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Abstract

A lung ultrasound surface wave elastography (LUSWE) technique is developed to measure 

superficial lung tissue elastic properties. The purpose of this study was to translate LUSWE into 

clinical studies for assessing patients with interstitial lung disease (ILD) and present the pilot data 

from lung measurements on 10 healthy subjects and 10 patients with ILD. ILD includes multiple 

lung disorders in which the lung tissue is distorted and stiffened by tissue fibrosis. Chest 

radiography and computed tomography (CT) are the most commonly used techniques for 

assessing lung disease, but they are associated with radiation and cannot directly measure lung 

elastic properties. LUSWE provides a noninvasive and nonionizing technique to measure the 

elastic properties of superficial lung tissue. LUSWE was used to measure regions of both lungs 

through six intercostal spaces for patients and healthy subjects. The data are presented as wave 

speed at 100 Hz, 150 Hz, and 200 Hz at the six intercostal spaces. As an example, the surface 

wave speeds are, respectively, 1.88 ± 0.11 m/s at 100 Hz, 2.74 ± 0.26 m/s at 150 Hz, and 3.62 

± 0.13 m/s at 200 Hz for a healthy subject in the upper right lung; this is in comparison to 

measurements from an ILD patient of 3.3 ± 0.37 m/s at 100 Hz, 4.38 ± 0.33 m/s at 150 Hz, and 

5.24 ± 0.44 m/s at 200 Hz in the same lung space. Significant differences in wave speed between 

healthy subjects and ILD patients were found. LUSWE is a safe and noninvasive technique which 

may be useful for assessing ILD.

Index Terms
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I. Introduction

Surface wave elastography is a noninvasive technique to measure tissue elastic properties 

[1]. The purpose of this study was to translate the lung ultrasound surface wave elastography 

(LUSWE) technique into clinical studies for assessing patients with interstitial lung disease 

(ILD) based upon our previous feasibility studies.
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Ultrasonography is not widely used in clinical practice for lung assessment. Lung tissue is 

normally filled with air and the difference in acoustic impedance between air and tissue is 

large. Most of the energy of the ultrasound wave is reflected from the lung surface. 

Ultrasonography evaluation of the thorax is therefore limited to evaluating structures outside 

of the lung such as pleural fluid and thoracic superficial masses or adenopathy [2]. For 

example, lung ultrasonography is excellent for diagnosing pleural diseases, and it is 

especially useful in the emergency and critical care settings [3, 4] for the detection of pleural 

effusions or guidance of procedures such as thoracentesis. Ultrasonography can be used 

effectively to evaluate the lung because more than 70% of the lung can be imaged through 

intercostal spaces [5]. Ultrasonography for lung assessment typically presents artifacts such 

as A-lines and B-lines and features such as lung sliding and lung point [4]. The A-line is a 

horizontal artifact indicating a normal lung surface. The B-line is a kind of comet-tail 

artifact indicating subpleural interstitial edema. These artifacts and features can be used to 

evaluate different lung disorders. Ultrasonic features of mild, moderate, and severe lung 

fibrosis have been identified [6]. Lung ultrasonography is an emerging technique for 

evaluating various disorders such as pneumothorax [7], peripheral lung lesions [8], lung 

consolidations [9], parasternal intercostal muscles [10], and diaphragm-related disorders 

[11].

With the goal of developing a noninvasive technique for measuring lung elastic property, we 

have developed an ultrasound-based LUSWE technique capable of measuring superficial 

lung tissue stiffness safely and quickly [12, 13]. In LUSWE, a harmonic vibration at a given 

low frequency is generated by the indenter of a handheld vibrator on the chest wall of a 

subject. The ultrasound probe is positioned about 5 mm away from the indenter in the same 

intercostal space to measure the generated surface wave propagation on the lung in that 

intercostal space. The speed of surface wave propagation on the lung is determined from the 

change in wave phase with distance.

We are evaluating LUSWE for assessing patients with ILD in a prospective clinical research. 

Many ILDs typically are distributed in the peripheral, subpleural regions of the lung [14, 

15]. In ILD, the lung parenchyma becomes fibrotic and stiff leading to symptoms, especially 

dyspnea, and eventually to respiratory failure [16]. Diagnosis of lung fibrosis can be 

difficult, especially early in the disease course, because the symptoms are nonspecific (most 

commonly shortness of breath and a dry cough) [3, 6, 17]. Current diagnostic tools include 

medical history and physical examination, chest radiography, high-resolution computed 

tomography (HRCT), pulmonary function tests (PFTs) [18], and lung biopsy. The findings 

of physical examinations are usually nonspecific. ILD may be first suspected after an 

abnormal chest radiograph, but in most cases, the radiographs also show nonspecific or 

nondiagnostic findings. HRCT is the clinical standard for diagnosing lung fibrosis [19, 20], 

but it substantially increases radiation exposure for patients, even when using various 

techniques to reduce the dose [21]. Lung fibrosis results in stiffened lung tissue. However, 

current clinical techniques cannot measure lung elastic properties. For example, a 

spirometer, the main equipment used for PFTs, measures the volume of inspired and expired 

air [18, 22]. Various elastography [23] techniques have been developed to measure tissue 

stiffness. However, most techniques are unable to measure lung biomechanics in vivo 
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adequately or safely. LUSWE may provide a noninvasive and safe method for measuring 

superficial lung tissues for assessing lung fibrosis.

II. Surface wave elastography technique

In a semi-infinite elastic medium, the surface wave speed can be related to the elastic 

modulus of the medium as [24]

(1)

where μ is the shear modulus and ρ is the density of the medium.

The surface wave speed is measured by the phase gradient method using cs(ω) = ωΔr/Δϕ, 

where Δr is the distance between two detection locations, and Δϕ is the phase change over 

that distance. The estimation of surface wave speed can be improved by measuring the phase 

change over multiple locations using a regression model Δϕ̂ = −αΔr + β, where Δϕ̂ denotes 

the regression value of multiple Δϕ measurements, α and β are regression parameters, and 

cs(ω) = ω/α.

In a typical surface wave elastography (SWE) system, a handheld shaker is made using an 

electromagnetic shaker (Model: FG-142, Labworks Inc., Costa Mesa, CA 92626). The 

handheld shaker applies a local excitation on the skin through an indenter with 3 mm 

diameter. The excitation is a 0.1 second harmonic vibration (for example, 10 cycles of 100 

Hz signal). The resulting propagation of the tissue wave motion (typically a few 

micrometers) is detected using an ultrasound probe. SWE has been validated with various 

techniques [24–26]. The indentation technique measures the elasticity of a medium by 

indenting the medium and analyzing the relationship between the indentation displacement 

and the resulting force. We published a validation study between SWE and indentation on 

five gelatin samples with different concentrations (5%–15%) [26]. The surface wave speeds 

were measured in the three interfaces of a two layer gelatin phantom in water [27].

In this research, the surface wave speed on the lung is measured. The lung surface is 

between the intercostal muscle and the lung. Both the lung and the muscle contribute the 

surface wave speed on the lung. In lung testing, a direct vibration excitation on the lung 

surface is not possible. The surface wave propagation on the lung is produced by a vibration 

excitation on the chest wall. We previously demonstrated that the surface wave propagation 

on the lung can be generated by a vibration excitation on the surface of muscle in an ex vivo 
muscle-lung model [13]. In human studies, the indenter of the handheld shaker is placed on 

the chest wall in an intercostal space. The ultrasound probe is positioned about 5 mm away 

from the indenter in the same intercostal space to measure the surface wave propagation on 

the lung.
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III. Human lung testing protocol

We finalized our clinical protocol for testing patients based upon our previous experience 

and clinical situations. Human lung studies were approved by the Mayo Clinic Institutional 

Review Board (IRB). Patients were tested in a sitting position. A 0.1-second harmonic 

vibration is generated by the indenter of the handheld shaker on the chest wall of the subject. 

The excitation force from the indenter is much less than 1 Newton and the subject only feels 

a small vibration on his/her chest wall. The measurement of surface wave speed on the lung 

is independent of the amplitude of excitation. A small tissue motion in tens of μm is enough 

for sensitive ultrasound detection of the generated tissue motion.

The Verasonics ultrasound system with an ultrasound probe of L11–4 with a central 

frequency of 6.4 MHz is used. In this study, the surface wave speed on the lung is measured 

at three frequencies of 100 Hz, 150 Hz and 200 Hz. The 100 Hz wave motion is stronger 

than the wave motion of higher frequency waves. The higher frequency waves have smaller 

wave length but decay rapidly over distance than the lower frequency waves. The frequency 

ranges chosen in this study consider the wave motion amplitude, spatial resolution and wave 

attenuation. The lung is tested at the total lung capacity when the subject takes a deep breath 

and hold for a few seconds. Both lungs of the subject are tested through six intercostal 

spaces. The upper anterior lungs are tested at the second intercostal space in the mid-

clavicular line. The lower lateral lungs are tested at one intercostal space above the level of 

the diaphragm in the mid-axillary line. The lower posterior lungs are tested at one intercostal 

space above the level of the diaphragm in the mid-scapular line. Because of the expected 

variation of subjects’ anatomy, ultrasound imaging is used to identify the lungs and select 

appropriate intercostal spaces to measure the upper and lower lungs. Three measurements 

are performed at each location and at each frequency. Subject testing can be finished in 

about 40 minutes. Patients with ILD were enrolled in this research based on their clinical 

diagnosis. Healthy subjects were enrolled as controls if they were asymptomatic nonsmokers 

without any skin and lung fibrotic diseases.

We studied the differences of the surface wave speed measurements between 10 ILD patients 

and 10 healthy controls. In a previous study on assessing systemic sclerosis (SSc), we found 

that skin viscoelasticity were significantly higher in 10 patients with SSc than 10 healthy 

subjects [28]. All 10 patients (7 females and 3 males) had bibasilar, peripheral pulmonary 

fibrosis, which was scleroderma associated in 6, and the rest were 1 each with rheumatoid 

arthritis (RA), Sjogren’s syndrome, polymyositis, and idiopathic pulmonary fibrosis (IPF). 

The (Mean ± standard error of the mean (SEM)) age was 67.2±4.99 years. The total lung 

capacity (TLC) % predicted was 75.5±3.08 % for the ten patients; the diffusing capacity of 

the lungs for carbon monoxide (DLco) % predicted was moderately reduced at 53.0±3.65 % 

in 9 patients and could not be measured in one person with resting hypoxemia. Figure 1 

shows representative CT images of two patients. The image is a cross section slice of the CT 

scan. Figure 1(a) shows mild bibasilar, mainly peripheral, ground glass abnormality and 

Figure 1(b) is from a patient with moderate bibasilar fibrosis, again with a mainly peripheral 

distribution.
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Detection of in vivo human lung surface motion is guided by ultrasound imaging. 

Representative B-mode images of lung for a healthy control and a patient are shown in 

Figure 2. The lung surface of a healthy subject is typically smooth while a patient’s lung 

surface appears unsmooth. The normal component of the lung surface motion can be 

analyzed by cross-correlation analysis of the ultrasound tracking beams [12, 29]. In this 

study, eight locations over a length of approximately 6 mm on the lung surface were used to 

measure the normal component of the lung surface motion. The tissue motion is measured at 

these locations in response to a harmonic vibration on the chest wall. A high pulse repetition 

rate of 2000 pulse/s is used to detect tissue motion in response to the vibration excitation at 

100, 150 and 200 Hz. A Verasonics ultrasound system (Verasonics, Inc; Kirkland, WA) is 

used which collects up to a few thousand imaging frames per second by using a plane-wave 

pulse transmission method.

IV. Results

Surface wave speed on the lung is estimated by determining the change in wave phase with 

distance along the lung surface. The normal tissue motion at the first location on the lung is 

measured using an ultrasound tracking beam and is used as a reference. The wave phase 

delay of the tissue motions at the remaining locations on the lung, relative to the first 

location on the lung, is used to measure the surface wave speed on the lung. The surface 

wave speed is estimated by the phase changes simultaneously at the 8 locations. Figure 3 

shows a representative wave speed at 150 Hz for a healthy subject and a patient in the right 

second intercostal space. The surface wave speeds were, respectively, 3.61 m/s and 2.49 m/s 

for the patient and the healthy subject. The wave speed on the lung surface is determined by 

analyzing ultrasound data directly from the lung. Therefore, the wave speed measurement is 

local and independent of the location and amplitude of excitation.

At each frequency, three measurements were made through each intercostal space. Table 1 

shows representative measurements of surface wave speed for a healthy subject and a 

patient. The surface wave speed is shown in the format of mean ± SD for the three 

measurements at each location and each frequency. The three intercostal spaces are 

designated by a number from 1 to 3. The upper anterior lung is designated by 1. The lower 

lungs at the lateral and posterior positions are designated by 2 and 3, respectively. The right 

and left side of the lung are designated by a letter of R and L, respectively. Therefore, L1 

represents the left anterior lung in the second intercostal space.

A comparison of wave speeds between 10 healthy subjects and 10 patients is shown in 

Figure 4 for 100 Hz, 150 Hz, and 200 Hz. An unpaired, two-tailed t-test between the healthy 

subjects and patients was conducted to compare the sample means. Differences in mean 

values were considered significant when p<0.05. The p-values for the t -test were less than 

0.05 for all intercostal spaces at three frequencies, respectively.

V. Discussion

Some lung diseases such as ILD are associated with changes in biomechanical properties of 

the lung. ILD consists of various lung disorders due to damage and fibrosis of the lung 
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parenchyma. ILD can lead to other complications including pulmonary hypertension and 

respiratory failure. Diagnosis of lung fibrosis can be difficult because the symptoms are 

nonspecific at early stages [6] and global pulmonary function abnormalities cannot define 

the anatomical extent or local involvement of disease. High-resolution computed 

tomography (HRCT) is the clinical standard for diagnosing and characterizing lung fibrosis 

[19, 20]. HRCT is a special type of CT acquisition technique that uses 0.5–1 mm thick slices 

to produces high detail images of the parenchyma, pathological density changes, and 

architectural distortion that is associated with ILD. However, HRCT involves ionizing x-ray 

radiation exposure for patients. Lung fibrosis results in stiffened lung tissue. Although CT 

provides excellent anatomical imaging of the lung, it does not measure changes in lung 

elastic properties that occur with progressive fibrosis.

LUSWE is a noninvasive technique for measuring surface lung tissue elastic properties. 

Most ultrasound elastography methods use ultrasound radiation force (URF) to generate 

shear waves inside the tissue. To generate sufficient tissue motion using URF, a relatively 

high-intensity ultrasound field is needed. Although URF has been used in the liver and other 

tissues, URF should not be applied to lung tissue. In vivo animal lung studies demonstrated 

that the relatively high-intensity ultrasound field may cause alveolar hemorrhage or lung 

injury [30]. In LUSWE, the surface wave on the lung is safely generated by a local 

mechanical vibration on the chest. Diagnostic ultrasound is only used for detecting surface 

wave propagation on the lung. Therefore, the LUSWE technique is a safe method for lung 

testing and screening patients.

LUSWE uses the surface wave to evaluate superficial lung tissue. Many ILDs typically 

affect the lung periphery, close to the surface. LUSWE may be used to assess multiple lung 

disorders such as “wet” lungs when the alveoli are partly filled or filled with blood or fluids. 

In “wet” lungs, ultrasound may penetrate deeper in the diseased tissue than healthy lung 

tissue allowing imaging of deeper tissue [2]. Lung ultrasonography is also an emerging 

technique for evaluating lung disorders such as pneumothorax [7], peripheral lung lesions 

[8], and lung consolidations [9]. LUSWE provides both ultrasonography imaging of lung 

structures and measurements of lung stiffness, thereby, offering an additional tool for 

assessing lung disease.

Previously, we demonstrated that lung stiffness increases with the pulmonary pressure in ex 
vivo swine models [12]. In a recent study [13], a patient was tested at two lung volumes. 

Functional residual capacity (FRC) is at the end of a normal tidal expiration and total lung 

capacity (TLC) is at the end of a maximal inspiration. In the current study, we decide to test 

the patient’s lung only at the TLC for this large and longitudinal project as the TLC is not 

only an easier target to define but is also easy for a patient to perform reproducibly. Another 

consideration is that the current protocol takes about 40 minutes and adding FRC would 

double the testing time. We think that if the addition of FRC would be required for other 

clinical applications, a spirometer for pressure monitoring or a simplified testing protocol 

could be used in future.

The background foundation for this research is the Rayleigh surface wave propagation on a 

semi-infinite medium. The generated mechanical wave can propagate on the lung and inside 
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the lung. However, detection of wave propagation using ultrasound is limited to the 

superficial lung tissue because of strong ultrasound beam attenuation in the lung tissue. The 

surface wave propagation is still in bulky lung tissue. If the surface wave propagates in a 

plate structure as a Lame wave, the wave speed will be dependent on the thickness of the 

plate and the mode of wave propagation.

There are some areas where we can improve the measurement of surface tissue motion on 

the lung. The detection of surface lung motion using ultrasound is limited to a thin layer of 

tissue. We use about a 1 mm thick tissue layer to analyze the tissue motion at a selected 

location. Further improvement may make it possible to use other novel techniques for 

measuring thin tissue layers [31]. The lung surface is not flat. A relatively flat surface of 

about 6mm length along the lung surface is used to estimate surface wave speed. Further 

improvement may consider the analysis of wave propagation along a curved surface. The 

measured surface wave speed on the lung should have some contributions from the 

intercostal muscle, because the lung surface is between the lung and the intercostal muscle. 

The intercostal muscle and the lung consist of a multilayer system. Finite element modelling 

(FEM) could be used to analyze the surface wave propagation along the interface between 

the muscle and the lung. Because we demonstrated in this report that the surface wave speed 

can separate healthy and ILD lungs, surface wave speed alone seems to have clinical use in 

assessing ILD.

VI. Conclusion

LUSWE provides a noninvasive and nonionizing technique to measure the elastic properties 

of superficial lung tissue. LUSWE was used to measure both lungs through six intercostal 

spaces for 10 healthy subjects and 10 patients with ILD. The data are presented as wave 

speed at 100 Hz, 150 Hz, and 200 Hz at the six intercostal spaces. Significant differences of 

the surface wave speed between healthy subjects and patients are found indicating that lung 

surface wave speed appears to be a biomarker for this disease. LUSWE may be useful for 

assessing ILD. Further work of LUSWE for lung testing will be improvement of accuracy 

and reproducibility of measurements on a thin lung tissue layer, consideration of a curved 

lung surface, and FEM simulation of surface wave propagation along the interface between 

the intercostal muscle and the lung.
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Fig. 1. 
CT images for two patients with mild and moderate lung fibrosis. (a) mild bibasilar, mainly 

peripheral, ground glass abnormality; (b) moderate bibasilar fibrosis with mainly peripheral 

distribution.
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Fig. 2. 
Representative B-mode images of lung for a healthy control (a) and for a patient (b). The 

lung surface of a healthy subject is typically smooth while a patient’s lung surface is 

relatively rough. Eight locations over a length of approximately 6 mm on the lung surface 

were used to measure the lung surface motion using ultrasound tracking beams.
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Fig. 3. 
The wave phase delay of the remaining locations, relative to the first location, is used to 

measure the surface wave speed. Representative examples of wave speed at 150 Hz for a 

patient (a) and a healthy subject (b).
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Fig. 4. 
Comparison of wave speeds between 10 healthy subjects and 10 patients through six 

intercostal spaces. Surface wave speed at (a) 100 Hz, (b) 150 Hz, (c) 200 Hz.
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