Skip to main content
. 2017 Aug 29;114(37):9814–9819. doi: 10.1073/pnas.1700770114

Table S2.

Accuracy of all algorithms on all datasets, measured by NMI

Dataset k-means++ GMM fuzzy MS AC-C AC-W N-Cuts AP Zell SEC LDMGI GDL PIC RCC RCC-DR
MNIST 0.500 0.405 0.386 0.282 NA 0.679 n/a 0.609 NA 0.469 0.761 NA NA 0.893 0.827
Coil-100 0.835 0.832 0.828 0.750 0.739 0.876 0.891 0.843 0.965 0.872 0.906 0.965 0.970 0.963 0.963
YTF 0.788 0.779 0.774 0.846 0.680 0.806 0.758 0.783 0.273 0.760 0.532 0.664 0.684 0.850 0.882
YaleB 0.650 0.621 0.140 0.234 0.479 0.788 0.934 0.799 0.913 0.863 0.950 0.931 0.946 0.978 0.976
Reuters 0.536 0.510 0.272 0.000 0.392 0.492 0.545 0.504 0.087 0.498 0.523 0.401 0.057 0.556 0.553
RCV1 0.355 0.338 0.205 0.000 0.108 0.364 0.140 0.355 0.023 0.069 0.382 0.020 0.015 0.138 0.442
Pendigits 0.680 0.695 0.695 0.703 0.526 0.729 0.813 0.647 0.317 0.742 0.775 0.330 0.467 0.850 0.855
Shuttle 0.216 0.267 0.204 0.365 NA 0.291 0.000 0.326 NA 0.305 0.591 NA NA 0.488 0.513
Mice Protein 0.431 0.392 0.424 0.624 0.324 0.530 0.542 0.592 0.437 0.543 0.532 0.411 0.405 0.668 0.656
Rank 7.9 9 10.2 9.4 12.6 6.6 6.5 6.7 10.4 7.6 5 10 10 2.7 1.9

For each dataset, the maximum achieved NMI is highlighted in bold. NA, not applicable.