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The human placenta is a dynamic and heterogeneous organ critical
in the establishment of the fetomaternal interface and the mainte-
nance of gestational well-being. It is also the major source of cell-free
fetal nucleic acids in the maternal circulation. Placental dysfunction
contributes to significant complications, such as preeclampsia, a
potentially lethal hypertensive disorder during pregnancy. Pre-
vious studies have identified significant changes in the expres-
sion profiles of preeclamptic placentas using whole-tissue analysis.
Moreover, studies have shown increased levels of targeted RNA
transcripts, overall and placental contributions in maternal cell-free
nucleic acids during pregnancy progression and gestational compli-
cations, but it remains infeasible to noninvasively delineate placental
cellular dynamics and dysfunction at the cellular level using maternal
cell-free nucleic acid analysis. In this study, we addressed this issue by
first dissecting the cellular heterogeneity of the human placenta and
defined individual cell-type–specific gene signatures by analyzing
more than 24,000 nonmarker selected cells from full-term and early
preeclamptic placentas using large-scale microfluidic single-cell tran-
scriptomic technology. Our dataset identified diverse cellular sub-
types in the human placenta and enabled reconstruction of the
trophoblast differentiation trajectory. Through integrative analysis
with maternal plasma cell-free RNA, we resolved the longitudinal
cellular dynamics of hematopoietic and placental cells in pregnancy
progression. Furthermore, we were able to noninvasively uncover
the cellular dysfunction of extravillous trophoblasts in early pre-
eclamptic placentas. Our work showed the potential of integrating
transcriptomic information derived from single cells into the inter-
pretation of cell-free plasma RNA, enabling the noninvasive elucida-
tion of cellular dynamics in complex pathological conditions.
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The placenta plays an essential role in the establishment of the
fetomaternal interface and the maintenance of fetal homeo-

stasis during pregnancy (1). It is a heterogeneous organ composed
of cells of maternal and fetal origins, organized in multilobulated
villous units. The multinucleated syncytiotrophoblast (SCTB)
layer on top of villous cytotrophoblasts (VCTBs) is in direct con-
tact with maternal blood. The entire placental villous structure is
supported by stromal cells containing fetal macrophages (Hofba-
uer cells) and is perfused by the fetal capillary vasculature. A
distinct type of trophoblast cells, the extravillous trophoblasts
(EVTBs), infiltrates the maternal decidua in a unique process of
“controlled invasion” to remodel the maternal uterine spiral
arteries and interact with maternal lymphocytes to prevent
allorejection of the fetus. Placental cellular dysfunction, there-
fore, contributes to major gestational complications, such as
preeclampsia (PE) (2).
Despite the clinical significance of the placenta, direct tissue

monitoring of the placenta of women with placental pathologies
has not been feasible because of safety concerns associated with
invasive placental tissue sampling. Instead, ultrasonography and

maternal serum protein markers have been pursued to non-
invasively monitor placental function during pregnancy (3, 4). It
has been shown that the placenta is the major source of circu-
lating cell-free fetal nucleic acids in maternal plasma (5–7).
Significantly elevated levels of total cell-free DNA and selected
placenta-specific RNA transcripts have also been reported in the
maternal plasma of women with PE (8–11), restricted fetal
growth (12), and preterm birth (13–15), supporting a role for
cell-free nucleic acids as a noninvasive tool for placental monitor-
ing. Previous studies have attempted to provide a comprehensive
assessment of maternal plasma nucleic acids by microarray analysis,
massively parallel transcriptomic, or methylomic sequencing (16–
22). Several groups have explored the use of fetal-specific DNA
polymorphisms, organ-specific DNA methylation (21), nucleosome
footprinting (23), DNA fragmentation patterns (24), and tissue-
specific RNA transcripts (19, 20) to isolate the placental signal in
the pool of circulating cell-free fetal nucleic acids and ob-
tain changes of overall placental contribution. Nevertheless, these
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approaches have a low resolution in examining the dynamics of the
different fetal and maternal components in the placenta and dif-
ferentiating the specific pathological changes of the placenta in
different gestational pathologies at the cellular level.
To address these challenges, we explored the use of micro-

fluidic single-cell digital transcriptomic technology to compre-
hensively characterize the transcriptomic heterogeneity of the
human placenta. We analyzed, in an unbiased manner, the
single-cell transcriptomes of more than 24,000 nonmarker-
selected placental cells from normal and early PE placentas.
PE is a potentially lethal gestational condition characterized by
new onset of hypertension and proteinuria at ≥20 wk of gesta-
tion. It is a leading cause of maternal and perinatal morbidity
and mortality. Defective placental implantation has been pro-
posed as the major pathological mechanism in early PE occur-
ring before 34 wk of gestation (2, 25), and previous studies based
on whole-tissue profiling have reported extensive changes in the
gene-expression profiles of preeclamptic placentas (26, 27).
Using the comprehensive single-cell dataset, we first showed

that individual placental cellular components can be monitored
through the aggregated signals of sets of highly cell-type–specific
signature genes, which revealed the longitudinal cellular dy-
namics in maternal plasma during pregnancy progression.
This approach also allows the identification of the EVTB pa-
thology in early PE placentas from maternal plasma cell-free
RNA. Our study showed the potential of an integrative and
synergistic analytical approach of single-cell and cell-free RNA
transcriptomic studies.

Results
Dissection of the Cellular Heterogeneity of the Human Placenta. We
set out to obtain a comprehensive understanding of the cellular
heterogeneity of the human placenta using large-scale droplet-
based single-cell digital transcriptomic profiling (28) (Fig. 1A).
In this system, the individual cells are encapsulated in micro-
fluidic droplets with a hydrogel bead containing reverse
transcription and template-switching oligonucleotides. The oli-
gonucleotides contain nucleotide barcodes unique to each
hydrogel bead and identifiers [unique molecule identifiers
(UMIs)] for tagging RNA molecules inside the encapsulated
droplets. The UMIs allowed differentiation of amplified prod-
ucts from actual unique transcripts.
We collected placental parenchymal biopsies at defined loca-

tions of multiple freshly Cesarean section-delivered placentas
(from two male and two female babies) and dissociated the tissues
into single-cell suspension without surface marker preselection.
We obtained the single-cell transcriptome of 20,518 placental cells
from six different full-term placenta parenchymal biopsies. The
average number of genes detected per libraries was 1,006 (792–
1,333), with a mean coverage of 21,471 (16,613–36,829) reads per
cell (Table S1).
Clustering analysis by t-stochastic neighborhood embedding

(t-SNE) identified 12 major clusters of placental cells in our
dataset (P1–P12) (Fig. 1B). Furthermore, we genotyped the
genome-wide SNP patterns of the mother and the fetus to dif-
ferentiate the fetomaternal origin of individual cells genetically
by comparing the ratio of RNA molecules carrying fetal-specific
SNP alleles with those carrying maternal-specific SNP alleles in
each cluster. We also examined the presence of Y chromosome-
encoded transcripts in the cells from the placentas of male fetus-
carrying pregnancies (Fig. 1 C and D and Fig. S1A).
Our analysis showed that all clusters, except P1, P6, P8, and P9,

were of predominant fetal origin (Fig. 1 C and D). P1 transcrip-
tionally corresponded to maternal decidual cells, with strong ex-
pression of DKK1, IGFBP1, and PRL (Fig. 1E); P6 expressed
dendritic markers CD14, CD52, CD83, and CD86, likely repre-
senting maternal uterine dendritic cells (Fig. 1E). Meanwhile,
P8 expressed high levels of T-lymphocyte markers (e.g., CD3G

and GZMA) (Fig. 1E). The fetomaternal SNP ratio analysis sug-
gested that P8 was a mixture of both fetal and maternal lym-
phocytes (Fig. 1 C and D). Similarly, the homogeneous expression
of adult and fetal hemoglobin genes, such as HBA1, HBB, and
HBG1, and the gene encoding the heme biosynthetic enzyme
ALAS2 in P9 suggested that they were composed of erythrocytic
cells from the fetal cord and from a maternal source.
The rest of the fetal subgroups (P2–P5, P7, and P10–P12)

could be broadly classified into four groups [i.e., vascular
(P2 and P3), stromal (P4), macrophage-like (P5 and P7), and
trophoblastic (P10–P12) cells] (Fig. S1B). P2 cells commonly
expressed vascular endothelial genes (e.g., CD34, PLVAP,
CDH5, and ICAM1) (Fig. 1E). A few endothelial cells of ma-
ternal origin could also be found in the P2 cluster (Fig. S1A).
P3 cells showed features of vascular smooth muscle cells, with
expression of MYH11 and CNN1 (Fig. 1E). The large cluster of
P4 cells expressed mRNAs of the ECM1 protein and fibro-
modulin, both of which were markers of villous stromal cells.
Similar to maternal P6 cells, fetal P5 and P7 clusters also highly
expressed activated monocyte/macrophage-specific genes
CD14, CSF1R (encoding CD115), CD53, and AIF1 (Fig. 1E).
Nonetheless, fetal P5 and P7 subgroups showed additional ex-
pression of CD163 and CD209, both being markers of placental
resident macrophages (Hofbauer cells) (Fig. 1E). Comparing
with P7 cells, the P5 subgroups also showed prevalent expression
of fibroblastic and mesenchymal genes shared with P4 villous
stromal cells, such as THY1 (encoding CD90), collagen genes
(COL3A1 and COL1A1), and VIM (Fig. S1C). These results
raised the possibility that the P5 subgroup may be composed of
duplets of P4 and P7 cells during single-cell encapsulation. To
corroborate this hypothesis, we performed in silico duplet sim-
ulation analysis (Fig. S1D), and our result indicated that the
P5 cells closely resembled the simulated data and hence, likely
represented artificial duplets.
The trophoblastic clusters (P10–P12) could be divided into

three subgroups [i.e., EVTBs (P10), VCTBs (P11), and SCTBs
(P12)], with distinctive expression patterns of PAPPA2, PARP1,
and CGA, respectively (Fig. 1E). Genes involved in the pro-
duction of important gestational hormones, including CYP19A1
(encoding aromatase for estrogen synthesis), CGA (human CG),
and GH2 (human placental growth hormone), were all specifi-
cally expressed in P12 (SCTBs) (Fig. 1E). It is known that pla-
cental EVTBs expressed nonclassical form of HLAs, such as
HLA-G, to promote maternal immunotolerance of the fetus
with uterine natural killer cells (29–31). Indeed, we detected
strong expression of HLA-G in the EVTBs (P10) subgroup
(Fig. S1E). Expression of HLA genes in VCTBs and SCTBs
was generally scarce, whereas classical HLA-A is specifically
expressed in nontrophoblast cells (P1–P9). Expression of
genes encoding the HLA class II molecules, such as HLA-DP,
HLA-DQ, and HLA-DR, was concentrated in P6 and P7, which
was consistent with the antigen-presenting functions in the ma-
ternal dendritic cells and fetal macrophages.
Previous bulk tissue transcriptomic profiling has shown sig-

nificant spatial heterogeneity between biopsies taken from dif-
ferent sites of the placenta (32). Comparison of the compositional
heterogeneity of different libraries in our dataset also reflected
such variations (Fig. S1F). We included two paired biopsies of
the placental parenchyma at sites proximal (PN3C and PN4C)
and distal (PN3P and PN4P) to the umbilical cord inser-
tion from two different individuals (Table S1). We found that
P1 decidual cells were significantly underrepresented in the
PN1 library compared with others. Instead, the P2 fetal endo-
thelial cells fraction was significantly higher in PN1 than other
libraries, suggesting high contribution from the umbilical vas-
culature on the fetal surface of the placenta in the PN1 biopsy.
In contrast, the PN2 library contained the highest fraction of
P1 decidual cells, P6 maternal uterine dendritic cells, and P10
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Fig. 1. Single-cell transcriptomic profiling and the dissection of the cellular heterogeneity of human placenta. (A) Schematic diagram showing the exper-
imental design in this study. Cellular heterogeneity of the human placenta is dissected by large-scale droplet-based single-cell transcriptomic profiling. Cell-
type–specific signatures of different types of placental cells are identified and used to obtain information of cellular dynamics in the maternal plasma RNA
profiles in pregnancy and PE. (B) Biaxial scatter plot showing single-cell transcriptomic clustering of placental cells from human term placentas by t-SNE
analysis. Cells were further grouped into specific subgroups (P1–P12) and colored individually based on expression patterns of specific marker genes and
spatial proximity in the biaxial plot. (C) Column chart comparing the fraction of maternal or fetal cells in each cellular subgroup. (D) Column chart indicating
the percentage of cells expressing Y chromosome-encoded genes in each cellular subgroup. (E) Biaxial scatter plots showing the expression pattern of specific
genes among different subgroups of placental cells.
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EVTBs. The PN2 library likely captured more cells at the deeper
fetomaternal interface. Cellular compositions of biopsies obtained
from paired proximal and distal middle sections were more
comparable, with only significant reduction in decidual cells, and

increased in EVTBs at the distal site, but the interindividual vari-
ation remained high (Fig. S1F). These findings highlighted the
cellular heterogeneity in the placenta and the necessities of a
single-cell analytical approach.

A

B

Fig. 2. Reconstruction of the developmental relationship of trophoblast cells by pseudotime analysis. (A) Developmental trajectory visualization in biaxial scatter
plot. The trophoblastic cell subgroups (P10–P12) were selected for trajectory reconstruction (Inset i). Trophoblastic cells were reclustered based on highly variable
genes only by t-SNE analysis, and smaller trophoblastic subgroups (P10A–C, P11A–D, and P12A and -B colored individually) could be visualized in the biaxial plot
(Inset ii). Pseudotime reconstruction revealed a bifurcating trajectory of trophoblast development. The coloring of individual cell along the optimized embedding
path corresponded to that in Inset ii. (B) Biaxial scatter plots showing the distribution patterns of cells expressing specific marker genes in the pseudotemporal
trajectories. For clear visualization, only cells with nonzero expression were plotted.
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In short, our dataset delineated 11 transcriptomically and
genetically distinct major cellular subtypes in the human placenta
(Fig. S1G).

Reconstructing the Cellular Relationship of Trophoblasts. Our data-
set captured a significant number of trophoblastic cells (7,450;
36%). We observed that the P10–P12 subgroups clustered in
continuum, despite the clear topological expression of certain
trophoblast subtype markers (Fig. 1 B and C). In fact, it has been
proposed that these trophoblast subtypes are developmentally
connected: VCTBs (P11) are the progenitor compartment for
the generation of EVTBs (P10) by decidual invasion and SCTBs
(P12) by syncytium formation during placental development.
To delineate this relationship transcriptomically and to study

the genes that regulate this process, we first identified the highly
variable genes among these three clusters for t-SNE reclustering
analysis (Fig. 2A, Inset i). In such analysis, multiple smaller new
clusters emerged (Fig. 2A, Inset ii). We then ordered individual
trophoblast cells computationally in a 2D “pseudotime” trajec-
tory following the method described by Trapnell et al. (33) to
reconstruct their differentiation relationship. We found that the
trophoblasts formed a continuous “u-shaped” trajectory (Fig.
2A), with EVTB (P10) and SCTB (P12) cells occupying the two
heads and VCTBs (P11) at the turn and tail. The villous SCTB
branch further bifurcated into two subbranches (Fig. 2A). One
subbranch was occupied by cells expressing high levels of ges-
tational hormone genes, GH2 and CGB, whereas the other one
showed strong expression of genes involved in cell fusion. En-
dogenous retroviral transcripts (ERVs) are involved in syncytial
cell fusion [e.g., ERVW-1 (syncytin-1), ERVFRD-1 (syncytin-2),
and ERVV-1] and increased along the SCTB differentiation
pathway (34) (Fig. 2B and Fig. S2). In contrast, another ERV
transcript, ERVH48-1, is depleted in SCTBs (Fig. 2B), concor-
dant with a recent report that it functions as an inhibitor of
syncytium formation in VCTBs (35). To further study the cell

fusion process, we identified genes that showed variation similar
to ERVFRD-1 along the SCTB pathway (Fig. S2). These included
an SCTB invasion suppressor (MUC15) (36), a member of the
placental galactin family (LGALS13), and a direct gene target of
ERVs (INSL4) (37). We also identified multiple genes (e.g.,
OMG, SLC1A2, ADHFE1, and DEPDC1B) as potential regula-
tors in SCTB development, laying ground for function charac-
terization in future studies.
Pseudotime analysis of the EVTB developmental pathway also

revealed specific up-regulation of various extracellular enzymes
involved in the invasive and migratory phenotype of EVTBs [e.g.,
proteinases and their regulators (MMP11 and TIMP1), nuclease
(DNASE1L3), ECM (SPON2), and migration inhibitor (GKN1)]
(38) (Fig. 2B and Fig. S2). Minor branches stemming from the
area occupied by P11 VCTB cells were lined by cells with high
expression of genes involved in cell division (e.g., CCNB1,
TOP2A, MKI67, and CENPF). These minor branches likely
represented entry to the cell cycle of proliferative VCTBs in the
process of EVTB differentiation. In contrast, proliferative cells were
scarce along the SCTB pathways, consistent with their nondividing
nature (Fig. 2B). In short, our dataset enabled the delineation of the
trophoblast lineage relationship and shed light on the regulatory
mechanism of lineage development.

Noninvasive Elucidation of Placental Cellular Dynamics During Pregnancy.
Previous maternal plasma transcriptomic profiling studies have
shown that certain trophoblast-specific transcripts and the overall
fractional placental contribution increase with gestation (20, 39, 40).
The fraction of fetal-derived RNA increases from only 3.7% in early
pregnancy to 11.28% in late pregnancy (19, 20). We reasoned that
establishment of the cell-type–specific gene signatures at the single-
placental cell level would allow us to isolate and dissect the dynamic
changes of both trophoblastic and nontrophoblastic cellular com-
ponents in the maternal plasma. However, it is known that fetal-
derived cell-free RNA in maternal plasma circulates in mixture with

Fig. 3. Elucidation of placental cellular dynamic in maternal plasma RNA profiles during pregnancy. Line plots showing the change of the average cell
signature expression of individual placental cell type in different gestational groups. The maternal plasma RNA profiles were retrieved from Tsui et al. (19).
The gray lines demarcate the range of the data. I, early pregnancy (13–20 wk); II, mid/late pregnancy (24–30 wk); III, predelivery; NP, nonpregnant; PP, 24-h
postpartum.
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cell-free RNA derived from the maternal hematopoietic system.
Liver-specific transcripts, such as ALB, are also readily detect-
able in the plasma (41). We, therefore, identified and filtered the
cell signature genes of individual placental cell types in our
dataset by reanalyzing peripheral blood mononucleated cells
(PBMCs) single-cell transcriptomic profiles and the tissue tran-

scriptome data of leukocytes and liver from public databases (28,
42) (Fig. S3 A–E).
We then studied the expression dynamics of the corresponding

cell-type–specific signature in the maternal plasma RNA profiles
from different stages of pregnancy by Tsui et al. (19). In the
dataset by Tsui et al. (19), we observed a dramatic up-regulation

B

A

C

Fig. 4. Uncovering placental cellular aberrations in early preeclamptic maternal plasma RNA profiles. (A) Box plot comparing the cell signature expression of
different cell types in the maternal plasma RNA profiles of third trimester pregnancy (control) and early PE patients. Statistical testing was performed by two-
tailed two-sample Wilcoxon signed rank test. (B) Biaxial scatter plot showing the average single-cell expression heterogeneity of different GO annotated gene
sets in third trimester term and early preeclamptic placentas. Only data points with statistically significant differences are shown (P < 0.05). GO terms as-
sociated with cell proliferation, cell migration, apoptosis, antigen presentation, and DNA damages are colored and highlighted. (C) Violin plots comparing the
expression level-corrected heterogeneity (DM values) and average expression levels of genes annotated in the GO term “Cell Death” between PE patients and
normal controls.
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of SCTB signature in the maternal plasma RNA of early preg-
nancy compared with nonpregnant controls (Fig. 3). The trend
peaked at predelivery maternal plasma before rapidly dropping
to levels of nonpregnant controls 24 h after delivery. A similar
pattern could also be found in the trophoblastic EVTB, placental
stromal cell, and vascular smooth muscle cell signatures. These
patterns corresponded to the rapid growth of the stromal, SCTB,
and EVTB components of the placenta in early pregnancy and its
clearance after placental delivery. Meanwhile, the change of the
gene signature expression of endothelial cell is minimal. In-
triguingly, the signature of decidual cells remained observable in
maternal plasma up to 24 h after delivery. This can be explained
by the fact that release of cell-free RNA from residual maternal
decidual tissues degeneration may continue after placental de-
livery. In contrast, we found that the signature of B cell continued
to drop throughout pregnancy, whereas signature of T cell first
dropped and then recovered to nonpregnant levels before de-
livery. Consistently, previous studies on pregnancy-associated
lymphopenia by flow cytometry have shown that T- and B-cell
levels decline with the progression of pregnancy (43–45) and
that recovery of peripheral B-cell levels may occur later than those
for T cells (44). Meanwhile, the signature of monocytes showed
a more variable pattern, up-regulating in early pregnancy, dip-
ping, and rebounding before delivery, in line with the findings of
myeloid immunity activation during pregnancy (43, 46–48). To
further confirm these findings, we reanalyzed another independent
maternal plasma RNA dataset by Koh et al. (20) collected at three
trimesters of pregnancy and within 6-wk postpartum. We observed
dynamic patterns of cell signature consistent with what we had
found in the dataset by Tsui et al. (19) (Fig. S3F). These findings
showed the ability of cell-type–specific signatures analysis to dissect
the dynamics of individual cellular components in the maternal
plasma RNA profiles.

Deciphering Cellular Aberrations in Preeclamptic Placentas from
Maternal Plasma Cell-Free RNA. We next expanded our study to
uncover the placental cellular dysfunction in the maternal cell-
free RNA of early severe preeclamptic patients. We reasoned
that cellular pathology in the preeclamptic placentas affects the
cell turnover and hence, the release of the cell-type–specific
RNAs into the maternal plasma. The cellular origin of the pa-
thology can, therefore, be revealed by comparing the expression
levels of different cell-type–specific signatures in the maternal
plasma of early severe preeclamptic patients with those of healthy
pregnant controls.
Strikingly, we found that the EVTB signature is specifically

and consistently up-regulated in early severe preeclamptic pa-
tients in two separate cohorts assayed with different plasma
RNA library preparation chemistries (P = 0.042, two-tailed two-
sample Wilcoxon signed rank test) (Fig. 4A and Fig. S4A). These
results pointed to an increased release of EVTB-derived cell-free
RNA into the maternal circulation in early PE. We then vali-
dated this finding directly at the tissue level. We characterized
the single-cell transcriptome of placental biopsies from four of
the early preeclamptic patients and compared the intracluster
transcriptomic heterogeneity in the EVTB clusters between
normal-term and early preeclamptic placentas to reveal the ab-
normalities in different biological processes (Fig. S4B). As gene-
expression heterogeneity decreased with increasing expression
levels (49, 50) (Fig. S4C), we quantified the expression hetero-
geneity of each gene as the vertical distance of its squared co-
efficient of variations (CV2) from the median CV2 [distance to
median (DM)] at its corresponding expression level in a double
log-transformed space (50). We compared the DM values of
gene sets annotated in different gene ontology (GO) terms
between PE and normal-term placental EVTBs to identify
differential biological processes (Fig. S4C); we observed that
the transcriptional heterogeneity of genes involved in cell

migration, cell death, and proliferation is significantly more vari-
able in early preeclamptic placentas, whereas DNA damage repair
and antigen presentation ontology terms are more variable in term
placentas (Fig. 4 B and C). Indeed, genes annotated in “cell
death” showed not only higher expression variability but also,
higher levels of gene expression in early preeclamptic EVTBs
(Fig. 4C). Alternative gene set enrichment analysis (51) also
supported significant enrichment of expression of cell death-
related genes in the preeclamptic EVTB cluster (Fig. S4D).
These results suggested that EVTB in early preeclamptic pla-
centas might have higher levels of cell death. This conclusion is
in line with previous reports that trophoblastic apoptosis is
increased in PE (52–59). Despite the invasion insufficiency of
EVTB in PE, the increased cell death in EVTB may also
contribute to the up-regulation of the EVTB signatures in the
maternal plasma of early preeclamptic patients. In short, we
showed the ability of plasma cell-free RNA cellular signature
analysis, with early PE as an example, to serve as a noninvasive
hypothesis-free exploratory tool in revealing hidden cellular
pathology of a complex organ and to provide a potential non-
invasive approach for molecular testing of PE.

Discussion
The discovery of circulating cell-free fetal nucleic acids in ma-
ternal plasma has enabled the development of noninvasive pre-
natal diagnosis of fetal aneuploidy and monogenic diseases
through detection of the pathogenic mutations, allelic imbalances,
and chromosomal imbalances (60, 61). However, it remains dif-
ficult to study placental pathology using cell-free fetal nucleic
acids. One difficulty is the ascertainment of the origin of RNA
transcripts. It has been shown that fetal RNA in maternal plasma
is placenta-derived (16, 39), and RNA transcripts derived from
other fetal tissues have also been reported in maternal plasma
(20). The tissue origins of these RNA transcripts are inferred from
comparison of whole-tissue gene-expression profiles of multiple
tissues types. However, biological tissues are composed of multi-
ple types of cells originating from different developmental line-
ages and serving different specialized functions. The averaged
expression profile from whole tissues may, therefore, distort the
actual heterogeneous composition of the tissue and bias toward
cells with the highest cell number in the tissue sample, such as the
trophoblasts in the placenta. It is, therefore, imperative to connect
the circulating pool of cell-free nucleic acids with their cellular
origins to reveal the complex dynamics of both trophoblastic and
the nontrophoblastic components of the placenta during preg-
nancy. The advance in single-cell transcriptomic technology pro-
vides an opportunity for us to bridge the study of the placenta with
circulating cell-free nucleic acids during pregnancy.
The potential of single-cell transcriptomic analysis on pla-

cental biology can be seen in two recent small-scale studies in the
mouse and human (62, 63). In this study, we harnessed the power
of microfluidic single-cell transcriptomic technology to establish
a large-scale cellular transcriptomic atlas of the human placenta,
profiling more than 24,000 nonmarker-selected cells from
normal-term and early preeclamptic placentas. We annotated
the fetomaternal origin of individual cells using both genetic and
transcriptional information to provide a comprehensive picture
of placental cellular heterogeneity, including decidual cells, res-
ident immune cells, and vascular and villous stromal cells. The
high number of trophoblast cells recovered in our dataset allowed
computational reconstruction of the trophoblastic differentiation
trajectories and identification of highly specific cell signature
genes. Our analysis supported a bifurcating model with VCTB
differentiating bidirectionally into SCTB and EVTB (64). The
trajectories recapitulated many known regulator interactions dur-
ing trophoblast development and discovered potential players that
laid a foundation for future investigation. Furthermore, our anal-
ysis highlighted the high degree of cellular heterogeneity among
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placental parenchyma biopsies, even at defined sampling loca-
tions, reinforcing the need for a single-cell approach in the
transcriptomic study of the human placentas. Future bioinformatics
tools can be developed to exploit the cellular transcriptomic signa-
ture established in this placental atlas to normalize cellular com-
position heterogeneity in whole-tissue profiles.
Finally, we showed the feasibility of integrating single-cell

transcriptomic analysis with plasma-circulating RNA analysis in
dissecting the complex fetal and maternal cellular dynamics
during normal pregnancy progression and revealing the cellular
pathology in early preeclamptic placentas noninvasively. We
discovered cell-type–specific signature genes from large-scale
single-cell transcriptomic profiling de novo and aggregated sig-
nals of all cell-type–specific genes to reconstruct the cellular
information. With this approach, comparable cellular dynamic
patterns can be observed in two independent maternal plasma
RNA datasets (19, 20). The dynamic patterns of trophoblastic
and hematopoietic cell types revealed are consistent with current
knowledge on the hematopoietic system and the placenta during
pregnancy. More importantly, this approach allowed the re-
covery of differential expression of the EVTB signatures in
maternal plasma, which reflected the actual cellular abnormali-
ties in early preeclamptic patients at the tissue level. As invasive
placental biopsy in gestation age-matched healthy pregnant
women is not feasible, we compared the post-Cesarean section
placental biopsies from early preeclamptic patients with those
from healthy full-term pregnancies. Since placental cell death
increases with gestation progression and placental maturation
(54), one would expect an even stronger difference in cell death
between early preeclamptic and healthy early third trimester
EVTB cells. This challenge also underlines the need of cell-free
RNA cell signature analysis as a noninvasive molecular tool in
exploratory in vivo studies to differentiate cellular pathology in
different forms of placental dysfunction and offer clinical di-
agnostic information. With continuous improvement in the cost-
effectiveness of large-scale single-cell transcriptomic technology
and the effort of the Human Cellular Atlas Initiative in profiling
the cellular transcriptomic heterogeneity of all cellular subtypes
in different major human organs (28, 65–67), it can be envisioned
that the same analytical approach can be extended to other sit-
uations, such as intratumoral dissection in cell-free tumoral
RNAs and noninvasive exploration of the cellular pathology in
other gestational diseases.
In short, our study has established a large-scale single-cell

transcriptomic atlas of the normal and early preeclamptic pla-
centas and showcased the power of integrative analysis of single-
cell transcriptomics and plasma cell-free RNA to reconstruct
cellular information from plasma. This opens an avenue for
noninvasive elucidation of cellular dynamics and aberrations in
complex biological systems and molecular diagnostics.

Materials and Methods
Subjects, Sample Collection, and Processing. This study was approved by the
institutional ethics committee, and informed consent was obtained after the
nature and possible consequences of the studies were explained. Healthy and
early preeclamptic pregnant women (Table S2) were recruited from the
Department of Obstetrics and Gynecology, Prince of Wales Hospital, Hong
Kong with informed consent. We recruited patients with early-onset PE re-
quiring delivery at 24- to 33+6-wk gestation. PE was defined as blood pres-
sure ≥140/90 mmHg on at least two occasions 4 h apart developing after 20-
wk gestation with proteinuria of ≥300 mg in 24 h, ≥30 mg/mmol in protein/
creatinine ratio, or two readings of ≥2+ on dipstick analysis of midstream or
catheter urine specimens if no 24-h collection was available. Only patients
not in active labor with delivery by Cesarean section were recruited to avoid
cellular contamination from the birth canal and to ensure placental
cellular viability.

For each case, 20mL ofmaternal peripheral bloodwas collected into EDTA-
containing tubes before Cesarean section. Plasma was isolated by a double-
centrifugation protocol as previously described (19). For placental paren-

chymal biopsy, 1-cm3 placental tissue was dissected freshly after delivery
from a region 2-cm deep and 5 cm away from the umbilical cord insertion
after peeling of the fetal membranes. In some cases (PN3P and PN4P), bi-
opsies were also taken from the placental periphery. The dissected tissues
were then washed in PBS and subjected to enzymatic digestion using the
Umbilical Cord Dissociation Kit (Miltenyi Biotech) according to the manu-
facturer’s protocol. Red blood cells were lysed and removed by ACK buffer
(Invitrogen). Cell debris was removed by a 100-μm filter (Miltenyi Biotech),
and the single-cell suspension was washed again three times in PBS (Invi-
trogen). Successful dissociation was confirmed under a microscope.

Plasma RNA Extraction and Library Preparation. Plasma RNA was preserved by
mixing TRIzol (Ambion) with plasma in a ratio of 3:1 immediately after plasma
isolation. Plasma RNAwas then extracted using the RNeasy Mini Kit (Qiagen).
All extracted RNA was quantified by NanoDrop ND-2000 Spectrophotometer
(Invitrogen) and real-time quantitative PCR on a LightCycler 96 System (Roche).
cDNA reverse transcription, second-strand synthesis, and RNA-sequencing
(RNA-seq) library construction were performed using the Ovation RNA-seq
System V2 (NuGEN) kit according to the manufacturer’s protocol. Amplified
and purified cDNA was sonicated into 250-bp fragments using a Covaris S2
Ultrasonicator (Covaris). All libraries were then quantified by Qubit (Invi-
trogen) and real-time quantitative PCR on a LightCycler 96 System (Roche) and
sequenced on a NextSeq 500 system (Illumina).

Single-Cell Encapsulation, In-Droplet RT-PCR, and Sequencing Library Preparation.
Single-cell RNA-seq libraries were generated using the Chromium Single Cell 3′
Reagent Kit (10X Genomics) as described (28). Briefly, single-cell suspension
(cell concentration between 200 and 1,000 cells per 1 μL PBS) was mixed with
RT-PCR master mix and loaded together with Single Cell 3′ Gel Beads and
Partitioning Oil into a Single Cell 3′ Chip (10X Genomics) according to the
manufacturer’s instructions. RNA transcripts from single cells were uniquely
barcoded and reverse-transcribed within droplets. cDNA molecules were pre-
amplified and pooled followed by library construction according to the
manufacturer’s instructions. All libraries were quantified by Qubit and real-
time quantitative PCR on a LightCycler 96 System (Roche). The size profiles of
the preamplified cDNA and sequencing libraries were examined by the Agilent
High Sensitivity D5000 and High Sensitivity D1000 ScreenTape Systems
(Agilent), respectively.

Sequencing, Alignment, and Gene-Expression Quantification. All single-cell li-
braries were sequenced with a customized paired end with dual indexing (98/
14/8/10-bp) format according to the recommendation by 10X Genomics. All
single-cell libraries were sequenced on a MiSeq system (Illumina) or a NextSeq
500 system (Illumina) using theMiSeq Reagent v3 Kit (Illumina) or the NextSeq
500 High Output v2 Kit (Illumina), respectively. The data were aligned and
quantified using the Cell Ranger Single-Cell Software Suite (version 1.0) as
described by Zheng et al. (28). In short, samples were demultiplexed based on
the 8-bp sample index, 10-bp UMI tags, and the 14-bp GemCode barcode. The
98-bp-long read 1 containing the cDNA sequence was aligned using STAR (68)
against the hg19 human reference genome. UMI quantification, GemCode,
and cell barcodes filtering based on error detection by Hamming distance
were performed as described by Zheng et al. (28).

For alignment of the plasma RNA library, adaptor sequences and low-
quality bases on the fragment ends (i.e., quality score < 5) were trimmed,
and reads were aligned to the human reference genome (hg19) using the
TopHat (v2.0.4) software with the following parameters: transcriptome mis-
matches = 3; mate-std-dev = 50; genome-read-mismatches = 3 with the pair
end alignment option as well as the annotated gene model file downloaded
from University of California, Santa Cruz, Genome Browser (genome.ucsc.edu/).
Gene-expression quantification was performed by an in-house script quanti-
fying the number of reads overlapping with exonic regions on genes anno-
tated in the Ensembl GTFs (GRCh37.p13).

Fetal andMaternal Origin Determination. To differentiate the genetic origin of
a cell, maternal and fetal genotypeswere first determined by the iScan system
(Illumina) using buffy coat and placenta tissues, respectively. Genotype in-
formation of case M12491 (PN2) was not available because of the limitation
of biopsy materials. Informative SNPs covered by sequencing reads were then
identified, in which a SNP is classified as maternal-specific when it is het-
erozygous in the mother (A/B) and homozygous in the fetus (A/A). Fetal-
specific SNPs were classified vice versa. Next, we calculated the allelic ratio
(R) as follows; B (allelic count of the origin-specific SNP B) and A (allelic count
of the common SNP A):
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R=
B

ðA+BÞ.

Fetal-specific allelic ratio (Rf) and maternal-specific allelic ratio ðRmÞ were
obtained for each cell. A cell would be annotated as (i) fetal origin if Rf > Rm,
(ii) maternal origin if Rm > Rf , and (iii) undetermined if Rm = Rf or if there are
no reads covering any informative SNPs.

Duplet Simulation. Gene-expression matrix of 1,365 P4 cells and 526 P7 cells
was first extracted from the PN3C dataset. To emulate 100 duplet data points,
the transcriptome of the duplet was modeled as random mixture of one
P4 cell and one P7 cell. The gene-expression levels of the artificial duplets
were set as the average of the two cells. Principal component analysis (PCA)
and t-SNE clustering were performed using the prcomp and Rtsne package in
R, respectively.

Identification of Cell-Specific Gene Signature. Single-cell transcriptomic data
of PBMCs were retrieved from the public domain of 10X Genomics at the link
https://support.10xgenomics.com/single-cell/datasets. The dataset was pre-
viously published (28). The PBMC dataset (donors A and B) was merged with
the placenta dataset and normalized by random read subsampling using the
cellrangerRkit version 0.99.0 package. t-SNE clustering was performed with
built-in functions in the cellrangerRkit package using the first 10 principal
components. Cells clusters were identified and cellular types were annotated
in the biaxial t-SNE plots based on known marker gene expression and
spatial proximity. To identify cell-type–specific gene signature, we used
gene-level and gene set-level filtering.

We calculated the gene-expression z score as a measure of cell-type ex-
pression specificity with the formula

zg =
gA −g�A

s�A
,

where zg is the z score for gene g, gA is the mean expression level of gene g
in cell-type A (log-transformed normalized UMI count), g�A is the mean ex-
pression level of gene g in non-A cells, and s�A is the SD of gene expression of
gene g in non-A cells.

Genes with z score greater than three and mean log-transformed nor-
malized UMI expression in testing cell type greater than 0.1 and less than
0.01 in nontesting cell types were classified as the cell-type–specific signature
genes. Expression levels of each cell-type–specific gene in the whole-tissue
profile of the placenta, liver, and leukocytes were then compared, and only
genes that showed the highest expression levels in their corresponding
source organs, placenta, or leukocytes were selected. We then excluded
signature gene sets that recover less than 10 genes and sets that did not
show adequate placenta and leukocyte/liver separation (Fig. S3E). Among
the 14 cell clusters in the PBMC–placenta datasets, no specific genes were
identified for cluster P5, and only less than five genes passed the filter for
cluster P6, P9, and P11. P7 signature set representing placental Hofbauer
macrophage was excluded from additional analysis because of inadequate
separation from leukocytes. The whole-tissue expression datasets were re-
trieved online from the Human lincRNAs Catalog project (42): portals.
broadinstitute.org/genome_bio/human_lincrnas/.

Cellular Signature Expression Analysis. We reanalyzed the maternal plasma
RNA profiles from Tsui et al. (19). In addition, we generated plasma RNA data
from four healthy pregnant women (24–30 wk of gestation) and two
pregnant women suffering from early PE following the method described by
Tsui et al. (19) (Table S1). The plasma RNA profiles were normalized by size
factor normalization using DESeq2 (69). The cell signature expression of
each plasma RNA profile was calculated as the average normalized count
levels of the specific cell signature gene set. The maternal plasma samples
were grouped into five groups [nonpregnant, early pregnancy (13–20 wk),
mid/late pregnancy (24–30 wk), predelivery, and 24-h postpartum]. The av-
erage signature scores of each group were then compared as the change
with respective to nonpregnant level to illustrate the cellular dynamics in
pregnancy progression. Similarly, maternal plasma RNA-seq profiles of Koh
et al. (20) were retrieved using Sequence Read Archive study accession
number SRP042027. The data were aligned using Tophat2 as described

above. Patients with mappable reads >1 million and samples across four
different time points (first trimester, second trimester, third trimester, and
6 wk postpartum) were selected for additional analysis (patients 2, 15, 24,
and 32). The cell signature expression in each group was calculated as de-
scribed above. The change is then visualized as the change with respective to
first trimester pregnant women level. Dynamics of P4 (stromal cells) was not
analyzed because of the low number (<50%) of signature genes detected in
the plasma profiles.

Cellular Signature Expression Comparison in PE and Normal Maternal Plasma.
The plasma RNA cell-type–specific signature expression levels were compared
between the mid/late pregnancy plasma group (Fig. 3A) and two early pre-
eclamptic patients as an exploratory cohort (Fig. S4A). A new cohort of 6 early
preeclamptic patients and 10 healthy third trimester pregnant women was
recruited to validate the finding of differential EVTB cell signature expression
in the exploratory dataset. In this new cohort, the plasma RNA profiles were
generated using the Ovation RNA-Seq System V2 (NuGEN) (20) and analyzed
as described above. The statistical significance of the differences of EVTB
signature expression between early PE and healthy controls was determined
by two-tailed two-sample Wilcoxon signed rank test.

Identification of Highly Variable Genes. UMIs were integrated into the single-
cell transcriptome library preparation chemistry in the single-cell Chromium
system (10X Genomics). Technical variability from library amplification was
removed by collapsing mappable reads with the same UMI barcode. We
followed the method described by Kolodziejczyk et al. (50) in quantifying the
transcriptional heterogeneity of individual gene by the DM approach. In
short, the rolling median CV2 values were calculated across the range of the
mean gene-expression levels to provide a linear fitted line in a double log-
transformed space. The DM value of each gene is then calculated as the
vertical distance of the CV2 of the gene from the median CV2 values of all
genes with the same average expression level. In trophoblast differentiation
trajectory reconstruction, genes with DM values greater than 0.3 were la-
beled as highly variable genes and selected for t-SNE clustering analysis and
pseudotime analysis using Monocle2 (33).

Quantitative Analysis of Transcriptomic Heterogeneity of EVTB in PE Placentas.
In the intracluster heterogeneity comparison between term and early pre-
eclamptic EVTB, the four single-cell libraries of early preeclamptic placentas
and six term placentas were merged and normalized using the cellrangerRkit
package by downsampling as described above. EVTB cells were identified by
the specific expression of HLA-G, PAPPA2, TIMP1, CSH1, and ADAM12 on the
biaxial t-SNE plot. DM values of each genes were calculated separately in the
term and early preeclamptic placenta EVTB cells. Genes set information of
each GO term (Biological Process) was retrieved from the org.Hs.eg.db package.
GO terms containing less than 10 annotated genes with available DM values
were removed from paired t test comparison of DM values using R (version
3.3.2). GO terms with P values less than 0.05 are regarded as significantly
different between term and early preeclamptic placentas (Dataset S1).

Microarray Genotyping and SNP Identification. Genomic DNA extracted from
maternal buffy coat and placental tissue biopsies was genotyped with the
Infinium Omni2.5–8 V1.2 Kit and the iScan system (Illumina). SNP calling was
performed using the Birdseed v2 algorithm. The fetal genotypes of the
placentas were compared with the maternal buffy coat genotypes to iden-
tify the fetal-specific SNP alleles. A SNP was considered informative if it was
homozygous in the mother and heterozygous in the fetus.

Statistical Analysis. Details of statistical analyses are described above. We
regard a P value less than 0.05 as statistically significant.
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62. Pavličev M, et al. (2017) Single-cell transcriptomics of the human placenta: Inferring
the cell communication network of the maternal-fetal interface. Genome Res 27:
349–361.

63. Nelson AC, Mould AW, Bikoff EK, Robertson EJ (2016) Single-cell RNA-seq reveals cell
type-specific transcriptional signatures at the maternal-foetal interface during preg-
nancy. Nat Commun 7:11414.

64. Ji L, et al. (2013) Placental trophoblast cell differentiation: Physiological regulation
and pathological relevance to preeclampsia. Mol Aspects Med 34:981–1023.

65. Macosko EZ, et al. (2015) Highly parallel genome-wide expression profiling of indi-
vidual cells using nanoliter droplets. Cell 161:1202–1214.

66. Klein AM, et al. (2015) Droplet barcoding for single-cell transcriptomics applied to
embryonic stem cells. Cell 161:1187–1201.

67. Gierahn TM, et al. (2017) Seq-Well: Portable, low-cost RNA sequencing of single cells
at high throughput. Nat Methods 14:395–398.

68. Dobin A, et al. (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29:
15–21.

69. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2. Genome Biol 15:550.

Tsang et al. PNAS | Published online August 22, 2017 | E7795

M
ED

IC
A
L
SC

IE
N
CE

S
PN

A
S
PL

U
S


