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Despite the critical roles RNA structures play in regulating gene
expression, sequencing-based methods for experimentally de-
termining RNA base pairs have remained inaccurate. Here, we
describe a multidimensional chemical-mapping method called
“mutate-and-map read out through next-generation sequenc-
ing” (M2-seq) that takes advantage of sparsely mutated nucleo-
tides to induce structural perturbations at partner nucleotides
and then detects these events through dimethyl sulfate (DMS)
probing and mutational profiling. In special cases, fortuitous er-
rors introduced during DNA template preparation and RNA tran-
scription are sufficient to give M2-seq helix signatures; these
signals were previously overlooked or mistaken for correlated
double-DMS events. When mutations are enhanced through
error-prone PCR, in vitro M2-seq experimentally resolves 33
of 68 helices in diverse structured RNAs including ribozyme
domains, riboswitch aptamers, and viral RNA domains with a
single false positive. These inferences do not require energy
minimization algorithms and can be made by either direct visual
inspection or by a neural-network–inspired algorithm called M2-net.
Measurements on the P4–P6 domain of the Tetrahymena group I
ribozyme embedded in Xenopus egg extract demonstrate the
ability of M2-seq to detect RNA helices in a complex biological
environment.

RNA structure modeling | chemical mapping | neural network | mutational
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Inference of RNA structures using experimental data is a cru-
cial step in understanding RNA’s biological functions through-

out living organisms. Chemical-mapping methods have the
potential to reveal RNA structural features in situ by probing
which nucleotides are protected from attack by chemical
modifiers. The resulting experimental data can be used to
guide secondary-structure modeling by computational algo-
rithms, raising the prospect of transcriptome-wide RNA
structure determination (1, 2).
Despite these advances, the accuracy of RNA structure in-

ference through chemical mapping and sequencing remains un-
der question (3–8). For example, models of the 9-kb HIV-1 RNA
genome have been repeatedly revised with updates to the se-
lective 2′-OH acylation by primer extension (SHAPE) protocol,
data processing, and computational assumptions (2, 9–11), and
the majority of this RNA’s helices remain uncertain. Even for
small RNA domains, SHAPE and dimethyl sulfate (DMS)
(methylation of N1 and N3 atoms at A and C) have produced
misleading secondary structures for ribosomal domains and blind
modeling challenges that have been falsified through crystal-
lography or mutagenesis (3, 7, 12, 13). In alternative approaches
based on photoactivated cross-linkers, many helix detections
appear to be false positives, based on ribosome data in vitro and
in vivo (14, 15).
The confidence and structural accuracy of chemical-mapping

methods can be improved by applying perturbations to the RNA
sequence before chemical modification. In the mutate-and-map
strategy, mapping not just the target RNA sequence but also
a comprehensive library of point mutants reveals which nucle-
otides respond to perturbations at every other nucleotide,

enabling direct inference of pairs of residues that interact to
form structure (16, 17). The resulting models have been consis-
tently accurate at nucleotide resolution in RNA puzzles and
other blind tests for riboswitches and ribozymes solved by crys-
tallography, with helix recovery rates of >90% and false-positive
rates under 10%, with errors typically involving minor register
shifts or edge base pairs (2, 18). However, the mutate-and-map
approach has required synthesis and parallel mapping of many
mutant RNAs and, so far, has only been applied to RNAs under
200 nt in length probed in vitro.
Here, we introduce mutate-and-map read-out by next-

generation sequencing (M2-seq), which carries out RNA
preparation, mutation, and mapping in a one-pot experiment.
Tests on ribozyme domains, viral domains, and riboswitch
aptamers that form diverse RNA structures evaluate the
ability of M2-seq to detect Watson–Crick base pairs in vitro,
with signals that can be confirmed through visual inspection.
We introduce a simple algorithm, M2-net, that automatically
recovers these helices with a low false-positive rate (<5%) and
without register shifts that have been previously problematic
for chemical-mapping approaches. As a proof-of-concept for
more complex biological experiments, we demonstrate direct
detection of the majority of helices in the P4–P6 domain of the
group I Tetrahymena ribozyme embedded in biologically active
eukaryotic cell extract, and describe prospects for further
applications in RNA structural biology.

Significance

The intricate structures of RNA molecules are crucial to their
biological functions but have been difficult to accurately char-
acterize. Multidimensional chemical-mapping methods improve
accuracy but have so far involved painstaking experiments and
reliance on secondary-structure prediction software. A meth-
odology called M2-seq now lifts these limitations. Mechanistic
studies clarify the origin of serendipitous M2-seq–like signals
that were recently discovered but not correctly explained and
also provide mutational strategies that enable robust M2-seq
for new RNA transcripts. The method detects dozens ofWatson–
Crick helices across diverse RNA folds in vitro and within frog
egg extract, with a low false-positive rate (<5%). M2-seq opens
a route to unbiased discovery of RNA structures in vitro
and beyond.
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Results
Workflow of M2-Seq. The M2-seq workflow tested herein is
summarized in Fig. 1. First, DNA templates were prepared from
PCR assembly (short constructs) or PCR from plasmids (long
constructs). To ensure mutate-and-map signals, we prepared
samples with a low frequency (∼10−3 per nucleotide) of addi-
tional mutations as described previously (16) or using error-
prone PCR (19). We also prepared samples without additional
mutations to probe unexplained data correlations observed in
recent high-DMS experiments (2, 20). Then, we transcribed
RNAs from these DNA pools, prepared them into the desired
state (e.g., Mg2+-induced folding in vitro), and modified the
RNA with DMS. Reverse transcription was performed under
mutational profiling conditions (with SuperScript II and Mn2+)
to install mutations into cDNAs across from DMS modifications
(21). The full-length cDNAs were amplified by PCR, and the
resulting libraries were sequenced by paired-end Illumina se-
quencing. An initial M2-seq map was generated by recording the
positions of all of the correlated mutations. The data were dis-
played in a 2D heatmap visualization analogous to that used for
prior mutate-and-map experiments: a 1D chemical-mapping pro-
file was estimated for each single-nucleotide variant in the RNA,
each profile was normalized by the total number of reads with a
mutation at that position, and the profiles were stacked according
to the mutation. As described below and in SI Results, a more
sophisticated analysis is possible that attempts to separate muta-
tions based on their expected source (e.g., those installed during

library preparation vs. those introduced later by reverse tran-
scription across from chemical modifications). However, we will
mainly describe results with a simple mutation-counting approach,
which provides an initial unbiased visualization.

Mutational Profiling Provides Precise M2-Seq Information in a Single-
Pot Experiment. We first confirmed that applying the mutational
profiling readout to single-mutant libraries would give secondary-
structure signals similar to capillary electrophoresis (CE)-based
M2, which relies on reverse-transcription termination at modified
residues rather than mutational read-through. For this compari-
son, we investigated the P4–P6 domain of the 158-nt Tetrahymena
group I ribozyme (Fig. 2A), a widely used model system for tests of
RNA chemical-mapping methods (2, 3, 22). In addition, we pre-
pared DNA templates for the wild-type RNA and 158 point
mutants of each nucleotide to its complement (16) and then
pooled these molecules before the transcription step, so that all
subsequent steps could be carried out in one tube. The M2-seq
data for this initial pooled-mutation experiment are shown in Fig.
2B, after applying the pipeline described in Fig. 1 to generate 1D
chemical mapping reactivity profiles for each mutation position.
Analysis of the mutational spectrum in the no-DMS samples

confirmed that we had introduced the desired sequence changes
at the level of ∼1/158 (gray-lined outset, Fig. 2A). Furthermore,
as expected, the M2-seq data (Fig. 2B) exhibit strong signals for
structural elements, consistent with prior mutate-and-map data
based on CE (Fig. S1). For example, M2-seq signals marking the
pair C229/G245 and other pairs in the P6b helix create a visible
cross-diagonal, as in prior CE data (black-lined outset, Fig. 2B).
Base pairs for P4 and P5 (orange in Fig. 2B), P5a (blue), P5b (red),
and P6a-b (green) are clearly visible and agree with crystallographic
analysis of the RNA (Fig. 2A). Similarly, punctate signals reflecting
the tetraloop/tetraloop receptor (TL/TLR) tertiary contact, such as
between A153 and C223, also appear in both datasets. Short helices
that were not observed in CE-based mutate-and-map measure-
ments, such as the P5c helix (Fig. S1), also did not give extended
cross-diagonal stripes in the M2-seq data. As expected, the no-DMS
control samples did not show M2-seq signal and consisted primarily
of a uniform 1D background (Fig. S2A).
We further tested that separate preparation of mutants was

not necessary to give clear M2-seq signals of base pairs. We used
error-prone PCR to generate the DNA templates for RNA
transcription, giving mutations at a mean frequency of ∼0.5%
and mostly involving U-to-C, C-to-U, A-to-G, and G-to-A
transitions (gray-lined outset, Fig. 2C), as expected (23). De-
spite having a different mutational spectrum and giving signals at
different specific base pairs, we observed M2-seq signals for the
same helical elements as in the pooled single mutant library
experiment as well as for the TL/TLR tertiary contact (Fig. 2C;
fine differences are better visible in black-lined magnification
outsets of P6a–P6b region). The use of error-prone PCR sim-
plified the protocol: every step of the M2-seq experiment, from
DNA synthesis to final reverse transcription and sequencing,
could be carried out in a single tube.
We also observed M2-seq signal in samples without mutations

intentionally installed during error-prone PCR (Fig. 2D). We
had previously noted this pattern in published sequencing data
for high-DMS-modified P4–P6 RNA (2) (Fig. S3) and speculated
that DMS methylation of the N1 and N3 atoms of G and U
residues, respectively, could disrupt Watson–Crick base pairing,
expose C and A partners, respectively, and produce a 2D signal
(2, 20). Paradoxically, however, the modification reaction pH of
7.0 is too low to cause significant deprotonation at these atoms to
allow DMS methylation to occur (∼10−4 modification rate
expected under our conditions). Furthermore, when we applied
the no-mutation method to another large, highly structured
RNA, the Didymium iridis GIR1 lariat-capping ribozyme, we

Fig. 1. Workflow for M2-seq, mutate-and-map read-out by next-generation
sequencing. DNA template is generated by PCR assembly of oligonucleotides,
PCR from a plasmid, or error-prone PCR, potentially introducing deletions
(white) or mutations (gold). Then, RNA is transcribed (potentially introducing
further mutations, cyan), folded, and DMS-modified. Reverse transcription
is performed under conditions that favor mutational read-through of DMS-
modified nucleotides, recording those positions as mutations (magenta),
and cDNAs are PCR-amplified to generate double-stranded DNA library.
Libraries are subjected to next-generation sequencing, and resulting reads
are analyzed by demultiplexing, alignment to reference sequences, and
correlated mutation counting to generate an M2-seq dataset (simulated
here). Double-stranded RNA helices give rise to cross-diagonal features in
these maps that can be automatically recognized by M2-net and con-
firmed visually.
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observed no clear cross-diagonal stripes corresponding to long-
range RNA base pairs (Fig. 3A).

Mechanism of “Background” RNA Base Pair Signals. To understand
whether M2-seq signals could be enhanced for the GIR1 ribo-
zyme and other RNAs, we carried out extensive experiments to
understand the mechanism for the signal in the P4–P6 RNA,
varying transcription templates, purification, and modification
conditions. A complete description of this work is given in SI
Results and Figs. S4–S7; a short summary follows. Briefly, we
were able to discriminate between two models for how M2-seq
signals might arise without intentionally preinstalled mutations.

In the “double-DMS hit” model noted above, these Watson–
Crick base pair signals are due to rare DMS modifications (∼10−3
per nucleotide) that occur at transiently deprotonated U/G nu-
cleotides, resulting in—or caused by—DMS modification at part-
ner A/C nucleotides (2, 20). In an alternative “accidental mutation”
model, the signals are due to background mutations (also up to
∼10−3 per nucleotide) introduced as errors during DNA and
RNA synthesis. In the folded RNA, these mutations would
expose their structural partners to DMS, as with standard
mutate-and-map methods.
Favoring the accidental mutation model, differences in the M2-seq

signal with different DNA preparations (PCR assembly of oli-
gonucleotides, PCR from a plasmid stock, and synthesis in other
laboratories; Fig. 2 and Fig. S3) implicated background muta-
tions introduced in the different DNA synthesis methods, and
were then confirmed by sequencing the DNA templates used for
those M2-seq experiments (Figs. S4 and S5). Additional M2-seq
base pair signals were traced to transitions introduced during
RNA synthesis by T7 RNA polymerase and confirmed by direct
sequencing of the RNA before DMS modification (gray-framed
outsets, Fig. 2 and Figs. S4 and S5). Disfavoring the double-
DMS model, increasing the pH, which should enhance tran-
sient deprotonation of U/G and subsequent DMS modification,
did not increase the M2-seq base pairing signal except at high
pH. At pH 10.0, a different, less precise signal was observed
(Fig. S6). Finally, DMS dose–response measurements revealed
linear dependence of the Watson–Crick base pair signals with
DMS dose, as predicted by the accidental mutation model but
not the double-DMS hit model, which predicts a quadratic de-
pendence on DMS dose (Fig. S7).
Taken together, these studies traced the primary mechanism

of direct base pair detection in DMS experiments to the occur-
rence of accidental mutations during DNA and RNA synthesis
and not to double-DMS hits. Because these mutations occur in a
heterogeneous and noncontrolled manner throughout the RNA
molecule, they only allow detection of Watson–Crick pairs in
special molecules with particular preparations. We therefore
favored using error-prone PCR to seed in mutations more uni-
formly across transcripts. For example, in the case of the
GIR1 lariat-capping ribozyme, M2-seq signals highlighting most of
the RNA’s helices became visible when templates were prepared
with error-prone PCR (Fig. 3B). Even for the P4–P6 RNA, use of
error-prone PCR allowed M2-seq detection of the P4–P6 helices
with nearly an order of magnitude fewer sequencing reads than a
protocol relying only on accidental mutations (Fig. S8).

Automated Detection of Helices Across Diverse RNA Structures.After
testing the mechanism of the M2-seq signal, we evaluated the

Fig. 2. M2-seq on the P4–P6 domain of Tetrahymena group I ribozyme.
(A) Secondary-structure diagram of P4–P6. (B–D) Two-dimensional datasets
from M2-seq on pooled mutate-and-map library (B), on RNA with mutations
installed during error-prone PCR of DNA template (C), and with no in-
tentionally installed mutations (D), all probed with DMS mapping. Each row
gives frequencies of observing mutations at every position given a mutation
at the row position, as indicated by the strong diagonal (Top Left to Bottom
Right). In B–D, black-lined outsets highlight M2-seq signals in the P6a–P6b
region; gray-lined outsets show average and maximum observed frequencies
of each type of mutation in control RNA samples without DMS treatment. In
A and B, colored lines and labels mark correspondence of structure and map
signals for Watson–Crick helices, the tetraloop/tetraloop receptor contact
(solid purple), and exposure of tetraloop from mutations outside its receptor
(dashed purple).

Fig. 3. M2-seq on the GIR1 lariat-capping ribozyme requires seeded mu-
tations. M2-seq maps for DMS-treated GIR1 ribozyme prepared (A)
without any intentionally installed mutations and (B) from templates
seeded with mutations through error-prone PCR. Colored text labels in-
dicate helices for which cross-diagonal helix signatures become visible
and detectable by M2-net.
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general applicability of the method across diverse structured RNA
molecules. We chose several RNAs that have challenged prior
structure modeling efforts: the P4–P6 RNA, the catalytic domain
of RNase P, and the thiamine pyrophosphate (TPP) riboswitch
aptamer, which were the three test cases for an earlier RING-MaP
study (20, 21); and the GIR1 ribozyme, riboswitch aptamers for
adenosylcobalamin (AdoCbl) and cyclic–di-AMP, and an Xrn1-
exonuclease-resistant domain from the Zika virus, four targets
of the RNA-puzzle community-wide trials whose secondary
structures were particularly challenging for most groups and al-
gorithms to model (Tables S1 and S2) (12, 13, 24). M2-seq gave
visually apparent signals for helices in all of these cases (Fig. 4 and
Fig. S9). These helices included long-range interactions connect-
ing the most sequence-distal ends of RNA (P1 in the GIR1 and
RNase P molecules), pseudoknots (P7 in GIR1; P2 in RNase P),
long helices involved in tertiary contacts (9-bp P5b in P4–P6; 10-bp
P8 in the AdoCBL riboswitch), and short helices (P3 in the TPP
riboswitch). These signals were particularly apparent when we
displayed maps of Z-scores, which measure how much the DMS
signal at each nucleotide is enhanced over the mean at that po-
sition across all mutant variants, normalized to the standard de-
viation at that position. The quality of these data led us to revisit
automated Z-score–based helix detection methods developed in
early work on the mutate-and-map method (25, 26). Indeed, we

discovered that our visual analysis could be automatically repro-
duced by a simple pipeline of Z-score estimation, a convolutional
filter highlighting “cross-diagonal” stripes, data symmetrization,
and a filter for each nucleotide having at most one partner (SI
Methods; colored annotations in Fig. 4). We call this analysis M2-
net, due to its similarity to multilayer convolutional neural nets
that are now in wide use for image classification (27).
M2-net detected 34 of helices with length greater than 2 in these

RNAs (Table 1). A total of 33 of these 34 helices matched the
crystallographic or conventional structure available in the litera-
ture, and none of these cases involved register shifts that have been
problems in prior methods (2, 7). Despite the observation of other
weak signals in these data that do not correspond to helices (Fig.
4), M2-net detects only a single false positive, an altP19c helix
predicted for the catalytic domain of RNase P that disagrees with
the tip of the P19 domain presumed in the conventional secondary
structure of this molecule (28). The region including these helices
has not been directly visualized by crystallographic analysis (28).
Compensatory mutagenesis experiments indicate that the region
does form the predicted alt-P19 in solution (Fig. S10); we still
count it as a false positive here to be conservative.
In prior work, we and others have used the RNAstructure

free-energy minimization software, guided by mutate-and-map
or conventional 1D chemical mapping data, to “fill in” helices

Fig. 4. M2-seq recovers helices across diverse RNA folds. Each panel shows crystallographic secondary structures and Z-score–transformed maps (square
graphs) with colored labels (on both display items) marking helices and multihelix domains automatically identified by M2-net analysis. Differences in edge
base pairs are not shown. Data sets are as follows: (A) P4–P6 domain of Tetrahymena ribozyme (background mutations), (B) GIR1 lariat-capping ribozyme
(RNA-puzzle 5; error-prone PCR), (C) ribonuclease P catalytic domain (background mutations), and (D) adenosylcobalamin riboswitch aptamer (RNA-puzzle 6;
error-prone PCR). Data for three additional RNAs of smaller length are given in Fig. S9. Table S3 compiles modeled structures.
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not directly detected by experiments (12, 20, 26). In our M2-seq
benchmark, the ShapeKnots algorithm of RNAstructure guided by
the M2-seq and 1D DMS data indeed increases the number of
recovered crystallographic helices from 34 to 56 (out of 60 helices;
93% sensitivity). However, the higher recovery is at the expense of
more false positives: 4 out of a total of 60 predicted helices are
incorrect (Table 1; Table S1 also includes modeling without pseu-
doknots and without DMS data). The resulting false-discovery rate
(7%) is similar to the rate seen in prior mutate-and-map bench-
marks (16). For new RNAs where false positives would require
expensive subsequent experiments to falsify, M2-net (with a false-
positive rate of <5%) may be preferred over RNAstructure analysis.

RNA Base Pair Detection in Xenopus Egg Extract. The simplicity of
the “one-pot”M2-seq protocol and the positive predictive value of
the M2-net analysis motivated us to test the method in a more
complex biological environment than the in vitro folding condi-
tions typically used in benchmarking new chemical-mapping
methods. We mixed the P4–P6 RNA into undiluted extract from
metaphase-arrested Xenopus eggs, a widely used medium for
reconstituting eukaryotic biological processes (29). The impact of
this complex medium, compared with in vitro conditions, was
apparent in a modification signature that arose in extracto but not
in vitro, even in the absence of DMS treatment: A’s across the
transcript were mutated to G (Fig. 5A). These modifications likely
reflect the activity of the ADAR enzyme, which targets adenosines
near double-stranded RNA helices for deamination to inosine,
which is, in turn, read out as guanosine by reverse transcriptase
(30, 31). Even with the complexities of the Xenopus egg extract
environment, the 2D M2-seq data gave unambiguous signals for
the P4–P6 RNA secondary structure. While these signals were less
visually clear than in our in vitro experiments (Fig. 5B), they be-
came more apparent when the data were viewed as Z-score maps
(Fig. 5C). Despite an increase in background, partially due to A-
to-I mutations, M2-net detected five of the eight helices of P4–
P6 and no false positives (colored labels in Fig. 5C).

Discussion
Rapid detection of base-pairing partners in new noncoding
RNAs has been difficult, requiring structural and biochemical
techniques with low throughput, limited applicability, and/or poor
predictive value. To address this challenge, we have introduced

and tested a method called M2-seq. Mutations introduced at a
low level (K10−3) during DNA or RNA synthesis disrupt local
structure in the folded RNA and expose interacting nucleotides
to reaction with DMS. This mutation and a partner that becomes
exposed to DMS methylation leave correlated imprints on single
molecules, enabling readout through reverse trancription and
next-generation sequencing. M2-seq permits precise detection of
the major structural elements of classic model systems such as
the 158-nt P4–P6 domain of the Tetrahymena group I ribozyme
and the 265-nt Bacillus stearothermophilus RNase P catalytic
domain. M2-seq also reveals helices that have been difficult to
detect or entirely missed in recent RNA-puzzles modeling for
the GIR1 lariat-capping ribozyme, the adenosylcobalamin ribo-
switch, the ydaO cyclic–di-AMP riboswitch, and the Zika virus
Xrn1-resistant genomic domain. Overall, the M2-seq data recover
one-half of the helices in the tested RNAs with a low false-positive
rate (<5%). Finally, the method enables pairwise structure in-
ference for the majority of helices of the P4–P6 RNA in Xenopus
egg extract. This study reports a biochemical technique en-
abling direct 2D visualization of RNA base pair partners—as
opposed to 1D protections of uncertain origin—in a complex
biological environment.
To supplement and automate simple visual inspection of M2-

seq data, we have introduced the M2-net algorithm to infer he-
lices from cross-diagonal signatures within the data, without bias
from secondary-structure modeling methods that attempt to
minimize a computed free energy. The M2-net algorithm is
expected to be particularly important for scenarios that are not
appropriately modeled with energy minimization methods, such
as cases involving nontrivial tertiary structure or multiple sec-
ondary structures, molecules with long lengths, or systems
reconstituted in complex environments where protein binding
partners or molecular machines prevent the RNA from reaching
equilibrium. Prior studies involving visual inspection of mutate-
and-map data have correctly predicted tertiary contacts as well
(12), and it will be important to test whether M2-net can be
expanded to inferring such 3D information.
The presented M2-seq protocol is immediately applicable to

250-nt windows of lightly mutated RNAs introduced into complex

Table 1. Recovery of helices across seven complex RNA folds
from M2-seq data

RNA No. of helices*

ShapeKnots +
DMS + M2† M2-net

TP FP TP FP

P4–P6 domain 8 8 1 7 0
GIR1 ribozyme 11 11 0 5 0
RNase P C domain 13 11 1 10 1
AdoCbl riboswitch 10 10 0 4 0
ydaO riboswitch 7 6 1 2 0
Zika xrRNA 5 4 1 2 0
TPP riboswitch 6 6 0 3 0
Total 60 56 4 33 1
False-negative rate, % 6.7 45.0
False-positive rate, % 6.7 2.9
Sensitivity, % 93.3 55.0
PPV, % 93.3 97.1

FP, false positives; PPV, positive predictive value; TP, true positives.
*Helices with length greater than two Watson–Crick (or G•U wobble) base
pairs.
†Use of one-dimensional DMS data to guide folding through energy bonuses
(5) and Z-scores derived from 2D M2-seq experiments, applied as in ref. 16.

Fig. 5. M2-seq detects P4–P6 RNA base pairs in Xenopus egg extract.
(A) Mutations across the P4–P6 transcript consistent with adenosine-to-inosine
edits after exposure to undiluted Xenopus egg extract for 30 min (no DMS
treatment); difference data with RNA incubated in vitro are shown. M2-seq
data for P4–P6 RNA from templates prepared by error-prone PCR shown as
(B) M2-seq map and then (C) transformed into Z-scores. Helix signatures
automatically detected by M2-net are marked with colored labels.
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biological environments. Synthetic long read sequencing or third-
generation sequencing technologies may allow future studies to
detect base pairings involving sequence separations longer than
250 nt (32–34). In terms of seeding mutations, applications to
viruses and other systems that involve high-error rate RNA poly-
merases may obviate this step, but generally M2-seq in extracts, cells,
and tissues will require transfecting DNA or RNA libraries that are
prepared through error-prone PCR or other emerging techniques
(33, 34). A faster and less biologically perturbing protocol would
be enabled by a cell-permeable mutagen that could directly attack
nucleotides initially sequestered inside RNA helices. While none
of the routinely used chemical probes (e.g., DMS, SHAPE) ap-
pears appropriate, a large arsenal of mutagens remains to be
tested for RNA structure mapping in vivo (35).

Methods
DMS mapping experiments on RNA were performed by modifying the RNA
with DMS (170mM final) in 10 mMMgCl2 and 300mMNa-cacodylate (pH 7.0)
for 6 min at 37 °C, followed by quenching with β-mercaptoethanol and
purification with ethanol precipitation. Experiments with Xenopus egg

extract replaced ethanol precipitation with purification by TRIzol extraction
and RNA Clean-and-Concentrator-5 columns (Zymo Research). Reverse
transcription was performed in conditions that led to mutational read-
through at methylated nucleotides (SuperScript II and Mn2+), and sequenc-
ing libraries were prepared by PCR and sequenced on Illumina MiSeq in-
struments. ShapeMapper (36) was used to align sequencing reads to
reference sequences and record mutations, and the results were converted
to M2-seq data and mutation spectra using scripts available at https://github.
com/ribokit/M2seq. Detailed descriptions of RNA preparation, modification
experiments, map visualization, secondary-structure modeling by M2-net
and RNAstructure executables, and DMS dose-dependent mutation rate
analysis are provided in SI Methods.

ACKNOWLEDGMENTS. We thank P. Cordero and S. Tian for initial RNAstruc-
ture analyses of previously collected MaP data; the Herschlag laboratory for
the pT7L-21 plasmid; B. French and A. Straight for the generous gift of
Xenopus egg extract; and D. Mathews and R. Watson for incorporating
extensions into RNAstructure software. We acknowledge funding from the
National Institutes of Health [Grant 5 T32 GM007276 (to C.Y.C.); Grant R01
GM102519 (to R.D.)] and the Burroughs Wellcome Fund [Grant CASI
1007326.01 (to R.D.)].

1. Leamy KA, Assmann SM, Mathews DH, Bevilacqua PC (2016) Bridging the gap be-
tween in vitro and in vivo RNA folding. Q Rev Biophys 49:e10.

2. Tian S, Das R (2016) RNA structure through multidimensional chemical mapping. Q
Rev Biophys 49:e7.

3. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA
structure determination. Proc Natl Acad Sci USA 106:97–102.

4. Kladwang W, VanLang CC, Cordero P, Das R (2011) Understanding the errors of
SHAPE-directed RNA structure modeling. Biochemistry 50:8049–8056.

5. Cordero P, Kladwang W, VanLang CC, Das R (2012) Quantitative dimethyl sulfate
mapping for automated RNA secondary structure inference. Biochemistry 51:
7037–7039.

6. Hajdin CE, et al. (2013) Accurate SHAPE-directed RNA secondary structure modeling,
including pseudoknots. Proc Natl Acad Sci USA 110:5498–5503.

7. Tian S, Cordero P, Kladwang W, Das R (2014) High-throughput mutate-map-rescue
evaluates SHAPE-directed RNA structure and uncovers excited states. RNA 20:
1815–1826.

8. Eddy SR (2014) Computational analysis of conserved RNA secondary structure in
transcriptomes and genomes. Annu Rev Biophys 43:433–456.

9. Watts JM, et al. (2009) Architecture and secondary structure of an entire HIV-1 RNA
genome. Nature 460:711–716.

10. Pollom E, et al. (2013) Comparison of SIV and HIV-1 genomic RNA structures reveals
impact of sequence evolution on conserved and non-conserved structural motifs.
PLoS Pathog 9:e1003294.

11. Sükösd Z, et al. (2015) Full-length RNA structure prediction of the HIV-1 genome
reveals a conserved core domain. Nucleic Acids Res 43:10168–10179.

12. Miao Z, et al. (2015) RNA-puzzles round II: Assessment of RNA structure prediction
programs applied to three large RNA structures. RNA 21:1066–1084.

13. Miao Z, et al. (2017) RNA-puzzles round III: 3D RNA structure prediction of five ri-
boswitches and one ribozyme. RNA 23:655–672.

14. Sergiev PV, Dontsova OA, Bogdanov AA (2001) [Study of ribosome structure using the
biochemical methods: Judgment day]. Mol Biol (Mosk) 35:559–583.

15. Lu Z, et al. (2016) RNA duplex map in living cells reveals higher-order transcriptome
structure. Cell 165:1267–1279.

16. Kladwang W, VanLang CC, Cordero P, Das R (2011) A two-dimensional mutate-and-
map strategy for non-coding RNA structure. Nat Chem 3:954–962.

17. Cordero P, Das R (2015) Rich RNA structure landscapes revealed by mutate-and-map
analysis. PLoS Comput Biol 11:e1004473.

18. Miao Z, et al. (2015) RNA-puzzles round II: Assessment of RNA structure prediction
programs applied to three large RNA structures. RNA 21:1066–1084.

19. Furey WS, et al. (1998) Use of fluorescence resonance energy transfer to investigate
the conformation of DNA substrates bound to the Klenow fragment. Biochemistry 37:
2979–2990.

20. Krokhotin A, Mustoe AM, Weeks KM, Dokholyan NV (2017) Direct identification of
base-paired RNA nucleotides by correlated chemical probing. RNA 23:6–13.

21. Homan PJ, et al. (2014) Single-molecule correlated chemical probing of RNA. Proc Natl
Acad Sci USA 111:13858–13863.

22. Cate JH, et al. (1996) Crystal structure of a group I ribozyme domain: Principles of RNA
packing. Science 273:1678–1685.

23. Wilson DS, Keefe AD (2001) Random mutagenesis by PCR. Curr Protoc Mol Biol Chap
8:Unit 8.3.

24. Akiyama BM, et al. (2016) Zika virus produces noncoding RNAs using a multi-
pseudoknot structure that confounds a cellular exonuclease. Science 354:1148–1152.

25. Kladwang W, Das R (2010) A mutate-and-map strategy for inferring base pairs in
structured nucleic acids: Proof of concept on a DNA/RNA helix. Biochemistry 49:
7414–7416.

26. Kladwang W, Cordero P, Das R (2011) A mutate-and-map strategy accurately infers
the base pairs of a 35-nucleotide model RNA. RNA 17:522–534.

27. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444.
28. Kazantsev AV, et al. (2011) Solution structure of RNase P RNA. RNA 17:1159–1171.
29. Desai A, Murray A, Mitchison TJ, Walczak CE (1999) The use of Xenopus egg extracts

to study mitotic spindle assembly and function in vitro. Methods Cell Biol 61:385–412.
30. Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its

double-stranded RNA substrate. Cell 55:1089–1098.
31. Wagner RW, Smith JE, Cooperman BS, Nishikura K (1989) A double-stranded RNA

unwinding activity introduces structural alterations by means of adenosine to inosine
conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci USA 86:
2647–2651.

32. Stapleton JA, et al. (2016) Haplotype-phased synthetic long reads from short-read
sequencing. PLoS One 11:e0147229.

33. Mostovoy Y, et al. (2016) A hybrid approach for de novo human genome sequence
assembly and phasing. Nat Methods 13:587–590.

34. Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: Delivery
of nanopore sequencing to the genomics community. Genome Biol 17:239.

35. Singer B, Ku�smierek JT (1982) Chemical mutagenesis. Annu Rev Biochem 51:655–693.
36. Siegfried NA, Busan S, Rice GM, Nelson JA, Weeks KM (2014) RNA motif discovery by

SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965.
37. Tian S, Yesselman JD, Cordero P, Das R (2015) Primerize: Automated primer assembly

for transcribing non-coding RNA domains. Nucleic Acids Res 43:W522–W526.
38. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: Technologies and

applications. Nat Methods 11:499–507.
39. Costello M, et al. (2013) Discovery and characterization of artifactual mutations in

deep coverage targeted capture sequencing data due to oxidative DNA damage
during sample preparation. Nucleic Acids Res 41:e67.

40. Wons E, Furmanek-Blaszk B, Sektas M (2015) RNA editing by T7 RNA polymerase
bypasses InDel mutations causing unexpected phenotypic changes. Nucleic Acids Res
43:3950–3963.

41. Kladwang W, Hum J, Das R (2012) Ultraviolet shadowing of RNA can cause significant
chemical damage in seconds. Sci Rep 2:517.

42. Cordero P, Kladwang W, VanLang CC, Das R (2014) The mutate-and-map protocol for
inferring base pairs in structured RNA. Methods Mol Biol 1086:53–77.

43. Zaug AJ, Grosshans CA, Cech TR (1988) Sequence-specific endoribonuclease activity of
the Tetrahymena ribozyme: Enhanced cleavage of certain oligonucleotide substrates
that form mismatched ribozyme-substrate complexes. Biochemistry 27:8924–8931.

44. Guse A, Fuller CJ, Straight AF (2012) A cell-free system for functional centromere and
kinetochore assembly. Nat Protoc 7:1847–1869.

45. Moree B, Meyer CB, Fuller CJ, Straight AF (2011) CENP-C recruits M18BP1 to centro-
meres to promote CENP-A chromatin assembly. J Cell Biol 194:855–871.

46. Seetin MG, Kladwang W, Bida JP, Das R (2014) Massively parallel RNA chemical
mapping with a reduced bias MAP-seq protocol. Methods Mol Biol 1086:95–117.

47. Smola MJ, Rice GM, Busan S, Siegfried NA, Weeks KM (2015) Selective 2′-hydroxyl
acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for
direct, versatile and accurate RNA structure analysis. Nat Protoc 10:1643–1669.

48. Tian S, Cordero P, Kladwang W, Das R (2014) High-throughput mutate-map-rescue
evaluates SHAPE-directed RNA structure and uncovers excited states. RNA 20:1815–1826.

Cheng et al. PNAS | September 12, 2017 | vol. 114 | no. 37 | 9881

BI
O
CH

EM
IS
TR

Y

https://github.com/ribokit/M2seq
https://github.com/ribokit/M2seq
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619897114/-/DCSupplemental/pnas.201619897SI.pdf?targetid=nameddest=STXT

