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Standard-of-care biological treatment of schizophrenia remains dependent upon antipsychotic medications, which demonstrate D2

receptor affinity and elicit variable, partial clinical responses via neural mechanisms that are not entirely understood. In the striatum, where
D2 receptors are abundant, antipsychotic medications may affect neural function in studies of animals, healthy volunteers, and patients, yet
the relevance of this to pharmacotherapeutic actions remains unresolved. In this same brain region, some individuals with schizophrenia
may demonstrate phenotypes consistent with exaggerated dopaminergic signaling, including alterations in dopamine synthesis capacity;
however, the hypothesis that dopamine system characteristics underlie variance in medication-induced regional blood flow changes has not
been directly tested. We therefore studied a cohort of 30 individuals with schizophrenia using longitudinal, multi-session [15O]-water and
[18F]-FDOPA positron emission tomography to determine striatal blood flow during active atypical antipsychotic medication treatment
and after at least 3 weeks of placebo treatment, along with presynaptic dopamine synthesis capacity (ie, DOPA decarboxylase activity).
Regional striatal blood flow was significantly higher during active treatment than during the placebo condition. Furthermore, medication-
related increases in ventral striatal blood flow were associated with more robust amelioration of excited factor symptoms during active
medication and with higher dopamine synthesis capacity. These data indicate that atypical medications enact measureable physiological
alterations in limbic striatal circuitry that vary as a function of dopaminergic tone and may have relevance to aspects of therapeutic
responses.
Neuropsychopharmacology (2017) 42, 2232–2241; doi:10.1038/npp.2017.67; published online 10 May 2017
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INTRODUCTION

In schizophrenia, therapeutic trials of current pharmacothera-
pies have reported substantial rates of non- or partial-
responses (Lieberman et al, 2005). The variability of response
to treatment across individuals hampers confident prediction,
lending a stochastic quality to clinical management of this
debilitating illness. Despite small differences in their overall
efficacy (Samara et al, 2016) and in their precise constellation
of receptor affinities, currently available, standard-of-care,
antipsychotic medications as a class continue to be unified by
inhibition (antagonism or partial agonism) at the D2 dopamine
receptor (Peroutka and Snyder, 1980; Seeman and Tallerico,
1999), although a definitive and detailed mechanistic under-
standing of their action in the brain has remained elusive.

To elucidate the neurophysiology of antipsychotic treat-
ment response, several past imaging investigations have
examined regional cerebral blood flow (rCBF) and metabolic
changes induced by neuroleptics. Increases in regional
cerebral blood flow in the striatum, where D2 receptors
abound, have been observed after single doses of anti-
psychotic medication in healthy individuals measured with
arterial spin labeling (Fernández-Seara et al, 2011; Handley
et al, 2013; Viviani et al, 2013). Studies of individuals with
schizophrenia have been less consistent; this same single-
dose effect has been observed in a positron emission
tomography (PET) [15O]-water rCBF study (Lahti et al,
2005), but other PET experiments have failed to find acute
medication effects in patients (Goldman et al, 1996; Volkow
et al, 1986). Whether individuals who are consistently treated
with antipsychotic medications demonstrate persistently
increased striatal activity has also been addressed by several
studies, and increased striatal blood flow with treatment has
been reported in longitudinal PET (Corson et al, 2002; Lahti
et al, 2003, 2009b; Miller et al, 1997a) and SPECT (Livingston
and the Scottish Schizophrenia Research Group, 1998; Miller
et al, 1997b) studies, although, again, not all published data
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clearly corroborate these findings (Erkwoh et al, 1997;
Ertugrul et al, 2009; Yildiz et al, 2000). Increases in striatal
glucose metabolism have similarly been observed in several
(Bartlett et al, 1991; Buchsbaum et al, 1987, 1992), although
not all (Gur et al, 1987), reports. The suggestion that
variability in antipsychotic medication-mediated functional
changes in the basal ganglia may have important clinical
implications has found initial explicit support from one
study identifying increased ventral striatal rCBF measured
with [15O]-water PET after several weeks of antipsychotic
treatment, relative to 2 weeks of medication withdrawal, an
effect more frequently observed in individuals who re-
sponded to treatment (Lahti et al, 2009b).
Although a detailed mechanism to explain how antipsy-

chotic medications might enact striatal blood flow changes
has not been empirically demonstrated, a D2 dopamine
receptor-driven model is plausible. Such a formulation is
consistent with the considerable density of D2 receptors in
this region and with the D2 receptor targeting common to all
antipsychotic medications used in past experiments demon-
strating this effect, including those studies employing first-
generation agents (eg, haloperidol) with greater D2 receptor
selectivity (Lahti et al, 2009a). D2 blockade is expected to
result in disinhibition of indirect pathway medium spiny
neuron (MSN) activity (Gerfen and Surmeier, 2011),
consistent with early experiments demonstrating increased
spontaneous striatal firing rates with 3 weeks of antipsycho-
tic treatment (Skirboll and Bunney, 1979). Recent
optogenetic-fMRI experimentation in mice has demon-
strated that increasing the activity of D2-bearing MSNs
alone can drive enhanced hemodynamic responses in the
striatum (Lee et al, 2016), suggesting that antipsychotic-
induced blood flow increases may be attributable to local
MSN disinhibition. This effect may be particularly
pronounced in individuals with greater presynaptic dopami-
nergic tone, and therefore greater dopaminergic modulation
of MSN populations, at baseline. Alternative dopamine
receptor blockade-related mechanisms—such as increased
metabolic demands due to D2 receptor upregulation, indirect
network effects via altered dopamine neuronal firing (Valenti
et al, 2011), or disinhibition of corticostriatal glutamatergic
inputs (Bamford et al, 2004)—may also play a role and
may equally depend upon presynaptic dopamine system
characteristics.
In both medicated and medication-free conditions,

individuals suffering from schizophrenia on average, but
not uniformly, demonstrate neurobiological phenotypes
consistent with increased presynaptic dopaminergic function
in the striatum. For instance, greater striatal dopamine
release in response to amphetamine challenge (Abi-Dargham
et al, 1998; Breier et al, 1997; Laruelle et al, 1996) and
elevated striatal dopamine synthesis (Dao-Castellana et al,
1997; Hietala et al, 1995, 1999; Howes et al, 2009; Lindström
et al, 1999; McGowan et al, 2004; Meyer-Lindenberg et al,
2002; Nozaki et al, 2009; Reith et al, 1994) have been well
replicated neuroimaging observations in independent schi-
zophrenia cohorts. There exists, however, considerable range
and overlap with healthy individuals in these measurements,
suggesting substantial variability in dopaminergic system
characteristics among patients. It remains unproven whether
such variability in presynaptic dopaminergic characteristics
has any mechanistic relevance to individual differences in

striatal functional responses to medication, despite prior
suggestion that this may be the case (Lahti et al, 2009b). If so,
then the degree to which an individual with primary
psychosis expresses these dopaminergic phenotypes may be
an important predictor of dopamine receptor-mediated
neurophysiological changes with neuroleptic medications.
Hypothesizing not only that antipsychotic medication

treatment would enhance striatal blood flow in a clinically
meaningful manner, but also that greater presynaptic
dopaminergic tone would correspond with greater blood
flow changes, we studied a cohort of inpatients on the NIMH
IRP schizophrenia ward who underwent a carefully observed
cross-over, blinded, placebo-controlled antipsychotic medi-
cation withdrawal study with both [15O]-water to measure
rCBF (a gold standard indicator of regional metabolism
(Fox et al, 1988)) and [18F]-fluorodopa PET to measure
presynaptic dopamine synthesis and storage.

MATERIALS AND METHODS

Participants

Thirty volunteers between ages 18 and 59 (mean 27.7± 8.2
years; 9 women, 11 smokers) with schizophrenia (28) or
schizoaffective disorder (2) participated after providing
informed consent, as approved by the National Institutes
of Health (NIH) Combined Neuroscience Institutional
Review Board (IRB) and the NIH Radiation Safety Commit-
tee. Participants were recruited throughout the United States
with IRB-approved advertisement activities. Diagnosis based
on DSM-IV criteria was confirmed via clinician-
administered standardized clinical interview (SCID; First
et al, 1996) and ongoing inpatient clinical evaluation.
Patients were determined to be free of confounding
psychiatric, neurological, substance-related, or major medi-
cal illness, as confirmed by structural magnetic resonance
imaging (MRI), routine laboratory tests including urine
toxicology, medical history, and physical examination. At the
time of admission, all subjects were evaluated to be without a
history of alcohol or substance addiction/dependence and
were free of alcohol and substance abuse for a minimum of
3 months prior to the study. Four individuals completing all
scans reported past alcohol abuse (none reported past daily
use). Nine individuals in the full cohort (five in the multi-
tracer group) reported past cannabis abuse (only three
reported past daily use, although all had been abstinent for at
least 2 years prior to admission, and frequency data were
unavailable for one individual). All patients had a history of
chronic illness and prior antipsychotic medication treatment
exposure.
Each participant completed a dual-armed, balanced cross-

over, blinded medication withdrawal protocol, during which
clinical assessments and PET scans occurred after at least
3 weeks of active antipsychotic treatment or medication
withdrawal (17 placebo arm first; mean duration of placebo
arm prior to [15O]-water PET scan 27.8± 2.1 days). Anti-
psychotic medications (aripiprazole, olanzapine, quetiapine,
risperidone, and ziprasidone) were administered in ther-
apeutic doses, and chlorpromazine equivalent dose was
calculated as previously described (Andreasen et al, 2010).
Symptoms were assessed with the Positive and Negative
Syndrome Scale (PANSS; Kay et al, 1987), as administered by
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blinded raters at both active medication and medication-free
time points. Among factor analytic studies evaluating
the structure of this instrument, there exists a reliable
preponderance of similar five-factor solutions. We therefore
adopted the consensus model approach established by
Wallwork et al (2012), calculating the following symptom
subscales: positive, negative, depressed, excited, and
disorganized. Percent changes in symptoms were calculated
as the medication-free rating minus the active medication
rating, relative to the mean rating. This calculation was
performed after rescaling the scores (subtracting one from
each item) to correct for the fact that the absence of
symptoms is rated ‘one’ (rather than ‘zero’) for each PANSS
item, as previously discussed (Obermeier et al, 2010).

Neuroimaging

Acquisition procedures. PET measurement of rCBF was
conducted twice—once during placebo and once during the
active treatment arm—with [15O]-water PET in all 30
participants. In a separate PET session during the placebo
arm, presynaptic dopamine synthesis capacity was measured
with [18F]-FDOPA in 18 of the 30 participants. In addition,
structural MRI at 3 T was acquired for each subject
separately to generate a T1-weighted anatomical image to
guide PET data preparation as described below.

Caffeine and nicotine were not permitted for 4 h before all
scanning sessions. In addition, prior to [18F]-FDOPA PET
sessions, a fasting state (minimum 6 h) was required to avoid
competition for tracer central nervous system (CNS)
admittance via the L-type large neutral amino-acid carrier
system. Oral administration of 200 mg of carbidopa, a
peripheral amino-acid decarboxylase inhibitor, was given
1 h prior to [18F]-FDOPA injection to limit peripheral
metabolism of circulating radiotracer and, thus, maximize
its availability to the CNS.

All PET neuroimaging was performed with a General
Electric Advance 3D PET camera (32 planes, 6.5 mm
FWHM). To limit head motion during data acquisition, an
individually molded thermoplastic mask was applied. An
8-min transmission scan for attenuation correction was
collected for all PET scan sessions. For the resting-state
[15O]-water data, two 60-s long emission scans were collected
after intravenous administration of 10 mCi (370MBq) of
[15O]-water with an interscan interval of 6 min. For the
[18F]-FDOPA data, 27 dynamically acquired emission scan
frames were collected over 90 min after intravenous admin-
istration of ~ 16 mCi (592 MBq) of [18F]-FDOPA.

T1-weighted structural MRI scans were acquired sepa-
rately on a 3 T General Electric scanner for coregistration
and warping, as described below.

Data processing procedures. For all PET scans, filtered
back-projection reconstruction using the 3D reprojection
method (Kinahan and Rogers, 1989) and employing a
Hanning filter was performed with corrections for post-
injection radioactivity decay, dead time, and scatter; and a
registered attenuation correction algorithm that accounted
for frame-wise head motion was applied.

T1-weighted anatomical MRI images were nonparametric
nonuniform intensity normalized (Sled et al, 1998) and
aligned to the anterior–posterior commissure. Using an initial

segmentation of these images by Freesurfer (http://freesurfer.
net/) as a starting point, bilateral striatal regions of interest
(ROIs)—caudate, putamen, and ventral striatum (defined as
the nucleus accumbens and adjacent striatal tissue inferior to
the anterior commissure)—were manually drawn for each
individual by operators blinded to the PET data (Yushkevich
et al, 2006) and eroded by one voxel to mitigate partial volume
effects. For use as a reference region for kinetic analyses of the
[18F]-FDOPA data, a gray matter cerebellar reference region
(excluding vermis and lateral/superior parasinus regions) was
also drawn for each individual.

For the [15O]-water data, a correction for background
activity was performed on each scan, and the two scans
obtained for each PET session were aligned and global signal
normalized to account for variation across injections in overall
activity counts. The resulting image pairs were averaged within
each session. Each individual’s T1-weighted anatomical MRI
image was coregistered to his or her mean PET image along
with the corresponding segmentation image generated from
the ROI derivation described above. Mean striatal ROI values
were then extracted. Blood flow change was calculated via
simple subtraction (active—placebo) for each region. For
voxel-wise analyses, the coregistered anatomical MRI image
was warped to a common-space (MNI) template using ANTS
software (http://stnava.github.io/ANTs/). The resulting trans-
formation matrix was applied to the PET images. Blood flow
change maps were generated by subtracting the medication-
free mean rCBF maps from those of the active medication arm.

For the [18F]-FDOPA data, the 4th through 27th emission
frames were corrected for interscan motion by realignment
to the 21st frame with a rigid body transformation using
FLIRT (http://fsl.fmrib.ox.ac.uk/fsl/); the first three frames,
which have lower signal to guide realignment, used the
transform of the fourth frame. The T1-weighted anatomical
MRI image for each subject was coregistered to the mean of
his or her PET images using SPM5 (http://www.fil.ion.ucl.ac.
uk/spm/). Striatal ROI and cerebellar reference region time–
activity curves were extracted from the emission frames, and
the kinetic rate constant, Ki, representing specific tracer
uptake and a measurement of dopamine synthesis capacity
(DOPA decarboxylase activity), was calculated for each ROI
with PMOD software (http://www.pmod.com/), using the
non-invasive graphical linearization method established by
Patlak and Blasberg (1985).

Statistical Analyses

Statistical analyses for demographic, clinical, and striatal ROI
association testing were performed in SPSS (http://www-01.
ibm.com/software/analytics/spss/) with general linear mod-
eling and, for analyses with PANSS scores, nonparametric
tests. For the latter, differences across medication conditions
were tested with related-samples Wilcoxon signed-rank tests.
Associations between PANSS change scores and binary or
continuous variables were tested with independent samples
Mann–Whitney U-tests and Spearman’s rank correlations,
respectively. For tests of association between striatal PET
measurements and patient characteristics, multivariate tests
were conducted with the three bilateral ROI rCBF change
values or Ki values as dependent variables, and significant
results were followed up with post hoc univariate testing. For
pairwise tests of association between each ROI rCBF change
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and their respective [18F]-FDOPA Ki measurement, simple
univariate tests were conducted. For finer anatomical
localization of significant PET results, voxel-wise general
linear model analyses of rCBF change were conducted in
SPM (http://www.fil.ion.ucl.ac.uk/spm/) within the striatum
with an uncorrected voxel-wise threshold of po0.005. These
included association tests with Ki values and PANSS change
scores. The latter were rank-transformed prior to entrance in
voxel-wise analyses.

RESULTS

Demographics and Clinical Characteristics

Patients had been ill for an average of 6.6 (±6.0) years prior
to participation, and received standard doses of antipsychotic
medication during the active arm of the protocol (mean
chlorpromazine equivalent dose 303.3± 102.5 mg). The
subsample who completed [18F]-FDOPA PET scanning
(injected dose 595.3± 28.8 MBq, specific activity
57.2± 18.3 MBq/μmol, mass 2.5± 0.9 mg) shared similar
demographics as the full sample (18 subjects, all with a
diagnosis of schizophrenia, 9 female, age 29.3± 10.2 years,
5 smokers, duration of illness 7.8± 7.3 years, chlorpromazine
equivalent dose 278.9± 83.9 mg, 9 started with the placebo
arm). PANSS ratings indicated symptoms in the mild-to-
moderate range with considerable interindividual variation
in baseline and response ratings. Although decompensation
during medication withdrawal was not seen by this rating
scale in all patients, in the full group, there was a trend for
greater positive symptoms during the placebo arm (z= 1.77,
p= 0.077). In the multi-tracer group (those who completed
the [18F]-FDOPA scans as well as the two rCBF scans), a
significant effect of medication condition was observed, with
greater total and positive symptom burden during the
medication-free period (total: z= 2.03, p= 0.043; positive:
z= 2.27, p= 0.023). In this group, a non-significant trend for
greater disorganized symptoms was also noted (z= 1.65,
p= 0.099). See Table 1.
Percent change in clinical ratings, as measured by the

PANSS total or subscale scores, did not show any significant
relationship with sex, chlorpromazine equivalent dose, or the
order of the treatment arms in the full group or the
subgroup. In the full group only, smoking was associated

with total and excited symptom change (total: U= 53.5,
p= 0.026; excited: U= 45, p= 0.009), such that non-smokers
tended to show greater decompensation off of medication,
and we therefore repeated PANSS association tests in this
cohort controlling for smoking. In the multi-tracer subgroup,
there was no relationship between smoking and PANSS
score changes. In the multi-tracer but not the full group,
older age was associated with greater disorganized symptoms
increase during the placebo arm (ρ= 0.56, p= 0.016).

Neuroimaging

rCBF change with antipsychotic medication treatment.
During active treatment relative to placebo, all bilateral
subregions of the striatum had greater rCBF, particularly in
the ventral striatum (full group: putamen t(29)= 2.65,
p= 0.013; caudate t(29)= 2.41, p= 0.023; ventral striatum
t(29)= 2.99, p= 0.006; multi-tracer group: putamen
t(17)= 2.43, p= 0.026; caudate t(17)= 2.46, p= 0.025; ventral
striatum t(17)= 3.61, p= 0.002). These findings remained
significant after repeating analyses without the two indivi-
duals with schizoaffective disorder and were corroborated
further by post hoc voxel-wise tests (peak p= 0.0001,
uncorrected; p= 0.017, FDR corrected; see Table 2; Figure 1).

rCBF change and patient characteristics. Age did not
show significant relationships with striatal rCBF percent
change in the full group, but in the multi-tracer group, a
trend existed (multivariate Pillai’s Trace F(3,14)= 2.74,
p= 0.083). Follow-up univariate testing suggested a trend-
level association with age in the putamen (F(1,16)= 3.94,
p= 0.065) and a significant relationship in the caudate
(F(1,16)= 4.94, p= 0.041) where age was inversely related to
medication-induced striatal rCBF enhancement. To rule out
confounding age effects, we therefore repeated rCBF analyses
described below for this group statistically controlling for
age. Multivariate tests did not find significant relationships
between striatal rCBF change and smoking, sex, chlorpro-
mazine equivalent dose, or treatment-arm order in
either group.

In the full group, there was no association between striatal
rCBF change and total PANSS score change; however,
percent change in the excited factor score predicted striatal
rCBF change (putamen: ρ= 0.45, p= 0.012; caudate: ρ= 0.33,

Table 1 Clinical Ratings Data

Group N PANSS
measure

Total Depressed Disorganized Excited Negative Positive

Full 30 Active 60 (55 to 72.8) 6.5 (5 to 8) 6 (5 to 8.3) 5 (4 to 5.3) 16.5 (11.8 to 21) 8 (7 to 11)

Placebo 68.5 (58 to 78.3) 6 (5 to 8) 7 (5 to 9.3) 5 (4 to 6) 16.5 (12.8 to 21.5) 10.5 (6 to 13)

Percent
change

9.4 (−17.4 to 36.9) 9.1 (−57.6 to 60.9) 16.8 (−31.4 to 81.4) 0 (−46.7 to 75) 0 (−25.4 to 23.4) 18.2 (−35 to 54.5)†

Multi-tracer 18 Active 58.5 (54.3 to 68.8) 6 (5 to 8) 6 (5 to 8) 4 (4 to 5) 14.5 (9.8 to 21) 8.5 (7 to 11)

Placebo 68.5 (58.5 to 79.5) 6.5 (5 to 8.3) 7 (5 to 9.3) 5 (4 to 6.3) 15.5 (11.8 to 19.5) 11 (6.8 to 13.8)

Percent
change

20.9 (−11.3 to 36.9)* 18.2 (−40 to 60.9) 21.6 (−26.7 to 71.4) 0 (−55 to 200) 6.7 (−25 to 68.4) 23.4 (−19.9 to 50)*

For the full patient cohort who completed two regional cerebral blood flow (rCBF) scans, and for those who completed [18F]-FDOPA PET scans as well as the rCBF
assessments, PANSS ratings median values and interquartile ranges are provided. Asterisks indicate a significant effect of condition at po0.05. Daggers indicate non-
significant trend (po0.1).
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p= 0.071; ventral striatum: p= 0.44, p= 0.014; see Figure 2).
This result indicated that individuals whose excited symp-
toms improved most on medication also showed greater
rCBF increases on medication, an effect that remained
significant when the two individuals with schizoaffective
disorder were removed or when partial nonparametric corre-
lations were performed controlling for age, sex, chlorpro-
mazine equivalent dose, or treatment-arm order. When
controlling for smoking, only the putamen association
remained significant. No other subscales showed any signifi-
cant associations with blood flow alterations. A voxel-wise
analysis of association between rCBF change and ranked
change in excited subscale scores revealed corresponding
effects in bilateral striatal loci, which were particularly strong
in the right subcommissural striatum, including the ventral
putamen (peak p= 8.6 × 10-6, uncorrected; p= 0.004, FDR
corrected; see Table 2; Figure 2).

Presynaptic dopamine synthesis capacity and patient
characteristics. Multivariate testing showed no associations
between striatal [18F]-FDOPA-specific uptake (Ki), a
measure of presynaptic dopamine synthesis capacity, and
age, sex, smoking status, chlorpromazine equivalent dose,
treatment-arm order, [18F]-FDOPA dose, [18F]-FDOPA-
specific activity, [18F]-FDOPA mass, past alcohol use, or
past cannabis use. Spearman’s rank correlations revealed an
association between positive symptom increases off of

medication and lower caudate Ki (ρ=− 0.49, p= 0.037), with
a trend for the same effect in the putamen (ρ=− 0.40,
p= 0.097). This was retained in partial correlation analyses
controlling for age, chlorpromazine equivalents, or smoking
status, but only a trend-level association remained in the
caudate when controlling for sex or treatment-arm order.

rCBF change and presynaptic dopamine synthesis capacity.
Ventral striatal [18F]-FDOPA Ki predicted rCBF change in the
ventral striatum (F(1,16)= 8.018, p= 0.012), but putamen and
caudate Ki did not predict putamen or caudate rCBF change,
respectively (Figure 3). This relationship remained significant
when including age, sex, smoking status, chlorpromazine
equivalent dose, or treatment-arm order in the model. Voxel-
wise examination of this association localized the strongest
effect to a prominent cluster abutting the left nucleus
accumbens anterosuperiorly (peak p= 0.00033, uncorrected;
p= 0.078, FDR corrected; see Table 2; Figure 3). For all three
striatal subregions, there was not a significant correlation of
[18F]-FDOPA Ki and either placebo or active treatment rCBF
alone (Supplementary Figures 1 and 2).

DISCUSSION

Individuals with schizophrenia showed increased striatal rCBF
after at least 3 weeks of stable antipsychotic pharmacotherapy,
relative to placebo treatment, in line with prior work

Table 2 Voxel-wise Analyses Results

Effect Region X Y Z Size (voxels) T-value p-value (FDR) p-value

Effect of medication

rCBF change (active—placebo)

L Ventral striatum − 31.5 − 6 − 7.5 632 4.25 0.017 0.00010

R Caudate 12 3 9 186 4.10 0.017 0.00015

R Ventral striatum 27 7.5 − 9 465 3.85 0.017 0.00030

R Putamen 33 − 9 − 1.5 93 3.75 0.017 0.00039

L Putamen − 19.5 19.5 − 9 4 2.80 0.020 0.0045

Effect of symptom change

rCBF (active—placebo) association
with excited factor score
percent change
(placebo—active) rank

R Ventral striatum 24 13.5 − 15 1202 5.17 0.0040 8.64E− 06

R Ventral striatum 24 13.5 − 15 1202 5.17 0.0040 8.64E− 06

L Putamen − 24 18 1.5 208 4.22 0.0040 1.15E− 04

L Caudate − 19.5 19.5 1.5 7 3.08 0.012 0.0023

Effect of dopamine synthesis

rCBF percent change (active—placebo)
association with ventral
striatal dopamine synthesis
capacity

L Ventral striatum − 15 15 − 12 273 4.21 0.078 0.00033

Effects of medication and symptom change reported for the full patient cohort who completed two regional cerebral blood flow (rCBF) scans. Effect of dopamine
synthesis is reported for the subset of those who also completed [18F]-FDOPA PET scans. FDR correction was applied voxel-wise for the striatal search volume.
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(Lahti et al, 2009b). This finding is concordant with several
single-dose studies in healthy individuals and patients
(Fernández-Seara et al, 2011; Handley et al, 2013; Lahti et al,
2005; Viviani et al, 2013), suggesting both that neuroleptic-
induced basal ganglia blood flow increases are a replicable
observation even in the course of several weeks of treatment
and, by the same token, that such changes are not unalterable,
as, on average, they were decreased with medication with-
drawal. Given the close association between regional neural
activity and blood flow (Fox et al, 1988; Sokoloff, 1961), these
findings indicate that local striatal neural operations increase
with this pharmacological treatment. Although direct vascular
modulation by antipsychotics at smooth muscle receptor sites
cannot be ruled out and may merit future study (Afonso-
Oramas et al, 2014; Krimer et al, 1998), such an effect is

unlikely to fully explain the observed results, given the sheer
density of neuronal dopaminergic terminals in this region and
the fact that the current method controls for global
intracerebral counts, and therefore for general neurovascular
effects. The rCBF increase with neuroleptic treatment,
although present diffusely throughout the striatum, was most
robust in the ventral striatum, a central node in mesolimbic
systems implicated under some models of schizophrenia and
neuroleptic action (Grace, 2015; Lahti et al, 2003).
In agreement with past studies by Lahti et al, 2009b, we

found that greater striatal rCBF increase was associated with
greater improvements of some symptoms on active medica-
tion relative to placebo. Although total PANSS ratings did
not show this relationship, the excited factor subscale did.
This factor represents a group of symptoms that previously
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have shown responsiveness to antipsychotic medications
(Victoroff et al, 2014) and includes excitement, hostility,
uncooperativeness, and impulsivity items (Wallwork et al,
2012). Over the duration of our study, a third of our sample
demonstrated improvements on this measure with antipsy-
chotic treatment. Therapeutic response based on the
standard positive symptom subscale of the PANSS (which
includes two excitement factor items), but not the standard
negative symptom subscale (which includes no excitement
factor items), has been associated with striatal, but not
extrastriatal, D2 antipsychotic occupancy, reaffirming the
clinical importance of understanding striatal dopamine
systems in this context (Agid et al, 2007).
It is clear from the schizophrenia literature that there exists a

profound heterogeneity of both clinical illness and underlying
neurobiology of individuals with schizophrenia. To the extent
that illness heterogeneity is a major barrier for the develop-
ment of generalizable knowledge and novel treatment
approaches in schizophrenia, understanding the biological
foundations of such variability is essential. As a prime example,
past work has shown striatal presynaptic dopamine synthesis
capacity to be abnormal to varying degrees across schizo-
phrenia patients, suggesting a broad range of dopaminergic
systems functioning in this illness, which may have important
therapeutic implications (Dao-Castellana et al, 1997; Hietala
et al, 1995, 1999; Howes et al, 2009; Lindström et al, 1999;
McGowan et al, 2004; Meyer-Lindenberg et al, 2002; Nozaki
et al, 2009; Reith et al, 1994). Similar to these studies, we found
that there was substantial variability in medication-induced
striatal blood flow change across the present cohort. Although
unmeasured aspects of pharmaceutical kinetics and metabo-
lism cannot be ruled out as contributory, there was insufficient
evidence to support the claim that this variability was driven
solely by the strength of administered D2 antagonism, given
the lack of association between this treatment effect and
chlorpromazine equivalent dose.
Hypothesizing that tonic dopaminergic system character-

istics may be related to the magnitude of rCBF response to

neuroleptics relative to the medication-free state, we tested for
association between dopamine synthesis capacity (FDOPA
uptake) and antipsychotic-induced rCBF change. Importantly,
and in accord with this proposal, in the subcommissural
striatum, where the most significant antipsychotic
medication-induced rCBF change was observed, greater
presynaptic dopamine synthesis capacity predicted greater
blood flow increase with medications. Thus, those individuals
with higher dopamine tone—and therefore greater expression
of this illness-associated phenotype—demonstrated a more
vigorous neurophysiological response to medication. In line
with past work showing enhanced striatal activity with typical
antipsychotic medications (Corson et al, 2002; Lahti et al,
2003, 2009b; Miller et al, 1997a), this finding suggests a
dopamine-related mechanism underlying the striatal rCBF
increase observed here. It is possible that greater tonic
availability of dopamine associated with enhanced DOPA
decarboxylase (DDC) activity, or greater quantities of DDC
containing terminals, results in greater neural activity changes
when dopaminergic blockade is enacted (ie, greater ‘gain’);
however, this speculation requires confirmation from future
investigations. With respect to the subregional localization of
our findings, although recent literature has highlighted the
importance of more dorsal striatal regions in schizophrenia
pathophysiology (Weinstein et al, 2017), evidence has also
suggested that ventral striatal regions may be preferentially
sensitive to some types of dopaminergic pharmacological
interventions such as amphetamine administration (Martinez
et al, 2003) and atypical antipsychotic medication treatment
(Lahti et al, 2009b). Continued experimentation in larger
samples is indicated to better characterize potentially im-
portant functional and neurochemical distinctions between
dorsal and ventral striatal circuitry relevant both to schizo-
phrenia and neuroleptic action. Nonetheless, our data suggest
that at least some of the substantial individual variation in
striatal presynaptic dopaminergic tone that has been reported
over the past two decades is linked to treatment-relevant
neurophysiology.
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Figure 3 Relationship between regional cerebral blood flow change (rCBF) and dopamine synthesis capacity. The plot indicates ventral striatal rCBF change
as a function of ventral striatal [18F]-FDOPA-specific uptake (Ki). The regression line (intercept: − 14.64; slope: 1.82 × 103; R2= 0.334, R= 0.578) and 95%
confidence limits are shown. The coronal slice at MNI y= 15 mm shows results of voxel-wise analyses indicating locations of greatest positive association
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This work is subject to several caveats and limitations. The
use of several different atypical antipsychotic agents in this
work ensured that participants would be able to be studied
under optimal, individualized therapeutic medication condi-
tions, thereby minimizing confounds of medication intoler-
ances and inefficacy. However, the varied agents used (and/or
other potential confounds) may have added noise to the
reported relationships, and future studies with larger sample
sizes, powered not only to confirm the present findings but
also to examine possible differences in observed effects across
pharmacological agents will be even more informative. A
number of uncontrolled variables could have contributed to
the present findings, including hormone/menstrual status
(Berman et al, 1997), sleep quality/arousal (Braun et al, 1997),
and the nature of individual thought processes during resting-
state rCBF acquisition (Sokoloff, 1961). However, the within-
subject design, mean interscan interval of ~ 1 month, and
consistency of medication effects with prior work offer some
reassurance with respect to these concerns. The placebo-
controlled, counterbalanced design carried out on the NIMH
IRP inpatient ward with close clinical and medication
adherence monitoring is also a strength. Although the mean
ventral striatum Ki values reported here are comparable to
those of healthy individuals studied elsewhere with the same
scanner model (Jokinen et al, 2009), methodological differ-
ences require caution when comparing the present data and
those published from other PET centers. In addition, future
work comparing patients and matched healthy individuals on
these measurements will be even more informative. Finally,
we note that the preponderance of dopamine terminals in the
striatum provides reasonable support for the interpretation of
the striatal [18F]-FDOPA signal as dopaminergic; however, we
cannot exclude the possibility that other monoaminergic
(eg, serotonergic) terminals that may also express DDC,
contribute to the observed signal.
In conclusion, we provide confirmatory evidence for

increase of striatal blood flow during antipsychotic treatment
relative to medication-free states, even when both treatment
and medication-free conditions are established for several
weeks. This increase may be clinically relevant, given its
association with excitement factor symptoms. Furthermore,
its association with dopamine synthesis capacity in the
ventral regions of the striatum bolsters support for a
neurochemical mechanism underpinning its interindividual
variability and brings together two long-standing neuroima-
ging phenotypes in schizophrenia.
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