Skip to main content
. 2017 Aug 29;114(37):9814–9819. doi: 10.1073/pnas.1700770114

Table S4.

Success of the learned representation 𝐔 in capturing the structure of the data, evaluated by running prior clustering algorithms on 𝐔 instead of 𝐗

RCC RCC-DR
Dataset k-means++ AC-W AP SEC LDMGI GDL k-means++ AC-W AP SEC LDMGI GDL
MNIST 0.879 0.879 0.647 0.866 0.863 NA 0.808 0.809 0.679 0.808 0.808 NA
Coil-100 0.958 0.963 0.956 0.937 0.932 0.919 0.959 0.960 0.956 0.930 0.942 0.916
YTF 0.800 0.814 0.840 0.737 0.638 0.455 0.803 0.817 0.879 0.726 0.689 0.464
YaleB 0.960 0.964 0.975 0.957 0.872 0.566 0.967 0.967 0.974 0.958 0.872 0.541
Reuters 0.544 0.544 0.511 0.472 0.372 0.341 0.545 0.545 0.525 0.492 0.528 0.421
RCV1 0.460 0.425 0.368 0.461 0.301 0.018 0.488 0.474 0.384 0.455 0.209 0.026
Pendigits 0.750 0.717 0.759 0.730 0.526 0.630 0.742 0.729 0.756 0.706 0.742 0.676
Shuttle 0.255 0.291 0.338 0.343 0.132 NA 0.275 0.340 0.344 0.495 0.327 NA
Mice Protein 0.584 0.543 0.641 0.465 0.312 0.335 0.538 0.539 0.630 0.434 0.376 0.261

Left: using the representation learned by RCC as input to prior clustering algorithms. Right: using the representation learned by RCC-DR. Accuracy is measured by AMI. The accuracy of prior algorithms increases substantially when a representation learned by RCC or RCC-DR is used as input instead of the original data. In each case, the maximum AMI is highlighted in bold. NA, not applicable.