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Characterizing the collective regulatory impact of genetic vari-
ants on complex phenotypes is a major challenge in developing a
genotype to phenotype map. Using expression quantitative trait
locus (eQTL) analyses, we constructed bipartite networks in which
edges represent significant associations between genetic variants
and gene expression levels and found that the network structure
informs regulatory function. We show, in 13 tissues, that these
eQTL networks are organized into dense, highly modular commu-
nities grouping genes often involved in coherent biological pro-
cesses. We find communities representing shared processes across
tissues, as well as communities associated with tissue-specific pro-
cesses that coalesce around variants in tissue-specific active chro-
matin regions. Node centrality is also highly informative, with the
global and community hubs differing in regulatory potential and
likelihood of being disease associated.
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More than a decade after the sequencing of the human
genome, our understanding of the relationship between

genetic variation and complex traits remains limited. Genome-
wide association studies (GWASs), which look for association
between common genetic variants and phenotypic traits, have
resoundingly shown that complex phenotypes are influenced by
many variants of relatively small effect size (1, 2), the overwhelm-
ing majority of which (∼93%) lie in noncoding regions of the
genome (3, 4). Those single-nucleotide polymorphisms (SNPs)
associated with complex traits are enriched for variants likely to
affect gene expression, as measured by expression quantitative
trait locus (eQTL) analysis (5), suggesting that they influence
phenotypes through changes in gene regulation (6, 7). Identify-
ing the regulatory role of these variants likely also depends on
the tissues relevant to the phenotype. For example, eQTL iden-
tified in skeletal muscle and adipose tissues for type 2 diabetes
(T2D) have been shown to explain a greater proportion of the
disease heritability than those identified across tissues (8). Fur-
thermore, variants far from the transcriptional start site (TSS) of
a gene, trans-eQTL, explain more of the heritability of T2D than
those near the gene, cis-eQTL, and there is mounting evidence
for the importance of these variants in a variety of phenotypes
(9–11). That trans-eQTL, which can influence hundreds of genes
in humans (12), might have an impact on the phenotype is con-
sistent with similar observations in model organisms (13). How-
ever, large-scale detection of trans-eQTL across populations and
tissues (14) has only recently become feasible in humans, and
our understanding of how multiple cis- and trans-eQTL influ-
ence gene expression and cellular functions in different tissues
is incomplete.

We performed a systems genetics analysis of the regulatory
effects of common [minor allele frequency (MAF) >5%] vari-
ants in 13 tissues collected by the Genotype–Tissue Expression
(GTEx) consortium. By constructing tissue-level eQTL networks
from cis- and trans-eQTL, where each significant SNP–gene asso-
ciation within a tissue is cast as an edge, we find that these net-
works provide insight into the shared and tissue-specific regu-
latory roles of common variants and their collective impact on

biological pathways. In particular, we find three aspects of the
eQTL network topology that inform tissue-level regulatory biol-
ogy: (i) Communities—which are composed of SNPs and genes
with a high density of within-group edges—are enriched for
pathways, functionally related genes, and SNPs in tissue-specific
active chromatin regions (actively transcribed and open regula-
tory regions); (ii) community hubs (core SNPs)—which are SNPs
highly connected to genes in their community—are enriched for
active chromatin regions close to the transcriptional start site
and for GWAS association; and (iii) global hubs—which are con-
nected to many genes throughout the network—are enriched
for distal elements such as nongenic enhancers and devoid of
GWAS association. The picture that emerges from analysis of
the eQTL networks is a complex web of associations that reflects
the polygenic architecture across tissues and that provides a nat-
ural framework for understanding both the shared and tissue-
specific effects of genetic variants. These networks, along with
SNP and gene network properties across all 13 tissues, are avail-
able at networkmedicine.org:3838/eqtl/.

Results and Discussion
eQTL Networks Are Highly Modular. We downloaded RNA-Seq
data and imputed genotypes obtained from postmortem samples
coming from 50 tissue types and two cell lines from the GTEx
version 6.0 dataset (phs000424.v6.p1, 2015-10-05 release) from
the database of Genotypes and Phenotypes (dbGaP) (approved
protocol no. 9112). After quality control and preprocessing (see
SI Appendix, Fig. S1 and Materials and Methods for details of
RNA-Seq and genotyping data preprocessing and tissue-specific
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gene filtering), we retained 29,242 genes (15, 16) and 5,096,867
SNPs across all tissues. For statistical power purposes, we consid-
ered only tissues for which we had both RNA-Seq and imputed
genotyping data for at least 200 individuals (SI Appendix, Fig.
S2). Twelve tissues and one cell line met all criteria (SI Appendix,
Fig. S1 and Table S1).

For each of the 13 tissues, we tested for association between
SNP genotypes and gene expression levels both in cis and in trans,
correcting for reported sex, age, ethnic background, and the top
three principal components obtained using genotyping data (SI
Appendix, Figs. S1 and S3 and Materials and Methods). Including
SNPs within 1 Mb of each gene, we found between 285,283 and
691,333 significant cis-eQTL (5,301–11,035 genes) and between
7,151 and 15,183 significant trans-eQTL (326–955 genes) at a
false discovery rate (FDR) of 5% in each tissue. Despite dif-
ferences in normalization, number and type of covariates, and
eQTL P-value calculation, on average 73% of our cis-eQTL were
also detected by the GTEx project in each tissue (minimum 70%
in artery aorta and maximum 76% in thyroid; SI Appendix, Table
S2). Consistent with previous reports (17–19), we find most cis-
eQTL are located around TSSs, with 50% of SNPs located within
∼16,000 bp of the nearest TSS (14,767 bp for whole blood and
17,109 bp for thyroid). We also observed that cis-eQTL were
highly replicable across tissues (70–88% were replicated in at
least one other tissue), while trans-eQTL replicability across tis-
sues was more varied (37–88% were replicated in at least one
other tissue).

If our trans-eQTL reflect actual associations, we would
expect that they should be preferentially located in regulatory
genomic regions. To test for this, we used the Roadmap Epige-
nomics Project core 15-states model, which classifies genomic
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Fig. 1. Structure of eQTL networks. (A) The eQTL network from heart left ventricle. Each circle represents a community. The nodes, both SNPs and genes,
are located around each circle. Gray lines represent network edges (significant cis- and trans-eQTL associations). (B) Modularity of the eQTL network from
each of the 13 tissues. Modularity assesses the strength of division of the network in communities and corresponds to the fraction of edges observed within
each community minus the expected fraction if edges were randomly distributed. B, Right shows the number of communities (Com) in each network.
(C) Structure of communities within the eQTL heart left ventricle network. The heart left ventricle network is represented as a matrix with SNPs in columns
and genes in rows. Each network edge is represented by a point. Intracommunity edges are plotted in blue and intercommunity edges in black. Community
structure for the other 12 networks is presented in SI Appendix, Fig. S4.

regions into 15 chromatin states based on epigenetic marks mea-
sured in a specific tissue or cell line; these classifications were
available for eight tissues (adipose subcutaneous, artery aorta,
fibroblast cell line, esophagus mucosa, heart left ventricle, lung,
skeletal muscle, and whole blood) (20). Correcting for local
linkage disequilibrium, we found that trans-eQTL are signifi-
cantly more likely to be located in regulatory and actively tran-
scribed regions (TSSs and their flanking regions, enhancers) in
at least seven of the eight tissues and significantly less likely
to fall into quiescent regions and constitutive heterochromatin
(Dataset S1). This is confirmed by P values combined across
tissues obtained using conditional logistic regression (stratified
by tissue; Dataset S1). In addition, we found that a major-
ity (50–66%) of trans-eQTL were also associated with genes
in cis.

For each of the 13 tissues, we represented the significant eQTL
as a bipartite network, with nodes representing either SNPs or
genes and edges representing significant SNP–gene associations
(for example, heart left ventricle tissue; Fig. 1A). Each network
was composed of a “giant connected component” (GCC) plus
additional small connected components. To increase the size of
the GCC and because network centrality measures are more
sensitive to false negative than to false positive edges (21, 22),
we relaxed the FDR cutoff and included all eQTL with FDR
q values under 0.2. At this threshold, about 11% of SNPs are
associated with at least one gene in cis (333,225–751,418 SNPs)
and 0.3% in trans (10,814–22,570 SNPs; Dataset S2). For all
subsequent analyses, we focused on the networks defined by
these GCCs.

We used the R condor package (23) to identify communities
in each of the 13 eQTL networks (SI Appendix, Fig. S1). We
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found between 22 (whole blood) and 169 (skin) communities
in each tissue-specific network. The modularities of the eQTL
networks ranged from 0.74 (whole blood) to 0.97 (thyroid, Fig.
1B). This suggests that within each network, the communities
were tightly clustered, with the density of edges linking nodes
from the same community being much higher than the density
of edges linking nodes from different communities (example in
Fig. 1C and SI Appendix, Fig. S4). The size of the communities
ranged broadly, between 2 and 1,220 genes and between 3 and
26,056 SNPs.

To determine how much correlated gene expression deter-
mined community structure, we computed the Pearson correla-
tion coefficient (Pearson r) for each pair of genes within each
community and each network. The distributions of pairwise coef-
ficients by tissue and community ranged from −0.2 to 0.2 for
most of the communities (SI Appendix, Fig. S5A). The median
absolute correlation was lower than 0.2 in 86% of communities,
with about 2% of communities presenting a median correlation
higher than 0.4. Moreover, small-size communities (fewer than
10 genes) were overrepresented among those with median cor-
relation higher than 0.4 (SI Appendix, Fig. S5B, odds ratio of 29,
P value of 2.3× 10−20). This shows that our communities are
not driven by gene expression correlation, except for a tiny frac-
tion that contain few genes, and thus not likely to be found using
coexpression network methods.

Finally, we recognize that genetic recombination effects,
including local linkage disequilibrium, might lead to a clustering
of SNPs and genes from the same chromosomal region to cluster
together. To test this, we examined the chromosomal distribu-
tion of genes and SNPs in each community. Across all 13 tissues,
between 71% (fibroblast cell line) and 94% (adipose subcuta-
neous) of communities included genes and SNPs from two or
more chromosomes (SI Appendix, Fig. S6). Overall, our results
suggest that the structure of eQTL network communities is not
based exclusively on genomic correlations such as linkage dise-
quilibrium or gene expression correlation.
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Fig. 2. Some network communities are enriched for biological functions shared across tissues. A complete list of the significantly overrepresented biological
processes in each community and each network can be found in Dataset S3. (A) Heatmap clustering the similarity of GO biological processes in communities
from all tissues. Only GO terms that were significant in at least 12 tissues are included. (B) Sankey diagram linking clusters from the heatmap to the
tissues that contain at least one community enriched for genes involved in the clustered functions. A ribbon’s thickness is proportional to the number of
communities enriched for each cluster of GO terms in each TS network.

eQTL Community Structure Reflects Shared and Tissue-Specific Bio-
logical Functions. To investigate the biological relevance of these
communities, we tested all communities in each tissue for over-
representation of Gene Ontology (GO) biological processes
(24). Across all tissues, we found 208 communities enriched for
at least one biological process at a FDR of 5% (Dataset S3). We
compared the observed biological processes across communities
and tissues and found that some communities were enriched for
genes involved in tissue-specific functions while others included
genes with biological functions relevant to all tissues (Figs. 2
and 3).

We first identified communities enriched for ubiquitous bio-
logical functions, which we defined as GO terms that were
enriched in a community from at least 12 of the 13 tissue-
specific eQTL networks. Using the Fisher combined probability
test (FCPT), we showed that these shared GO terms have sig-
nificant combined P values across all tissues (P values shown in
Dataset S3). To further ensure that this enrichment in shared
GO terms was not a spurious signal due to the number of tests
run, we computed a null distribution of 1,000 P-values for each
community enriched for a shared GO term in each tissue by
rerunning the enrichment test using a randomly selected set of
genes equivalent in size to the community in the original test
(Dataset S3). An example of a null distribution of P values for
enrichment in the shared GO term GO:0010468 “regulation of
gene expression” is shown in SI Appendix, Fig. S8. For all shared
GO terms across all tissues and communities, the P value asso-
ciated with the observed enrichment was in the bottom 4% of
the null distributions, indicating that the observed enrichment
reflects shared biological processes rather than random enrich-
ment in common GO terms.

To analyze these results, we clustered communities using their
enrichment P values in these ubiquitous biological functions only
(Fig. 2A). We identified five groups of GO terms related to regu-
lation of transcription and RNA metabolism and immunity that
defined five groups of communities (Fig. 2 and Dataset S3).
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Fig. 3. Close-up of a community enriched for TS GO biological processes: the heart ventricle community 86. (A) Circos diagram for heart left ventricle eQTL
in community 86. From the outside to the inside: chromosomes (in black), genes from community 86 (in blue, dark blue bars represent genes associated
with cellular metabolism), SNPs (in green, with dark green bars indicating an association with metabolic traits), and SNP–gene assocations (in gray: all
associations, in red: eQTL linked to genes involved in cellular respiration or SNPs involved in metabolism). Details about GWAS annotation of the SNPs and
genes are given in Dataset S4. (B) Heart left ventricle community 86 is enriched for genes involved in cellular respiration.

For example, we found that genes involved in functions linked
to pathogen recognition, innate and adaptive immune response
triggering, T-cell activation, and inflammation (groups 2, 3, and
5) are overrepresented in at least one community in all tissue-
specific eQTL networks except lung. These communities include
many genes from the major histocompatibility complex (MHC)
class II and may reflect the presence of infiltrated macrophages
in all tissues. Similarly, 12 of the 13 tissue-specific networks
present communities strongly enriched for genes related to the
control of transcription and RNA metabolism (groups 1 and 4).

Communities that are enriched for the same GO biological
process tend to share many of the same SNPs, genes, and edges,
with the average pairwise Jaccard index between tissues for each
GO biological process ranging from 0.16 to 0.69 for SNPs, 0.17
to 0.47 for genes, and 0.10 to 0.46 for edges. The content of these
communities with shared biological functions can vary slightly
from tissue to tissue (1–5%, 1–10%, and 9–32% for SNPs, genes,
and edges, respectively). However, these differences are small
and likely due to slight variations in sample size between tissues,
affecting the significance of the eQTL associations, network clus-
tering, and the small differences in the populations analyzed for
each tissue (average proportion of samples shared with other tis-
sues varies from 64% to 95%).

We also used the GO enrichment analysis to identify tissue-
specific functions, which we defined as a community-enriched
GO term appearing in no more than two tissues. An interesting
example is community 86 from the heart left ventricle network
(Fig. 3). This community is enriched for genes involved in cellu-
lar respiration and the mitochondrial respiratory chain (Fig. 3B
and Dataset S3). These functions, despite being ubiquitous, are
particularly important in heart due to its high metabolic require-
ments, and studies have shown that dysfunction of the respiratory
chain is involved in many heart diseases (25). This heart commu-
nity contains 13,143 SNPs (1,834 linkage disequilibrium blocks)
linked to 1,182 genes (gray links, Fig. 3A). Of these, there is a
subset involved in cellular respiration (red links) that includes
547 SNPs [100 linkage disequilibrium (LD) blocks] linked to
52 genes, located on 20 autosomes. GWASs have reported 5

of these 52 genes to be associated with cardiovascular-related
traits and metabolism such as conotruncal heart defects, obesity,
and blood metabolite levels, a significant enrichment [resam-
pling P =1.6× 10−3, Fig. 3A and Dataset S4 (26)]. This com-
munity also contains SNPs from three genomic regions that have
been linked to metabolic traits and blood metabolite levels; these
include association with the metabolite carnitine, a molecule
involved in the transport of fatty acid from cytoplasm to the mito-
chondrial matrix where those fatty acids are metabolized (Fig. 3A
and Dataset S4).

Other examples of tissue-specific overrepresentation of bio-
logical functions include transmission of nerve impulse and
myelination in community 4 from tibial nerve and muscle devel-
opment and contraction in muscular tissues. Community 30 from
the heart left ventricle network is enriched for genes related
to ventricular cardiac muscle tissue morphogenesis and contrac-
tion, community 75 from skeletal muscle for striated muscle con-
traction and cell differentiation, and community 83 from esopha-
gus muscularis for smooth muscle contraction (SI Appendix, Fig.
S7 and Dataset S3).

This suggests that eQTL network community structure reflects
many SNPs working together to influence groups of functionally
related genes and that some of the communities capture unique
features of tissues and phenotypic states. Our analysis of these
eQTL communities paints an empirically robust picture of com-
munities that involve functions shared across tissues as well as
those that are highly specialized to individual tissues.

Biological Characteristics of Tissue-Specific Communities. Given
that genetic variants are present in all tissue types, it may be
that tissue-specific epigenetic activation influences their regula-
tory effect on gene expression. Consequently, we searched for
chromatin state changes associated with the tissue-specific com-
munities we observed. We defined tissue-specific and shared
communities, using the enrichment in GO biological processes.
Tissue-specific (TS) communities were defined as those that
showed a higher than expected proportion of GO biological
processes that were present in no more than two tissues, while
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shared communities showed a higher than expected proportion
of GO biological processes present in at least 12 of the 13 tis-
sues. We compared the proportion of TS SNPs, genes, and edges
(that is, SNPs, genes, and edges that are present in no more than
2 tissues) between TS and shared communities. As expected, we
observed that in all tissues, TS communities tend to have a higher
proportion of TS genes than shared communities (average pro-
portions range from 5% to 37% in TS communities and from 2%
to 23% in shared communities, depending on the tissue). This
difference is significant in 9 of the 13 tissues (Fig. 4A), with a
combined P value across tissues using the FCPT of 9.8× 10−10.
We also observed a significantly higher proportion of TS SNPs
and edges in TS communities, which can represent up to 100%
of the content of the communities (P values corrected for LD
are presented in Fig. 4A, and across-tissue FCPT P values are
2.6× 10−12 and 7.9× 10−10, respectively).

These TS SNPs and edges (eQTL associations) in TS commu-
nities may result from TS activation of genomic regions. To test
for this, we first extracted the chromatin state for all TS SNPs
in the eight tissues for which chromatin-state maps were avail-
able in the Roadmap Epigenomics Project data. For each net-
work, we assigned the TS SNPs to one of the two following cat-
egories: those that were located in a chromatin region that was
specifically activated in the tissue of interest and those that were
located in chromatin regions that presented a repressed, simi-
lar, or exactly identical chromatin state in the tissue of interest
compared with the seven other tissues. By comparing TS and
shared communities, we found that in five of the eight tissues, TS
SNPs in TS communities are significantly more likely to show TS
chromatin activation than TS SNPs in shared communities (odds
ratios and P values corrected for LD are presented in Fig. 4B;
the combined odds ratio and P value using the Cochran–Mantel–
Haenszel test were 1.21 and 1.4× 10−15, respectively).

Global Hubs and Community Cores Reflect Different SNP Functional
Roles. A number of studies have shown that eQTL SNPs are
overrepresented in regulatory regions (3, 14, 27), but not all
eQTL SNPs have obvious regulatory roles. One natural hypothe-
sis that emerges from our structural analysis of eQTL networks is
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Fig. 4. Characteristics of TS communities. (A) Enrichment in TS genes, SNPs, and edges among communities with genes involved in TS GO biological
processes compared with communities with genes involved in shared pathways. Barplots represent the ratio of mean proportion of unique elements in TS
vs. shared communities. A, Right shows P values obtained using the Mann–Whitney U test and correcting for LD. (B) TS SNPs are more likely to be located in
TS activated chromatin regions among TS communities compared with shared communities. P values were obtained using the Fisher test and correcting for
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that there may be network properties that are associated with the
various regulatory roles of SNPs. Specifically, one might expect
that SNPs that are more highly connected, either globally or
locally, would have different regulatory roles than SNPs at the
periphery of the network.

We investigated the relationship between eQTL network
structure and regulatory role, using two measures of centrality:
the degree—the total number of genes to which each SNP is
linked—and the modularity contributed by each SNP or “core
score” (Eq. 2 in Materials and Methods). A SNP’s degree reflects
the global SNP centrality within the entire network, while the
core score reflects the local centrality of each SNP within its com-
munity. The core score is also normalized to account for global
hubs, which may have more within-community edges.

For each TS network, we studied the enrichment of central
SNPs (either high–core-score or high-degree SNPs) across 15
chromatin states in a TS manner, using the Roadmap Epige-
nomics Project data. We calculated enrichment of central SNPs
(Materials and Methods) in the eight tissues for which chromatin-
state maps were available, using all SNPs in the GCC as back-
ground and correcting for gene density (Materials and Methods).
Using a conditional logistic regression, which allows us to obtain
combined odds ratio and P value across all eight tissues, we found
that core SNPs are enriched for promoters (states 1 and 10, Fig.
5A and Dataset S5). Tissue-specific odds ratios can be found in
Dataset S5. For example, rs4072037, a SNP located in MUC1 on
chromosome 1 that has been associated with esophageal and gas-
tric cancer in a GWAS (28), is a core SNP of community 31 in the
esophagus mucosa network and located in an active TSS region
in this tissue according to the core 15-states model from the
Roadmap Epigenomics Project (20) (Fig. 5C). It is a cis-eQTL of
GBAP1, DCST2, GBA, RP11-263K19.4, and MUC1, a gene cod-
ing for a protein of the mucin family involved in forming mucous
barriers on epithelial surfaces including the esophagus, and asso-
ciated with the proliferation, migration, and invasion capacities
of esophageal adenocarcinomatous cells (29).

Global hubs are generally significantly more likely to lie within
nongenic enhancers and Polycomb repressed regions (states 7,
12, and 13–14; Fig. 5B and Dataset S5). A good example is
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Fig. 5. Network hub SNPs are more likely to lie in active chromatin regions than nonhub SNPs. (A and B) Symbols shows the odds ratios across all eight tissues
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represent the 95% confidence interval. Each odds ratio measures the enrichment of central SNPs in a particular functional category, corrected for number of
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rs2546765, which is an intergenic SNP on chromosome 5, a high-
degree SNP in community 86 in the heart left ventricle network,
connected to 13 genes across 10 chromosomes and 3 communi-
ties and located in an enhancer region in this tissue (Fig. 5D).
It is a cis-eQTL of NKX2-5, a gene involved in heart develop-
ment, and a trans-eQTL of among others ALCAM, involved in
heart development in vertebrates; HAX-1, a regulator of con-
tractility and calcium cycling in the heart; SIPA1L1, associated in
the GWAS with QRS intervals; and SEC24D, HGF, and MMAB,
associated in the GWAS with cardiovascular diseases and/or dys-
lipidemia. As expected, both global and core SNPs are depleted
in constitutive heterochromatin (state 9).

Overall, we find that global hubs and community cores each
have different associations with active regulatory regions: Global
hubs are preferentially located in distal regulatory regions
(enhancers) while core SNPs are significantly overrepresented in
proximal regulatory elements (promoters). This is another case

where the eQTL network structure provides insight into biologi-
cal processes, an insight that is reproducible across tissues.

SNPs in Community Cores Are Associated with Trait and Disease Phe-
notypes. We tested whether the SNPs with high centrality were
more likely to be associated with complex traits in the GWAS by
mapping trait-associated SNPs in the National Human Genome
Research Institute-European Bioinformatics Institute (NHGRI-
EBI) GWAS catalog (26) to each TS eQTL network, considering
only SNPs with GWAS P values less than 10−8 (GWAS SNPs).
In each tissue, we compared the distribution of degrees (number
of edges per node) for all SNPs and GWAS SNPs. We found that
SNPs of low degree (1–2) were significantly depleted in GWAS
SNPs while SNPs of intermediate degree (5–10) showed consis-
tent significant enrichment for GWAS SNPs across all 13 tissues
and SNPs of degree greater than 15 were devoid of GWAS asso-
ciations (SI Appendix, Fig. S9).
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These results are even more striking when we consider only
GWAS SNPs associated with phenotypes related to the tissue
of interest. For example, when we mapped SNPs associated
with autoimmune diseases to the whole-blood eQTL network,
we found that they were enriched for intermediate degree (Fig.
6A). This overrepresentation of intermediate-degree SNPs led
us to hypothesize that GWAS SNPs tend to be highly central
not on a global scale, but instead within the eQTL communi-
ties. We tested this by comparing the core scores for GWAS
SNPs from the NHGRI-EBI GWAS catalog to those for non-
GWAS SNPs. Using a likelihood-ratio test and controlling for
LD, we found that GWAS and non-GWAS SNPs had signifi-
cantly different core-score distributions, with the median core
scores for GWAS SNPs higher in all 13 tissues (SI Appendix, Fig.
S10, FCPT P value< 2.22× 10−16). This enrichment for high
core scores was also present when considering only SNPs asso-
ciated with autoimmune diseases (shown for whole blood in Fig.
6B, P =1.3× 10−13).

The consistency of these results across tissues supports the
idea that GWAS SNPs have a unique pattern of connectivity
within eQTL networks that differs widely from those of non-
GWAS SNPs. In each tissue, we find that GWAS SNPs cluster
within a relatively small number of communities and within those
communities, they are significantly overrepresented in the local,
but not the global, hubs within the network. These findings are
in agreement with what one might expect from genotype associ-
ations in complex disease. Disease-linked SNPs with effect sizes
large enough to be identified through the GWAS map to a rela-
tively small number of relevant processes in each tissue, and the
likelihood of being disease associated is related to the likelihood
that a variant is at the center of its functional community—and
therefore more likely to perturb function.

Discussion
We have carried out a systematic analysis of eQTL networks con-
structed from cis- and trans-eQTL in 13 different tissues, using
data available from the GTEx project. We have found that the
structural properties of these networks provide functional insight
into the regulatory roles of genetic variants across and within tis-
sues. Using a community detection algorithm (30) to search for
communities of densely connected SNPs and genes, we found
that the eQTL network in each of the 13 tissues was organized
into highly modular communities. When we examine the genes
represented in each community, we find an enrichment for genes,
located on multiple chromosomes, that share similar functions
or are associated with coherent biological processes. While the
FDR may not be well controlled for the large number of GO

terms tested, our resampling analysis for GO terms shared across
tissues suggests that the observed enrichment is unlikely to be
due to the large number of tests. However, the possibility of
post hoc plausibility explanations cannot be completely ruled
out. Contrary to what one might expect, these communities are
not driven by coexpression (excepting communities with very few
genes), suggesting that it is the genetic influence of multiple cis-
and trans-eQTL SNPs on functionally related groups of genes
that drives the organization and structure of these communities.

When comparing communities between tissues, we find many
communities with common patterns of functional enrichment
across tissues, reinforcing the pleiotropic role of the SNPs in
these communities. We do, however, also find TS communities
that contain genes involved in TS functional processes such as
cellular respiration in heart left ventricle or smooth muscle con-
traction in esophagus muscularis. There is a plausible mechanis-
tic explanation for the tissue specificity of some of these commu-
nities: Using data in eight tissues from the Roadmap Epigenome
Project we find that TS eQTL SNPs in these TS communities
are enriched for active chromatin regions that are unique to that
tissue. This suggests that the organization of these communities
is driven by the epigenetic activation of chromatin regions sur-
rounding specific SNPs and that these SNPs act in cis and trans
to exert genetic effects on the expression of functionally related
genes, genes with important roles in their respective tissue-level
processes. In addition, these communities are not only enriched
for specific tissue-relevant gene function; they are also enriched
for tissue-specific edges (eQTL), SNPs, and genes. This is rele-
vant to the ongoing discussion of the tissue specificity of eQTL.
Although most eQTL appear to be shared, TS eQTL emerge in
concert with TS epigenetic changes and not only influence single
genes, but also help coalesce TS gene expression into regulatory
communities.

We find these 13 eQTL networks possess two informative
types of hubs: community hubs or “cores,” which are SNPs highly
connected to genes in their community, and global hubs, which
are connected to many genes throughout the network. These
two types of hubs have different biological properties across tis-
sues: Community hubs are enriched for active chromatin regions
close to the transcriptional start site, but not enhancers, while
global hubs are enriched for distal elements such as nongenic
enhancers. Moreover, community hubs are enriched for GWAS-
associated variants, while global hubs are not. The degree dis-
tribution for trait-associated variants from the GWAS is also
highly consistent across the 13 tissues: GWAS SNPs are enriched
for intermediate network degree, depleted for low degree, and
absent from global hubs. The significant overrepresentation of
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GWAS SNPs among the community cores provides another
important insight. Across tissues, disease SNPs are those most
likely to perturb groups of genes and, in doing so, may disturb
important biological processes.

While the observed relationships between eQTL network
properties and SNP/gene function are consistent across tissue
types, we cannot rule out the possibility that the large number
of statistical tests performed in the cis- and trans-eQTL analy-
sis could lead to identification of some individual eQTL asso-
ciations as significant when they are not. Although we cannot
conclude, based on our analysis, that any individual SNP–gene
association is correct, the consistency of our findings regarding
the structure of the networks across multiple tissues and the con-
sistent functional enrichment we observe for global and local
hubs indicate that the higher-order structural organization of
the networks likely provides a robust model of SNP regulatory
effects. While one could imagine that the observed network pat-
terns might be driven by unwanted systematic variations in the
genotype and gene expression data, our identification of similar
structural properties in an eQTL network derived using an inde-
pendent chronic obstructive pulmonary disease (COPD) dataset
(23) further supports the network structural associations we have
described. Nevertheless, this possibility, along with more detailed
analysis of specific network-prioritized SNPs, should be further
investigated as additional TS gene expression and genotype data
become available through the next release of GTEx and other
large-cohort studies.

Our analysis of bipartite networks built from both cis- and
trans-eQTL in 13 tissues provides important evidence about the
collective role of eQTL in TS function and disease. The net-
work communities reveal biological processes under the shared
genetic influence of many variants, including both processes
shared across tissues and those that are TS. The TS genetic reg-
ulation we observe is driven in part by SNPs that lie in TS active
chromatin regions. This suggests that epigenetic profile analysis,
applied to both genic and nongenic elements, will be essential
for understanding the processes responsible for TS function. The
eQTL networks also group together functionally related sets of
variants, including GWAS SNPs, and the structure of the net-
work provides a model of how multiple cis- and trans-acting vari-
ants can work together to influence function and phenotype.
While the network models we describe do not fully resolve the
question of how weak-effect variants determine complex traits
and disease, this network approach provides a framework with
distinct explanatory power that can serve as a basis for further
exploration of the link between genotype and phenotype.

Materials and Methods
GTEx Data Preprocessing, Filtering, and Merging. We downloaded NHGRI
GTEx version 6 imputed genotyping data and RNA-Seq data from the dbGaP
database. The RNA-Seq data were preprocessed using the Bioconductor R
YARN package (15, 16) and normalized using the Bioconductor R qsmooth
package (31). We excluded five sex-specific tissues (prostate, testis, uterus,
vagina, and ovary) and merged the skin samples from the suprapubic and
lower leg sites. We limited our eQTL analysis to the 13 tissues for which
there were available data for at least 200 individuals. The RNA-Seq and
genotyping data were mapped by the GTEx Consortium to GENCODE ver-
sion 19, which was based on human genome build GRCh37.p13 (Dec 2013).
We accounted for RNA extraction kit effects, using the removeBatchEffect
function in the R limma package (32).

eQTL Mapping and Bipartite Network Construction. For eQTL analysis, we
excluded SNPs from all analyses if they had a call rate under 0.9 or an allele
frequency lower than 5% in any tissue. A gene was considered expressed in
a sample if its read count was greater than or equal to 6. Genes that were
expressed in fewer than 10 of the samples in a tissue were removed for
the eQTL analysis in that tissue. To correct for varying degrees of admixture
in the African-American subjects, we used the first three principal compo-
nents of the genotyping data provided by the GTEx consortium and included
these in our eQTL model. We used the R MatrixEQTL package (33) to calcu-

late eQTL with an additive linear function that models gene expression lev-
els (Exp) in function of genotypes (Gen) and included age, sex, and ethnic
background (Eth), as well as the first three genotype principal components
(PCg), as covariates:

Exp ∼ Gen + Age + Sex + Eth + PC1g + PC2g + PC3g + ε.

We tested for association between gene expression levels and SNPs both in
cis and in trans, where we defined cis-SNPs as those within 1 Mb of the TSS
of the gene based on mapping using the Bioconductor R biomaRt package
(34). P values were adjusted for multiple testing using Benjamini–Hochberg
correction for cis- and trans-eQTL separately and only those with adjusted P
values less than 0.2 were used in subsequent analyses.

To compare our results with those reported by the GTEx consor-
tium, we downloaded the single-tissue cis-eQTL from the GTEx portal
(www.gtexportal.org/).

Community Identification. For each tissue, we represented the significant
eQTL as edges of a bipartite network linking SNPs and gene nodes. To iden-
tify highly connected communities of SNPs and genes in the eQTL networks,
we used the R condor package (23), which maximizes the bipartite modular-
ity (30). As recursive cluster identification and optimization can be compu-
tationally slow, we calculated an initial community structure assignment on
the weighted, gene-space projection, using the multilevel.community func-
tion in the R igraph package (35). This function is an implementation of
a fast unipartite modularity maximization algorithm (36). Using this initial
assignment, we then iteratively converged on a community structure corre-
sponding to a maximum bipartite modularity.

The bipartite modularity is defined in Eq. 1, where m is the number
of links in the network, Ãij is the upper right block of the network adja-
cency matrix (a binary matrix where a 1 represents a connection between
a SNP and a gene and 0 otherwise), ki is the degree of SNP i, dj is the
degree of gene j, and Ci , Cj are the community indexes of SNP i and gene j,
respectively:

Q =
1

m

∑
i, j

(
Ãij −

kidj

m

)
δ(Ci , Cj). [1]

SNP Core-Score Calculation. We defined a SNP’s core score as the SNP’s con-
tribution to the modularity of its community. Specifically, For SNP i in com-
munity h, its core score, Qih, is defined by Eq. 2. To normalize SNPs across
communities, we accounted for community membership in our downstream
testing (Eqs. 3 and 4), which better accounts for community variation com-
pared with the normalization method used in ref. 23. Indeed, Qih is depen-
dent on community size (SI Appendix, Fig. S11):

Qih =
1

m

∑
j

(
Ãij −

kidj

m

)
δ(Ci , h)δ(Cj , h). [2]

Gene Ontology Functional Category Enrichment. We extracted the list of
genes within each community in each TS network and then used the R
GOstat package (37) to perform a tissue-by-tissue analysis of the overrep-
resentation of Gene Ontology biological processes within each community.
Our reference set consisted of all of the genes present in the corresponding
tissue-specific network. Communities were considered significantly enriched
in a given category if the FDR-adjusted P value was <0.05.

TS SNP Enrichment. We defined TS communities and shared communities
based on their enrichment in GO biological process (BP) terms. We first cal-
culated for each community the proportion of TS BP terms (defined as the
BP terms that were significant in no more than 2 of the 13 networks) and
the proportion of shared BP terms (defined as the BP terms that were signif-
icant in at least 12 of the 13 networks). In each network, we then extracted
communities that had a higher than average proportion of either TS BP
terms (TS communities) or shared BP terms (shared communities). In each
of these communities, we computed the proportion of TS elements (SNPs,
genes, or edges), defined as the proportion of elements present in no more
than 2 of the 13 networks. To control for LD in the case of SNPs and edges,
we generated lists of SNPs falling into the same LD block using the plink2
–blocks option, a 5-Mb maximum block size, and an r2 of 0.8. In each com-
munity, we collapsed SNPs by LD blocks and number of network in which
they were present and, in the case of edges, by genes to which they were
associated. We then compared the distribution of proportion of unique ele-
ments between TS and shared communities, using a Mann–Whitney U test.

Enrichment in TS Activated Regions Among Unique SNPs. We first determined
the chromatin state at each TS SNP (as defined above) in eight tissues, using
the core 15-states model of the Roadmap Epigenomics Project (below). We
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then compared the chromatin state at each TS SNP in the tissue in which
it was present to each of the seven others. To control for LD, we randomly
selected TS SNPs by LD blocks (definition above) and chromatin state in the
tissue corresponding to the network in which they were present. We split
chromatin states into three classes: active chromatin (1 TssA, 2 TssAFlnk,
3 TxFlnk, 4 Tx, 5 TxWk, 6 EnhG, 7 Enh, 8 ZNF/Rpts), bivalent chromatin
(10 TssBiv, 11 BivFlnk, 12 EnhBiv), and silent chromatin (9 Het, 13 ReprPC,
14 ReprPCWk, 15 Quies). For each pairwise comparison, we classified TS
SNPs in four categories: same (chromatin state is exactly the same), simi-
lar (chromatin-state change from one to another chromatin state of the
same class, for example 4 Tx → 5 TxWk), repressed (from an active to any
other class or from a bivalent to a silent class), and activated (from a silent
to any other class or from a bivalent to an active class). We then calculated
the number of TS SNPs in the activated and in the three other categories
for each pairwise comparison. Summing over all seven comparisons for each
network, we calculated enrichment in activated category among TS SNPs in
TS communities, compared with TS SNPs in shared communities (definition
above). P values were calculated using a Fisher test.

GWAS Analysis. We downloaded the NHGRI-EBI GWAS catalog (accessed
December 8, 2015, version v1.0) from the EBI website (https://www.ebi.ac.
uk/gwas). We filtered out associations with P values greater than 10−8.
We then compared the distribution of SNP core scores between GWAS-
associated SNPs from the NHGRI-EBI catalog and those not associated with
traits or diseases for each TS network, using a likelihood-ratio test (LRT). In
our setting, the LRT assesses whether a linear model that includes GWAS
status (Eq. 4) fits the observed data better than a linear model that does not
include this variable (Eq. 3). As the distribution of SNP core scores (Qih) is
not uniform across communities, we added community identity as a covari-
ate in the linear regression. In Eqs. 3 and 4, Qih is the core score of SNP i in
community h, n the number of communities in the tissue, I(GWAS = 1) an
indicator function equal to 1 if the SNP is associated with a trait or disease
in the GWAS and equal to 0 otherwise, and I(Ck = 1) an indicator function
equal to 1 if the SNP belongs to community k and equal to 0 otherwise:

Qih ∼
n−1∑
k=1

I(Ck = 1) + ε [3]

Qih ∼ I(GWAS = 1) +
n−1∑
k=1

I(Ck = 1) + ε. [4]

To control for LD between SNPs, we generated lists of SNPs falling into the
same LD block, using the plink2 –blocks option, a 5-Mb maximum block
size, and an r2 of 0.8. In each community, for each LD block, we extracted
the median of Qih for GWAS SNPs and non-GWAS SNPs separately and used
these values as input in the linear regressions.

Chromatin-State Category Definition. We downloaded the genome-wide
core 15-state model chromatin-state data from the Roadmap Epigenomics

Project website (www.roadmapepigenomics.org/) for the eight tissues for
which data are available: adipose subcutaneous, artery aorta, fibroblast
cell line, esophagus mucosa, heart left ventricle, lung, skeletal muscle, and
whole blood (20). The 15 chromatin states are active TSS (TssA), flanking
active TSS (TssAFlnk), transcribed at a gene’s 5′ and 3′ ends (TxFlnk), strong
transcription (Tx), weak transcription (TxWk), genic enhancers (EnhG),
enhancers (Enh), ZNF genes and repeated regions (ZNF/Rpts), constitu-
tive heterochromatin (Het), bivalent/poised TSS (TssBiv), flanking bivalent
TSS/enhancers (BivFlnk), bivalent enhancers (EnhBiv), repressed Polycomb
(ReprPC), weak repressed Polycomb (ReprPCWk), and quiescent (Quies).

Chromatin-State Enrichment Analyses. For chromatin-state analyses, we cal-
culated enrichment in each functional category among either global or local
hubs, using a logistic regression model (38) which allows for covariates,

Logit[I(Category = 1)] ∼ β1I(Central = 1) + ...+ ε,

where I(Category = 1) is an indicator function equal to 1 if the SNP belongs
to the functional category and equal to 0 otherwise, and I(Central = 1) is
an indicator function equal to 1 if the SNP is central (in the top quartile of
core scores or>10 for degree) and equal to 0 otherwise. The odds ratios are
estimated by exp(β1). Similarly, we used a conditional logistic regression to
calculate the combined odds ratio across tissues, using the model

Clogit[I(Category = 1)] ∼ β1I(Central = 1) + ...+ strata(Tissue) + ε,

where strata(Tissue) allows us to stratify the analysis by tissue. We used all
SNPs in each TS network as background.

Similar to the calculation of enrichment in GWAS SNPs, we included
indicators of community as a covariate when computing enrichment in
Roadmap Epigenomics Project categories among high–core-score SNPs. To
control for the gene density around a SNP, which can impact the number
of cis-associations, we added a covariate corresponding to the number of
genes within 1 Mb of a SNP.

Using the same method, we studied the enrichment in each chromatin
state among trans-eQTL for each tissue,

Logit[I(Category = 1)] ∼ β1I(Trans = 1) + ε,

where I(Trans = 1) is an indicator function equal to 1 if the SNP is a trans-
eQTL and equal to 0 otherwise. We used all SNPs with a MAF greater than
or equal to 5% as background.
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