig. S1).
These deletions were selected from the results of structural vari-
ation (SV) detection of YH90 samples, and the RIPs were anno-
tated based on matched deletion coordinates to HG19 annota-
tion of RepeatMasker (more than 90% of them overlap with each
other) [32].

The reference RIPs should be absent in the chimpanzee
genome. The alignments of chimpanzee mapped to the human
genome were downloaded from UCSC [33]. One reference RIP
candidate should correspond to a gap with an overlap of greater
than 90% to each other, and no gaps were present in the chim-
panzee genome at this locus. The RIP candidates were filtered if
no polymorphisms were present in the YH90 samples (i.e., the
allele frequency was equal to 180).

To detect non-reference RIPs from WGS data accurately and in a
time-efficient manner, we developed SID, which can detect non-
reference RIPs easily and quickly through discordant reads de-
tection and reads clustering. In the first step, 3 types of informa-
tive discordant reads were selected for further analysis (Fig. 1a).
Then, the reads that had mismatched bases at the terminals
(Fig. 1b and c) were used for judging heterozygosity. The clipped
reads were used to confirm the sequence of TSD and the precise
insertion site of certain TEs.

To investigate the influence of sequencing depth on RIP detec-
tion sensitivity and accuracy, we simulated sequence data at
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Figure 1: The principle of retrotransposon insertion detection. (a) Schematic diagram of using SID for RIP detection in the genome. SID: Specific Insertions Detector;
TSD: target site duplication. (b) An example of reads mapping for predicted homozygous insertions. (c) An example of reads mapping for predicted heterozygous
insertions. In (b) and (c), the red bases indicate the mismatches, and the sequences with an orange background represent the clipped part of the reads. The clipped
reads are derived from 1 allele with inserted retrotransposons, and the normal reads are derived from the other allele with the same reference. The 3 reads with
asterisks indicate no clipped part but the presence of terminal mismatches, which can also support the breakpoint and exhibit consistency with the clipped reads.
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different depths. Detection sensitivity dramatically increased
with increasing sequencing depth and achieved 95% (730/761)
when the sequencing depth was greater than x30. By contrast,
detection accuracy slightly changed with increasing sequencing
depth (Fig. 2a).

We next estimated the RIP detection sensitivity using 2 real
sequencing datasets. One dataset was the CEU trio data, which
were deep-sequenced (>x75) [llumina HiSeq data generated by

the Broad Institute (father NA12891, mother NA12892, and the
female offspring NA12878) from the 1000GP. We first used SID to
detect the RIPs of each individual in the CEU dataset and evalu-
ated the sensitivity by comparing the detection results with the
PCR-validated datasets from Stewart et al. [12]. For Alu, the mean
sensitivity reached 96.3% among individuals. We also obtained a
mean sensitivity of 80.3% and 83.3% for L1 and SVA, respectively
(Additional file 1: Table S7).



The other dataset, including NA18571, NA18572, and
NA18537, was also recruited in 1000GP. The RIP datasets of
these 3 individuals detected by SID were larger and covered
70.08% of the same sample’s results in 1000GP on average
(Additional file 2: Fig. S2). We estimated RIP detection accuracy
using the sequencing data from a lymphocytic cell line (YH_CL,
~x52) obtained from an Asian individual. These data represent
the first Asian diploid genome dataset, and we performed PCR
validation. We randomly selected 103 detected RIPs, and 93/96
(7 loci were removed because of the poor primer specificity) loci
were successfully validated, indicating that SID had an accuracy
of 90.29-96.88% (Additional file 1: Table S8 and Additional file 2:
Fig. S3 and Text S5). We also used the PCR validation result to
access the accuracy of genotyping, which was approximately
93.55% (87/93) (Fig. 2b; Additional file 2: Text S6).

We next compared the RIP detection efficiency of different
methods (SID, RetroSeq [11], and TEA [10]) using YH_CL and 3
samples (NA18571, NA18572, and NA18537) from YH90 (Addi-
tional file 2: Text S7). The run time of SID was approximately
3-fold reduced compared with the other 2 methods, suggesting
that SID was the most time-saving method among the 3 meth-
ods (Additional file 2: Table S9). SID and TEA had comparable
sensitivities that were increased compared with RetroSeq (Ad-
ditional file 2: Fig. S4). We also validated the uniquely detected
RIPs by PCR (Additional file 1: Table S10) with an accuracy of
75.86% (22/29) and 77.78% (7/9) for Alu and L1, respectively, re-
vealing a higher RIP detection accuracy (Alu: 42.10% (8/19) and
82.61% (19/23) and L1: 66.67% (2/3) and 66.67% (2/3) for RetroSeq
and TEA, respectively).

We then performed RIP detection on a much larger scale. We
sequenced 90 Han Chinese individuals and generated Illumina
paired-end sequence data at an average depth of x68 for each
sample (Additional file 1: Table S1). Using SID, the high depth of
the dataset (much more than x30) allowed us to build a compre-
hensive non-reference RIP landscape with high confidence [16].

In total, we identified 9342 non-reference RIPs in autosome
regions, including 6483 Alu elements, 2398 L1s, 61 LTRs, and 400
SVAs (Fig. 3a; for details, see Additional file 1: Table S11 and Ad-
ditional file 2: Text S8). Of this dataset, 8433 RIPs, including 5826
Alu elements, 2169 L1s, 383 SVAs, and 55 LTRs, were novel com-
pared with dbRIP (Fig. 3b). The average number of non-reference
RIPs per individual was 1394 (ranging from 1304 to 1493) (Fig. 3c),
including 1110.80 Alu elements, 231.34 L1s, 43.14 SVAs, and 9.01
LTRs, and each type of RIP had a similar proportion (P = 0.6364,
P =0.2711, P = 0.2128, P = 0.5582, respectively, Wilcoxon signed-
rank test). We compared pair-wise individuals of all 90 samples,
and the average specific loci number was 672.79, which is ap-
proximately half (48.25%) the non-reference RIPs of 1 individual.

We next compared our results with the 1000GP SV dataset.
In total, 34.94% (3264/9342) of the RIPs in YH90 were also found
in the 1000GP dataset. The Pearson correlation coefficient was
0.7998 (P < 2.2 x 10~'¢) between YH90 and all the 26 populations
in the 1000GP SV dataset. The Pearson correlation coefficient
was 0.8856 between YH90 and the East Asian (EAS) population
in 1000GP, which was higher than other populations (r = 0.7662,
r=0.5741,r=0.7025, and r = 0.7627 for American [AMR], African
[AFR], European [EUR], and South Asian [SAS] populations, re-
spectively) (Additional file 2: Text S9) [14].

Specific insert location information enabled us to investigate
genome-wide sequence patterns of these non-reference RIPs.

We observed that the non-reference RIPs varied among chro-
mosomes (Fig. 3d and e). Notably, we found that the 2 different
subpopulations (from southern and northern China) had similar
patterns of RIP distribution (r = 0.782) (Fig. 3e; for details, see Ad-
ditional file 2: Fig. S5). However, the distribution of non-reference
RIPs was not obviously correlated with GC content, fixed RIPs,
or single nucleotide polymorphisms (SNPs) of the same sample
within 10M non-N bins (Additional file 2: Fig. S6).

To further investigate the distribution of non-reference RIPs
in the functional region, we annotated all the inserted loci
(Fig. 3f). More than half of the RIPs (4828/9342) were located in
gene regions, and the majority of these were located in introns.
Only 5/9342 RIPs were located in protein-coding regions, includ-
ing 3 genes, Clorf66 (Alu-inserted), SNX31 (Alu-inserted), and
APHI1B (SVA-inserted), with low frequency (1/90) and 2 genes,
ADORA3 (Alu-inserted) and Slcolb3 (L1-inserted), with higher
frequency (44/90 and 12/90, respectively). In addition to gene re-
gions, we also found that on average 9.78% and 4.93% of RIPs
were located in enhancer regions and promoter regions per sam-
ple, respectively (Fig. 3f).

Furthermore, we annotated the subfamily, orientation, and
sequence length of all detected inserted retrotransposons based
onregional sequence assembly and remapping to the retrotrans-
poson library. The AluY sub-family constituted essentially all
non-reference Alu insertions, in which AluYa5 and AluYb8 were
mostly active (Additional file 1: Table S11), supporting conclu-
sions from previous studies [26, 34, 35].

The orientation of 1 RIP is determined from the mapping ori-
entation of contigs to a retrotransposon reference and the exis-
tence of poly-A or poly-T tails of the inserted sequence (Addi-
tional file 1: Table S11). Previous studies have reported that the
gene-inserted RIP had a greater influence on gene expression if
it was inserted on the same orientation as the target gene [2,
36]. However, we detected a comparable number of direct and
reverse events (0.475 and 0.525, respectively), arguing against an
obvious natural selection on the RIPs with consistent orientation
with the inserted gene.

Along with subfamily and orientation annotation, we also
calculated the length of each insertion sequence. We found that
different types of TE insertions had different length distribu-
tions (Additional file 2: Fig. S7). More than half of Alu elements
(~70%) were full length, whereas the length of the L1 was dis-
tributed more discretely. Most L1s (>80%) were fractured during
the process of retrotransposon, which is consistent with a pre-
vious study [13].

The pure and comprehensive RIP dataset can be used as a base-
line of healthy people for other disease-related research, espe-
cially single-gene diseases. The candidate disease-related retro-
transposon insertions found in this dataset were filtered. We
explicitly measured the overlap between our dataset and the
disease-related retrotransposon insertion data in dbRIP [37, 38].
None of the insertion sites existed in our dataset, indicating
the accuracy of the database. We also tested some cancer re-
search data. We tested the dataset of candidate cancer-related
somatic retrotransposon insertions that were strictly generated
from data of The Cancer Genome Atlas (TCGA) Pan-Cancer
Project for 11 tumor types. No overlapping RIPs were detected,
whereas 43.36% germline retrotransposons were detected. Ac-
cording to the comparison of colon cancer-specific data [9], we
identified 2 L1 insertions consistent with our dataset with fre-
quency of 51/90 and 50/90. These 2 L1 insertions were germline
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genome.

retrotransposon insertions that were further validated by PCR
validation in Solyom’s research. We also tested the candidate
hepatocellular carcinoma-specific insertions [8] and identified
1 L1 insertion that was also present in our dataset with a fre-
quency of 9/90. This site was finally validated as a germline in-
sertion by PCR in that research. In conclusion, our data provide
a reference panel to exclude false positive insertions related to
cancer.

Population evolution analysis

To perform the population evolution analysis of RIPs, we first
merged the non-reference RIP dataset with the “reference” retro-
transposon insertions that were polymorphic in YH90 samples
(Additional file 2: Fig. S1) to obtain all RIPs from our samples. The
retrotransposon insertions with a frequency equal to 1 were re-
moved from our non-reference RIPs. The “reference” RIPs were
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Figure 4: Population genetics analysis based on YH90. (a) A 2-epoch population with a recent contraction; a 3-epoch bottleneck-shaped history, which contained a
reduction of the effective population size in the past followed by a recent phase of size recovery. Details of the parameters for all models are provided in Additional
file 2: Table S12. (b) The observed SNP frequency spectra and expected neutral SNP frequency spectra under different demographic models. (c) Observed and expected
RIP site frequency spectra before demographic correction of each subfamily. (d) Assessing the evolutionary impact of RIPs in the human genome. The allele frequency
distribution of RIPs was compared among observed neutral models and negative models after demographic correction.

defined as the reference genome-specific retrotransposon inser-
tions compared with each individual of the YH90 group. These
reference RIPs were selected from the dataset of YH90 deletions,
and only the RIPs absent in chimpanzees were retained.

Allele frequency spectrum (AFS) was not only influenced by
natural selection but also by demographic history. For example, a
low-frequency bias for the majority of mutations can also be ob-
tained if the population recently experienced a bottleneck [39].

To perform the neutral test more accurately, we took de-
mographic history into consideration (Additional file 2: Text
$10). We simulated the following 2 different demographic sce-
narios: a 2-epoch population with a recent contraction and
a 3-epoch bottleneck-shaped history containing a reduction
of effective population size in the past followed by a recent
phase of size recovery (Fig. 4a). We tested the different as-
sumptions with the SNP dataset (Fig. 4b; Additional file 2:
Table S12), which supported that the 3-epoch model was the best
model.

Next, we explored the possibility of using RIP information to
perform population evolution analysis. Based on the genotyp-
ing result of the merged RIP dataset, we described the RIP AFS
(Fig. 4c; Additional file 2: Text S11). The neutral model expec-
tation can be calculated using the formula 6/i, where 6 is the
insertion diversity parameter and i (180) is the allele countin a
fixed number of samples n (90) [39]. The spectrum was skewed
toward low-allele frequency compared with the distribution of
the expected neutral model, indicating possible negative selec-
tion pressure on retrotransposon insertions.

To investigate the influence of the demographic history on
RIP AFS, we performed demographic correction and re-analyzed
the RIP AFS under different selection models (Fig. 4d; Additional
file 2: Figs S8-S9). The classification of neutral with negative and
positive selection indicates that a proportion of RIPs were neu-
tral, and a proportion of RIPs were under negative selection. In
addition, other RIPs were under positive selection (m1), neu-
tral with negative selection (m2), neutral with positive selection
(m3), negative selection (m4), positive selection (m5), and neu-
tral selection (m6). We further calculated the selection coeffi-
cient (S') under each best-fit model with the determination of
an approximately neutral selection effect threshold (S’ < 0.01%)
[40]. Models m1 and m2 were the best-fitted models with the
observed RIP AFS (Additional file 2: Table S13). The best-fit re-
sult of model m1 demonstrated that approximately 75% RIPs
were under negative selection, with s = 0.0290%, which indicates
that these RIPs are weakly deleterious. In addition, 10% were un-
der positive selection, whereas 15% were neutral. Under model
m?2, the best-fit result demonstrated that 70% of RIPs were un-
der negative selection, with s = 0.0396%. In addition, 30% of RIPs
were neutral. The selection coefficient was 0.0079% under the all
negative selection models, indicating an approximately neutral
selection effect.

The distribution of fitness effects of retrotransposon subfam-
ilies (L1, SVA, and Alu) was also estimated under the same de-
mographic model. Assuming that all RIPs of different subfam-
ilies were under negative selection (model m1), the selection
coefficient models were various among 3 subfamilies of RIPs
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Figure 5: Phylogenetic analysis using RIPs and SNPs. (a) The detected RIPs were used for PCA. Each dot represents a sample from YH90 and is plotted in a scatterplot
using PC1 and PC2. Red indicates samples from individuals from northern China, and blue indicates individuals from southern China. (b) The detected SNPs were used
for PCA. The plot layout and legend are the same as those presented in (a). (c) Phylogenetic tree constructed using the detected RIPs. HG19 (green) is used as a control.
Red indicates samples from individuals from northern China, and blue indicates samples from individuals from southern China. (d) Phylogenetic tree constructed
using the detected SNPs. HG19 (green) is used as a control. Plot layout and legend are the same as that presented in (c).

(S = -0.0143%, S' = -0.0172%, S' = -0.0068% for L1, SVA, and
Alu, respectively), suggesting that there is more natural selec-
tion pressure on L1 and SVA (weakly negative selection) com-
pared with Alu (nearly neutral selection).

To investigate whether RIP information can be used to separate
the Northern and Southern Chinese groups, we performed prin-
cipal component analysis (PCA) using the RIPs detected from
the YH90 dataset, which provided well-resolved Northern and
Southern Chinese groups (Fig. 5a; Additional file 2: Text S12).
Compared with the PCA result derived from the SNPs detected
from the same dataset (Fig. 5b), there seemed to be more over-
lapping observations, indicating that SNPs might be more infor-
mative in resolving the 2 distinctive populations. Next, we de-
termined whether it is possible to perform phylogenetic analysis
using RIP information detected from the YH90 dataset. Two phy-
logenetic trees were constructed using RIPs and SNPs separately
(Fig. 5c and d; for details, see Additional file 2: Text S13). Sim-
ilar to the PCA result, increased mixing between Northern and
Southern Chinese individuals was observed for the phylogenetic
tree derived from the RIP information. Interestingly, HG00534,

an isolated Southern Chinese individual located in a northern
cluster in the phylogenetic tree established using the SNP infor-
mation, clustered largely with Southern Chinese individuals in
the phylogenetic tree derived from the RIP information. Future
studies are warranted to explore whether combining SNPs with
RIP results in the construction of a more accurate phylogenetic
tree.

In this paper, we developed the computer program SID to detect
the non-reference RIPs of 90 healthy Han Chinese individuals
using high-depth WGS. We described the landscape of RIP dis-
tribution on population genomes and annotated the subfamily,
orientation, and length of RIPs. We demonstrated that the RIPs
could be used as a normal baseline for retrotransposon-related
disease research.

To our knowledge, this is the largest Han Chinese genomics
dataset to date. Compared with 1000GP results from the same
samples, approximately half (mean = 48.05%) (Additional file
2: Fig. S2) of the RIPs in our dataset were previously observed,
suggesting that our deep-sequenced data exhibited increased



detection sensitivity compared with low-coverage data. For ex-
ample, serum ACE levels were determined by the Alu inser-
tion/deletion (I/D) polymorphism in the following order: DD >
ID > II [41]. The D allele of the ACE gene was associated with es-
sential hypertension in different populations [42-45]. We found
that the ACE gene harbored an Alu insertion in the 15th intron,
with a frequency of 81/90 in our 90 Chinese genomes, compared
with a considerably reduced frequency (7/63) in CEPH individ-
uals [12], which was supported by a previous study [46]. To our
surprise, no RIP ACEs were present in Han Chinese samples from
the 1000GP dataset, which is a high-frequency inserted gene
in our RIP data. ACE-specific PCR validation (Additional file 2:
Fig. S10) and a previous ACE study [47] indicated that our re-
sults were consistent with the real values. This finding suggests
that adequate sequencing depth is important in investigating
RIP frequency and that our data present a result that is con-
sistent with the actual situation. The highly sensitive and ac-
curate RIP dataset provided a perfect opportunity to perform RIP
fitness analysis. This study evaluates the natural selection effect
on retrotransposon insertions at the population level. As a type
oflong fragment insertion, RIPs are under approximately neutral
selection. This finding is consistent with our result that retro-
transposon insertions are mostly relatively inconsequential be-
cause the harbored genes are always relatively unimportant.
Regarding different types of RIPs in addition to Alu, the longer
insertion elements L1 and SVA exhibit weakly positive selection
pressure.

This dataset can be compared with others to provide guid-
ance in research of the disease-causing mechanisms in certain
populations and to successfully determine the insertion time of
a specific locus. This dataset can also be used as a standard for
other RIP research and can serve as a baseline to filter irrelevant
RIPs in disease-causing retrotransposon research. Genome-wide
association studies (GWAS) have proven their utility in identify-
ing genomic variants associated with the risk for numerous dis-
eases. Unlike SNPs and copy number variations (CNVs) that are
widely used in GWAS, RIPs have generally been overlooked as a
major contributor to human variation. Significantly, this dataset
provides a valuable resource to perform GWAS and identify more
markers related to complex diseases.

The high cost of WGS at high depth is still a major limita-
tion, preventing it from being widely used in TE research. Fur-
thermore, the large amount of data yielded by high-depth WGS
makes it difficult to undertake bioinformatic analysis. With the
development of biotechnology and IT, this situation should im-
prove soon.

The next step is to research RIPs at the transcriptome level.
The impact of RIPs on gene expression remains unclear. Com-
bining the genome and transcriptome would provide a compre-
hensive picture about the regulation of RIPs. Thus, we can fur-
ther expound the position of the retrotransposon in the course
of human evolution.

* Project name: Specific Insertions Detector (SID)

® Project home page: https://github.com/Jonathanyu2014/SID

® Operating system(s): Linux

* Programming language: Perl

* Other requirements: Perl 5.14 or later, BLAST v. 2.2.25 or later,
Samtools v. 1.0 or later

® License: Apache License 2.0

* Any restrictions to use by non-academics: none

The source code of SID is available from the GitHub and Zenodo
repositories [48]. The human (Homo sapiens) reference genome
sequence (HG19) and its annotation files were downloaded
from UCSC Genome Bioinformatics (http://genome.ucsc.edu/).
The raw sequence data of the CEU trio is available from
www.internationalgenome.org/data-portal/sample. [49]. All the
YHO0 raw sequences have been released to the ENA reposi-
tory (bioproject number PRJEB11005), and the processed data are
also available from the GigaScience GigaDB repository [50]. Snap-
shots of the code, alignments, and results files are also hosted
in GigaDB [51]. Protocols used for simulating reads for SNP In-
del calling and detection of transportable element insertions are
also hosted in the protocols.io repository [52, 53].

Additional file 1: Supplementary tables. Data description and the
results of RIP calling (XLSX 1992 kb).

Additional file 2: Supplementary texts, figures, and tables
(PDF 1120 kb).

CNV: copy number variation; ENA: European Nucleotide Archive;
GWAS: genome-wide association study; L1: long interspersed
nuclear element 1; LTR: long terminal repeat; NGS: next-
generation sequencing; PCA: principal component analysis; RIP:
retrotransposon insertion polymorphism; SID: Specific Inser-
tions Detector; SNP: single nucleotide polymorphism; TCGA: The
Cancer Genome Atlas; TE: transposable element; TSD: target site
duplication; WGS: whole-genome sequencing.
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