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Abstract. Intercellular adhesion molecule (ICAM)‑1, is a 
transmembrane glycoprotein of the immunoglobulin (Ig)‑like 
superfamily, consisting of five extracellular Ig‑like domains, a 
transmembrane domain and a short cytoplasmic tail. ICAM‑1 is 
expressed in various cell types, including endothelial cells and 
leukocytes, and is involved in several physiological processes. 
Furthermore, it has additionally been reported to be expressed 
in various cancer cells, including melanoma, colorectal cancer 
and lymphoma. The majority of studies to date have focused 
on the expression of the ICAM‑1 on the surface of tumor cells, 
without research into ICAM‑1 expression at sites of metastasis. 
Cancer cells frequently metastasize to the liver, due to its unique 
physiology and specialized liver sinusoid capillary network. 
Liver sinusoidal endothelial cells constitutively express 
ICAM‑1, which is upregulated under inflammatory conditions. 
Furthermore, liver ICAM‑1 may be important during the devel-
opment of liver metastasis. Therefore, it is necessary to improve 
the understanding of the mechanisms mediated by this adhesion 
molecule in order to develop host‑directed anticancer therapies.
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1. Introduction

Currently, cancer is one of most common causes of mortality 
worldwide. Colorectal cancer (CRC) represents one of the most 

frequently diagnosed cancer types and is the fourth leading 
cause of cancer‑related death (1). The spreading of cells from 
the primary lesion to a secondary organ and the subsequent 
development of distant metastases is a key factor that limits 
patient survival rate. This remains one of the most complex 
issues faced in medicine (2).

The liver is the main target organ for metastatic CRC 
cells and the second most commonly invaded organ, after 
the lymph nodes (3). In fact, 15‑25% of CRC patients present 
with synchronous hepatic metastases at the time of diagnosis, 
and a further 30% will later develop liver metastasis (4,5). 
The complex network of vessels and microcapillaries of the 
hepatic microcirculation makes the liver a target for circu-
lating cells (6). Indeed, cancer cells released from a primary 
lesion follow a natural blood flow directly to the liver, through 
the specialized microvessel network known as the liver 
sinusoids. Gastric cancers also commonly metastasize to the 
liver (7). Circulating cells from other primary malignancies, 
such as melanoma, breast or neuroendocrine tumors (8‑10), 
also adhere, establish and develop in the liver, giving rise to 
metastases, although this is less common.

Metastatic progression is a highly complex and coordi-
nated cascade of events that is influenced by a wide variety 
of mediators (11,12). Among the key factors that participate in 
this process, adhesion molecules expressed on cancer cells and 
cells of the target organ have a crucial role (13,14). Adhesion 
molecules generate the initial cell‑cell contacts that lead to 
cancer cell extravasation and organ colonization. Additionally, 
these proteins may also act as signaling molecules to modulate 
the local microenvironment, creating a pro‑metastatic envi-
ronment, and trigger an angiogenic and desmoplastic response 
via a complex reciprocal dialogue between the tumor cells 
and the cells of the colonized organ (15,16). In addition to the 
tissue cells, immune populations recruited from the circulation 
during metastasis formation are also involved in generating a 
favorable environment for metastatic growth (17,18). There-
fore, determining the role of adhesion molecules during the 
different stages of this process remains a major goal for our 
understanding of the metastatic cascade. This, in turn, will 
facilitate new opportunities for therapeutic intervention.

To date, the research effort undertaken to investigate 
the function of adhesion proteins expressed on the surface 
of tumor cells and their implications in organ colonization 
has increased our knowledge about the signaling pathways 
that operate in tumor cells. The ‘seed and soil’ theory (19) 
postulates that host organ‑specific adhesion molecules are 
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required for the switch towards invasion and disease progres-
sion (20,21). Several adhesion molecules, such as E‑selectin, 
vascular cellular adhesion molecule (VCAM)‑1 and ICAM‑1, 
exhibit increased expression in the liver during metastatic 
invasion (22). Among them, ICAM‑1 mediates several stages 
of the metastatic cascade, including the adhesion of tumor 
cells to the endothelial wall (23‑25), endothelial cell activa-
tion of pro‑metastatic signaling pathways  (26‑28), tumor 
cell extravasation (23,29), the recruitment of immune cell 
populations (28,30,31), the pro‑angiogenic response (32) and 
the transdifferentiation of stellate cells during the desmo-
plastic response (33,34). This review will focus on the role of 
ICAM‑1 during the different events of the metastatic cascade 
that drives colonization of the liver by circulating tumor cells, 
and how it modulates the liver microenvironment to facilitate 
metastasis.

2. ICAM‑1 in healthy liver

ICAM‑1 is a transmembrane glycoprotein of the immuno-
globulin (Ig)‑like superfamily, consisting of five extracellular 
Ig‑like domains, a transmembrane domain and a short cyto-
plasmic tail (35). This transmembrane domain is essential for 
cell‑cell adhesion and cell‑extracellular matrix (ECM) interac-
tion (36,37). In the liver, ICAM‑1 is expressed constitutively in 
liver sinusoidal endothelial cells (LSECs), hepatocytes, Kupffer 
cells (KCs) and hepatic stellate cells (HSCs) (33,38,39), and is 
and further upregulated by inflammatory activation, such as 
stimulation by TNF‑α, IL‑1β or IFN‑γ (40). As in other organs, 
inflammation is accompanied by the recruitment of multiple 
immune cell populations, such as neutrophils, lymphocytes 
and monocytes. Leukocytes invade the tissue after crossing 
the liver endothelium via interaction between endothelial 
ICAM‑1 (41,42) and its main counter‑receptor, lymphocyte 
function‑associated antigen (LFA)‑1, on lymphocytes.

3. ICAM‑1 in liver metastasis

ICAM‑1 appears to have a major role during the initiation 
of the metastatic cascade driving tumor progression. The 
expression of ICAM‑1 protein by liver parenchymal and 
non‑parenchymal cells enhances its potential to facilitate 
disease progression (Fig. 1). In fact, ligand binding to ICAM‑1 
in LSECs and KCs, and ICAM‑1 overexpression in HSCs 
and hepatocytes (26,37,43,44) contribute to the activation of 
multiple signaling pathways with key roles in different stages 
of metastatic progression. Furthermore, the soluble form, 
sICAM‑1, enhances the pro‑metastatic phenotype and the 
pro‑inflammatory and pro‑tumoral signaling (45). sICAM‑1 
has been demonstrated to be elevated in the serum of patients 
with liver metastasis from lung or gastric cancer (46,47), and 
has been identified as a marker for metastatic stage, disease 
recurrence and prognosis in non‑Hodgkin's lymphoma, hepa-
tocellular carcinoma (HCC), lung cancer, and other cancer 
types (48‑50).

Tumor cell adhesion: Lending tumor cells a hand. The adhe-
sion to LSECs and the ulterior extravasation of the malignant 
tumor cells across this endothelial line into the liver represents 
the first step in liver metastatic colonization (20). Invading 

cells initially require an anchor to adhere to and help them 
escape from the blood stream (Fig. 2). At this time, endothelial 
ICAM‑1 is involved in tumor cell adhesion to the endothelium; 
this is a particularly important phenomenon considering that 
tumor adherence to vessel walls is a common feature across 
numerous types of cancer  (51). Ghislin et al reported that 
ICAM‑1 expressed on the surface of endothelial cells is crucial 
for the adhesion of melanoma cells to the endothelial mono-
layer in vitro. Under these conditions, ICAM‑1 expression is 
increased after tumor stimulation, in parallel with an increase 
in tumor cell adhesion, and this effect can be abrogated by the 
treatment of the endothelial cells with specific anti‑ICAM‑1 
antibodies  (29). These results are consistent with another 
report that showed that tumor cell interaction with endothelial 
cells increases ICAM‑1 expression on the endothelial cell 
surface (52). Furthermore, expression of ICAM‑1 was shown 
to be correlated with the production of pro‑tumoral cytokines, 
such as IL‑8 and IL‑6. IL‑8 and IL‑6 facilitate tumor cell attach-
ment to endothelial cells and enhance vascular permeability, 
as observed in models of brain and lung metastasis (53,54). 
Additionally, a previous study used atomic‑force microscopy 
to show that endothelial ICAM‑1 mediates the adhesion of 
different invasive bladder cancer cells to endothelial cells (24). 
In line with these results, a reduction in ICAM‑1 expression via 
siRNAs or by using ICAM‑1‑blocking antibodies significantly 
decreased the adhesion of fibrosarcoma cells to ECV304 human 
endothelial cells in vitro (55), and of C26 CRC cells to LSECs 
in vivo (56). Furthermore, the adhesion of different tumor cells 
may be reduced by blocking the expression of ICAM‑1 in the 
endothelium of either brain or lung, leading to the abrogation 
of metastasis to these organs, which further confirms the role 
of the ICAM‑1 in tumor cells (53,54). Moreover, ICAM‑1 can 
cooperate with other adhesion molecules, such as VCAM‑1, 
in the adhesion of malignant cells. ICAM‑1 and VCAM‑1 
are both upregulated in a TNF‑α‑dependent manner (TNF‑α 
being predominantly produced by macrophages) (57). Notably, 
LSECs lack the ability to express selectins, which are basally 
expressed and inducible in the endothelium of the portal 
tract and central vein (58). Likewise, this may have implica-
tions for the pathophysiology of the liver and may affect 
the normal distribution of tumor cell adhesion during the 
first steps of infiltration. In parallel with the upregulation of 
E‑selectin, ICAM‑1 and VCAM‑1 in the liver, the production 
of pro‑inflammatory cytokines is also increased in HCC (59). 
Among them, IL‑6 is implicated in the attraction of tumor 
cells, initiating a positive feedback response, and thus, not only 
promotes the progression of the metastasis, but also increases 
the risk of recurrence. Furthermore, the adhesion of CRC cells 
to KCs through carcinoembryonic antigen (CEA), increases 
the release of cytokines from KCs, including IL‑1, TNF and 
IL‑6, which induces ICAM‑1 upregulation in ECV304 human 
endothelial cells and increases tumor cell adhesion to these 
cells in vitro (40).

All these results support that endothelial ICAM‑1 has a 
crucial role in the adhesion of cancer cells to the endothelium 
in target organs and, thus, in the progression of cancer. Interest-
ingly, ICAM‑1 expression has been recently linked to a unique 
mechanism of leukocyte adhesion that specifically occurs in 
the liver (60), in contrast to the classic rolling‑adhesion‑diape-
desis mechanisms used by leukocytes in many other organs. It 
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is tempting to hypothesize that leukocyte adhesion molecules 
expressed on tumor cells and ICAM‑1 in LSECs may also been 
involved in the events leading to cancer cell colonization of the 
liver. If so, ICAM‑1 expressed on LSECs could be crucial for 
the development of liver metastasis, and a potential candidate 
for the development of new and improved targeted therapies.

The majority of the studies conducted to investigate the 
role of ICAM‑1 in liver metastasis have mainly focused on its 
expression on cancer cells. Studies involving surface ligands 
on the tumor, such as MUC‑1 and the β2 integrin of the LFA‑1 
receptor, known to bind to ICAM‑1 specifically (61), have 
provided evidence of the role of this Ig superfamily molecule in 
metastasis when expressed on the host cells. The expression of 
different ICAM‑1 ligands has been detected in a wide variety 
of cancer types. In fact, β2 integrin is expressed in melanoma, 
lymphoma, myeloma, gastrointestinal carcinomas, and was 
recently reported in breast cancer (29,62‑65). Another ICAM‑1 
ligand, MUC‑1, is expressed on breast cancer cells (23), as 
well as ovarian, prostate, gastric and pancreatic cancer cells 
and liver metastases (66). The hyaluronan receptor CD44 and 
its isoforms, which can be used alongside others markers for 
cancer stem cell identification (67), are expressed on breast, 
colorectal and pancreatic cancers cells (68‑70). The increasing 
evidence of tumor cell expression of ICAM‑1 ligands, and of 
the interaction between tumor cells and host ICAM‑1, demon-
strate that the significance of host cell ICAM‑1 expression 
during the course of liver metastasis, and knowledge of role 
of ICAM‑1 expression, may increase in the coming years. 
Consistently with this idea, the adhesion of LFA‑1‑expressing 
C26 CRC cells to LSECs was shown to be reduced by blocking 
ICAM‑1 with specific antibodies (27,32). The same result was 
observed when the expression of β2 integrin in C26 cells was 
reduced via siRNA (Benedicto et al, submitted). Additionally, 
the expression of other ICAM‑1 ligands, such as MUC‑1, in 
breast cells was shown to mediate the adhesion of the malig-
nant cells to HUVECs (25).

Interestingly, the vessels located at the invasive front of 
CRC tumors exhibit higher expression of ICAM‑1. These 
vessels are considered to be a gateway for the entry of inflam-
matory cells into cancer tissue (71). Along with endothelial 
cells, ICAM‑1 expression by other resident liver cells has been 
also studied. The resident macrophages of the liver, KCs, also 
express ICAM‑1  (72). Some reports in other cancer types 
have suggested that the adhesion of macrophages to tumor 
cells promotes metastasis (73). It is tempting to hypothesize 
that expression of specific ligands may mediate the adhesion 
of tumor cells to macrophages expressing ICAM‑1, further 
increasing liver colonization by circulating cancer cells. Addi-
tionally, tumor‑activated KCs, and HSCs, which also express 
ICAM‑1 when activated by inflammatory factors (74), further 
stimulate the expression of ICAM‑1 on the surface of endo-
thelial cells, increasing vascular permeability, which is also 
associated with an increase in tumor cell invasion into a target 
organ (75).

Tumor cell extravasation: Opening the liver's doors to 
invading cells. Endothelial cells are the first barrier that tumor 
cells encounter when invading the liver (51), since they act 
as gatekeepers, allowing the infiltration of cells only when 
required. Once adhered to LSECs, cancer cells must pass 
across the endothelium through a process called diapedesis 
in order to extravasate (76,77). The contraction of endothelial 
cells through actin cytoskeletal reorganization is essential for 
the infiltration of invading cells (78,79). The remodeling of 
the cytoskeleton is also observed after the binding of endo-
thelial ICAM‑1 to leukocyte LFA‑1 during transmigration of 
immune cells, including leukocytes, lymphocytes and neutro-
phils (44,80,81). In this scenario, ICAM‑1 expression has also 
been reported to be correlated with efficient transmigration 
across the endothelial cell layer and the subsequent extravasa-
tion of tumor cells, which in turn, facilitates the colonization 
of the organ (29,82,83). While elucidating the mechanisms of 
the metastatic process, it has been proposed that tumor cells 
mimic the route of immune cells, by binding to endothelial 
ICAM‑1 and forcing their way through the endothelial wall 
fenestrations to invade the tissue parenchyma. In contrast to 
other organs, where leukocyte recruitment depends on the 
expression of selectins on post‑capillary venules, leukocyte 
adhesion to the hepatic sinusoidal endothelium depends on 
ICAM‑1 (84). This is consistent with the lack of selectins 
observed in LSECs and the limited expression of ICAM‑1 
in portal tracts under basal conditions. In a previous study, 
neutralization of endothelial ICAM‑1 and VCAM‑1 by specific 
antibodies in a leukemia model was reported to abrogate cancer 
cell diapedesis across human coronary artery endothelial cell 
wall, which further supports the idea that endothelial ICAM‑1 
is involved in cancer cell invasion to the liver through regula-
tion of transmigration and extravasation (85). Furthermore, 
in a melanoma model, Ghislin et al showed that blocking the 
LFA‑1/ICAM‑1 interaction using specific antibodies either 
to ICAM‑1 on endothelial cells, or to the CD18 subunit of 
the LFA‑1 integrin in tumor cells, reduced transendothelial 
migration (29). Moreover, transendothelial migration of breast 
carcinoma cells is promoted by the interaction between tumor 
MUC‑1 and ICAM‑1 expressed on the endothelial surface (23). 
Together these observations suggest that ICAM‑1 has an 

Figure 1. Mechanisms involving ICAM‑1 during liver metastasis. The liga-
tion and secretion of sICAM‑1 burst metastatic progression through different 
mechanisms, such as tumor cell invasion, attenuated immune response, 
promoting angiogenic and desmoplastic response and expanding ICAM‑1 
mediated effects through its soluble form. ICAM‑1, intercellular adhesion 
molecule‑1.
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important role in organ invasion by circulating tumor cells, 
although the downstream mechanisms remain unknown. As 
for leukocytes, during sterile inflammation (86), tumor cells 
may utilize ICAM‑1 to infiltrate the liver parenchyma in order 
to colonize the organ. Recent studies from our group revealed 
that there is a direct link between the tumor LFA‑1/endothe-
lial ICAM‑1 interaction and the transmigration of CRC cells 
through the endothelial cell lining of the liver sinusoids, since 
a decrease in the number of transmigrated cells was observed 
when either the β2 integrin of tumor cells (Benedicto et al, 
submitted) or the ICAM‑1 of endothelial cells are silenced. The 
perturbation of this interaction reduced tumor cell migration 
through an endothelial monolayer in vitro, and demonstrates 
the complexity of metastasis and the signaling mechanisms 
involved in this process in the liver.

Tumor promotion: Laying the ground for metastatic 
development. Due to its physiological location, the liver 
has a chronic inflammatory microenvironment, where the 
immune system must continuously fight against pathogens 
from within the intestinal tract. In fact, the cells residing in 
the liver, namely hepatocytes, KCs, LSECs and HSCs, are 
involved in the inflammatory cascade (87) and maintaining 
homeostasis within the organ. However, this inflammatory 
status is a double‑edged sword, since cancer development has 
been shown to be profoundly enhanced by pro‑inflammatory 
signals (88). The creation of a pro‑tumor microenvironment 
is required for cancer cell proliferation and for tumors to 
evade immune surveillance, leading to a decreased immune 
recognition and/or elimination of reactive immune cells. 
Modulation of the target organ pro‑metastatic response is 

initiated by interaction of tumor cells with endothelial cells, 
leading to the activation of these vascular cells and secre-
tion of pro‑inflammatory cytokines and growth factors (89). 
The role of ICAM‑1 in the creation of such an environment 
was reported by Arteta et al (27). The authors reported that 
ICAM‑1 binding with tumor LFA‑1 triggered the production 
of IL‑1β by LSECs, which in turn promoted mannose receptor 
(ManR)‑mediated endocytosis. The increase in the activity 
and expression of ManR was correlated with a decreased cyto-
toxic effect of liver sinusoidal lymphocytes on the C26 murine 
CRC cell line (27). This defective immune response facilitates 
the establishment and development of metastasis, as one of the 
hallmarks of tumor progression (90).

During liver metastasis, liver tissue is replaced by the 
continuously growing tumor mass, along with the activated 
resident liver cells, creating a dynamic network that has been 
termed a ‘wound that never heals’ (91). During this ‘healing’ 
process after liver damage, liver myofibroblast‑like cells, also 
known as HSCs, have a key role (92). This contractile cell 
population are particularly important in relation to cancer, 
since cancer‑associated fibroblasts (CAFs) have also been 
identified as a key cell type that favor tumor growth and devel-
opment (93). Intriguingly, the expression of ICAM‑1 has been 
shown to be induced in activated HSCs (94), in a mechanism 
mediated by cytokines and growth factors, such as TNF‑α (74), 
as well as by cell‑cell contacts. It is interesting to note that 
the stellate cells present in other organs with tumors that 
mainly metastasize to the liver, such as pancreatic carcinomas, 
also express ICAM‑1 when activated (95). Furthermore, the 
increased expression of ICAM‑1 on the surface of HSCs, 
activated by infiltrating lymphocytes, leads to tumor growth 

Figure 2. ICAM‑1 mediated protumoral pathways. ICAM‑1 ligation in LSECs triggers the secretion of sICAM‑1 and IL‑1β concomitant to the upregulation 
of ManR causing a decrease in the cytotoxic potential of LSLs. Furthermore, ICAM‑1 activated tumor cells secrete VEGF and PGE2 facilitating the recruit-
ment of MDSCs, LSECs and HSCs leading to angiogenesis. HSCs block lymphocyte mediated tumor clearance by interacting with lymphocyte ICAM‑1. 
Moreover, MDSCs infiltrate the liver through a process involving upregulation of ICAM‑1 expression in LSECs. Consequently, the antitumor response of 
infiltrating and resident lymphocytes is impeded. Additionally, ICAM‑1 ligation in stromal cells drives to TNF‑α, and IL‑6 release, amplifying the effect on 
tumor progression. ICAM‑1, intercellular adhesion molecule‑1; LSECs, liver sinusoidal endothelial cells; VEGF, vascular endothelial growth factor; MDSCs, 
myeloid‑derived suppressor cells; HSCs, liver sinusoidal endothelial cells.
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and immune evasion (33). On the one hand, HSCs are able 
to promote tumor proliferation via the secretion of a wide 
array of soluble mediators (96), which potentially modulate 
the tumor microenvironment. Additionally, HSC activation by 
melanoma‑derived soluble factors results in the recruitment of 
LSECs, promoting the development of new vessels (97). On 
the other hand, activated HSCs have the ability to phagocytose 
lymphocytes during liver inflammation (98), to abrogate CD8+ 
T cell‑mediated immunity (99), and to enhance the recruit-
ment of immunosuppressive cells (100), thus impeding the 
appropriate anti‑tumor function in an ICAM‑1‑dependent 
pathway, and facilitating tumor expansion.

Cancer cells that are able to evade immune surveillance 
require stimulation by cytokines and growth factors derived 
from numerous cell sources in order to proliferate. Aside 
from the factors secreted by HSCs and LSECs, tumor cells 
are stimulated by KCs present in the liver sinusoids, which 
are known to promote tumor progression at multiple levels, 
including promoting adhesion, proliferation, immune tolerance 
and angiogenesis (40). Ligand binding to ICAM‑1 activates 
KC secretion of IL‑6 (41), which induces cell proliferation 
via the STAT3 pathway, and stimulates the degradation of 
surrounding ECM via increased secretion of matrix metallo-
proteinases (MMPs) (101). IL‑6 has been also implicated in the 
differentiation of human monocytes to M2 macrophages (102), 
a mechanism that probably also occurs in liver and is related 
to tumor progression (103). Interestingly, the infiltration of 
macrophages was reduced in ICAM‑1 knockout mice in a 
model of renal injury (104), which is consistent with another 
report linking ICAM‑1 blockage with a reduction in macro-
phage infiltration in precancerous pancreatic lesions (105). It 
is tempting to speculate that the same phenomenon may occur 
in the liver, as macrophages express LFA‑1 and MUC‑1, which 
are well known ICAM‑1 ligands, suggesting that ICAM‑1 
is a key mediator in the recruitment of tumor‑promoting 
macrophages. In fact, ICAM‑1 silencing significantly reduced 
F4/80‑expressing cells within the liver metastasis foci of C26 
tumor‑bearing mice (56).

The angiogenic response: Calling accomplices. An additional 
key and rate‑limiting step in the metastatic process of a wide 
variety of tumors is the development of new blood vessels in 
order to fulfill the metabolic requirements of the tumor mass. 
The process of de novo formation of tumor blood vessels, 
tumor angiogenesis, determines the viability and survival of 
tumor cells and, thus, the establishment and development of 
the disease. The generation of new capillaries is favored by the 
stimuli present in the tumor microenvironment, produced by 
the tumor itself, by liver cells and by recruited immune cells. 
LSECs are required to form new capillary structures, with 
contractile HSCs necessary to provide support for new vessel 
formation (97). Our group revealed that LFA‑1‑expressing C26 
cells interact with LSECs via ICAM‑1, and that this interaction 
was the initial angiogenic stimulus during the early stage of 
liver metastasis, promoting tumor release of vascular endothe-
lial growth factor (VEGF)  (27,32), and driving the directional 
migration of LSECs and HSC recruitment to tumor areas (97). 
To further amplify this reaction, tumor cells, tumor‑associated 
macrophages (TAMs) and myeloid‑derived suppressor cells 
(MDSCs) contribute to VEGF secretion in response to their 

stimulation by TNF‑α, IL‑6 and NO, which are released 
through ICAM‑1‑mediated signaling pathways in KCs and 
LSECs (106,107). Wang and Doerschuk reported that upon 
ICAM‑1 ligand binding, pulmonary endothelial cells undergo 
cytoskeletal reorganization (108), a process required for the 
formation of new vessels, which may also occur in the liver 
when interacting with ICAM‑1 ligands expressed on tumor 
cells. Recruitment of HSCs is crucial for the support of new 
vessels. HSCs respond to VEGF produced by tumor‑activated 
cells and migrate to the sites of angiogenesis (109). The p38 
mitogen‑activated protein kinase (MAPK) pathway has been 
recently proposed as a mediator of endothelial cell activation, 
cytoskeletal reorganization and migration of HSCs (110,111). 
Interestingly, ICAM‑1 activation has been shown to stimulate 
the p38 MAPK pathway in endothelial cells, astrocytes and 
renal fibroblasts  (112‑114). Moreover, this MAPK pathway 
is also activated by platelet‑derived growth factor, the most 
potent mitogen for HSCs (115), suggesting that ligand binding 
to ICAM‑1 is a possible mitogenic stimulus responsible for 
the proliferative phenotype of these myofibroblast‑like cells, 
expanding the number of activated cells ready to support 
angiogenesis (Fig. 2).

In addition to the angiogenic response, a desmoplastic 
reaction is observed during metastatic invasion of the liver. 
HSCs are the main producers of ECM proteins in the liver. 
In fact, the progression of CRC is associated with the desmo-
plastic reaction  (116). In fibroblasts isolated from human 
CRC samples, ICAM‑1 was increased in tumor‑associated 
fibroblasts and was associated with an increase in desmo-
plasia in tissue sections  (117). In liver metastasis induced 
by sICAM‑1‑activated C26 cells, an increase in collagen 
deposition is correlated with the infiltration of HSCs and with 
CD31‑positive cells, indicating that the desmoplastic reaction 
is coupled to the angiogenic response and mediated by ICAM‑1 
(Arteta et al, Abstract in 12th International Symposium on 
Cells of the hepatic sinusoids, Bilbao, spain, 2004).

Immune cell recruitment: Allowing the arrival of infiltrating 
enemies. As mentioned previously, recruited immune popu-
lations infiltrate the liver via ICAM‑1 adhesion. In order to 
efficiently fight against infiltrating tumor cells, either resident 
or recruited lymphocyte populations are required in order to 
mount an adequate immune response against the invading 
tumor. CD8+ T lymphocytes are able to control metastatic 
growth upon activation; however, when depleted, disease 
progression continues  (118,119). On the other hand, CD4+ 

T lymphocytes also contribute to immune defense against 
cancer development  (120). However, among the immune 
cell populations recruited from the circulation, MDSCs are 
able to suppress T cell cytotoxic activity towards the tumor 
and promote immune suppression  (106). In this context, 
TAMs and MDSCs also contribute to tumor progression by 
decreasing anti‑tumor immunity and generating a pro‑tumor 
microenvironment (106,121‑124). In fact, macrophages induce 
apoptosis of peripheral T cells following binding of LFA‑1 to 
ICAM‑1 (125), therefore promoting tumor survival through 
depletion of cytotoxic cells. Increased numbers of these 
immune cell populations, known to express LFA‑1 receptor 
and MUC‑1, are associated with the metastatic development 
of different cancers. In fact, the involvement of ICAM‑1 in the 
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adhesion of myeloid cell populations in vitro was reported by 
Makgoba et al in 1988 (126). Subsequently, other studies have 
reported the direct role of ICAM‑1 in the adhesion of myeloid 
cells to dermal fibroblasts (127). Other authors have linked the 
increased expression of ICAM‑1 with the infiltration of TAMs 
in renal carcinoma (128). Furthermore, this ICAM‑1‑mediated 
infiltration was also augmented in pancreatic cancer and 
correlated with the formation of precancerous lesions (105). 
Moreover, ICAM‑1 silencing in C26 tumor‑bearing mice 
resulted in decreased myeloid infiltration in metastatic liver 
lesions (56). Consequently, the expression of ICAM‑1 may 
represent a potential therapeutic target for treating immune 
suppression during liver metastasis.

Recently, interest in the role of neutrophils as promoters 
of metastatic progression has grown. In ductal pancreatic 
adenocarcinoma, a significant association between the 
neutrophil count and the overall survival of the patients was 
reported, along with a correlation between the presence of 
neutrophils and distant metastasis after surgery  (129). A 
relationship between neutrophils and metastasis formation 
in several organs, including the liver, has also been observed 
in other primary tumor types, such as breast carcinoma and 
CRC  (130,131). However, the role of host ICAM‑1 in this 
process is unknown. In chronic inflammation of the liver, 
an increase of ICAM‑1 on LSECs is known to mediate their 
interaction with neutrophils through CD18 integrin, favoring 
transmigration and adhesion to hepatocytes (132). Thus, it is 
feasible to consider that the same mechanism may be involved 
in neutrophil recruitment after CRC cell invasion in the liver. 
In fact, it has been shown that neutrophils bind to the liver 
endothelium through ligation to ICAM‑1, facilitating the 
adhesion of melanoma cells (133), a process that may also be 
mediated by KCs. The fact that ICAM‑1 expression on LSECs 
induced by KC‑derived TNF‑α leads to neutrophil adhesion 
and migration into the hepatic sinusoids after liver injury (134) 
supports the previous observation. Additionally, neutrophils 
take an active role during angiogenesis by secreting high levels 
of MMP‑9. In fact, in gastric cancer, neutrophils promote the 
immune evasion of tumor cells and also the formation of new 
vessels (135).

Soluble ICAM‑1: A moving threat. The influence of ICAM‑1 
goes beyond its membrane‑bound form. In 1991, a soluble form 
of ICAM‑1 was detected in human serum (136). Subsequently, 
chromatography and antibody detection revealed the signifi-
cance of this finding, demonstrating the ability of this soluble 
isoform to interact with the membrane‑bound ligands, such as 
LFA‑1, as sICAM‑1 contains a large fragment of the extracel-
lular region of ICAM‑1 (137). The serum level of circulating 
sICAM‑1 is considered as a biomarker for several vascular 
inflammatory diseases, as well as in several different cancer 
types, such as breast, lung and colon cancers, and for lung 
and liver metastases (138‑140). Interestingly, serum levels of 
sICAM‑1 in patients with liver metastasis were found to be the 
highest among patients with different organ metastases (140). 
In the liver sICAM‑1 is secreted from diverse cell types, 
including mononuclear cells, endothelial cells, fibroblasts, KCs 
and hepatocytes. During liver metastasis, several pathways 
are mediated by this soluble factor. Tumor‑activated LSECs 
secrete sICAM‑1 in response to various inflammatory stimuli, 

such as IL‑1β (27), and thereby further enhance the metastatic 
capacity of tumor cells  (40). It is tempting to hypothesize 
that sICAM‑1 may promote the expression of other adhesion 
molecules in LSECs, as reported in human micro‑vascular 
lung endothelial cells using different cancer cell lines (141). 
Among the responses to sICAM‑1, proliferation of tumor and 
stromal cells has been observed in other cancer models (142). 
In fact, COX‑2 was demonstrated to be activated in tumor cells 
upon sICAM‑1 binding with LFA‑1, resulting in an increase in 
the production of prostaglandin E2 (PGE2); PGE2 is a potent 
inflammatory, pro‑immune tolerance and pro‑angiogenic 
mediator, which stimulates the secretion of IL‑1β by LSECs in 
an autocrine and paracrine loop (27), and ultimately increases 
the expression of membrane‑bound ICAM‑1 and vascular 
permeability, as mentioned previously (Fig. 2). Both IL‑1β 
and PGE2 act as chemoattractants for MDSCs (143). There-
fore, tumor cell binding to sICAM‑1 results in an amplifying 
strategy for the recruitment of immune populations to develop 
an immune tolerant microenvironment in the liver. This 
immune tolerant status is further supported by the fact that 
sICAM‑1 can interfere in the anti‑tumor response, by inhibiting 
the interaction between patrolling T cells and cancer cells, and 
abrogating anti‑tumor activity in natural killer cells (144,145). 
Consequently, immune recognition leading to tumor cell 
clearance may be reduced by the increased level of circulating 
sICAM‑1. Therefore, sICAM‑1 acts as a messenger of the 
membrane‑bound ICAM‑1 activation signals, moving across 
the tumor vasculature to further enhance the pro‑metastatic 
response of the liver.

4. Conclusions

ICAM‑1 has been unequivocally shown to have a key role 
during tumor progression and metastasis formation in different 
organs. ICAM‑1 is involved in the rearrangement of the actin 
cytoskeleton, the activation of pro‑inflammatory cascades, 
and the mediation of multiple signaling pathways that regulate 
metastasis, such as tumor cell adhesion and transmigration, 
immune escape, desmoplasia and angiogenesis. However, 
even though the mechanisms by which the malignant cell 
expression of ICAM‑1 mediates the aggressiveness of tumor 
cells have received much research attention, and are better 
understood, the role of ICAM‑1 expression on host organ cells 
has not been a major focus of investigation. The expression of 
ICAM‑1 on the surface of various resident liver cells with roles 
in different events during tumor invasion and colonization 
indicates that ICAM‑1 could be a potential target for comple-
mentary and personalized therapies, as well as a powerful 
diagnostic and prognostic marker. As shown in this review, 
ICAM‑1 acts as a transducer molecule, able to initiate a strong 
inflammatory response, which in turn amplifies the reactions, 
leading to increased adhesion, extravasation and tumor foci 
formation. Moreover, the production of immune cell chemoat-
tractants promotes the recruitment of immunoregulatory 
cell populations that reduce the immune surveillance of the 
tumor. Additionally, the activation of pro‑angiogenic and 
pro‑desmoplastic stromal cells though ICAM‑1‑mediated 
signaling pathways triggers the development of a pro‑tumor 
stroma and new vessel development, which further favor the 
growth and ultimate colonization of the liver.
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Thus, tissue ICAM‑1 expression may reflect the growth 
and metastatic status of multiple cancer types, and may be a 
factor to predict cancer metastasis to the liver. ICAM‑1 may 
be involved in various stages, from the very initial stages of 
inflammation, tumor and leukocyte adhesion to sinusoidal 
endothelial cells, and the evasion of immune destruction, to the 
very late stages of directional migration, differentiation and 
colonization. In light of the present knowledge, host ICAM‑1 
interactions with ligands on tumor and host cells during the 
different steps of metastatic progression remain an attractive 
target for the development of anti‑cancer strategies. This will 
open new possibilities for treatments based on ICAM‑1 as a 
therapeutic target. However, further investigations into its 
biological effects and the underlying mechanisms are required 
in order to develop effective therapies that can block interac-
tions mediated by ICAM‑1 without interfering with the normal 
functions of the organism.
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