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Abstract

Conventional functional connectivity (FC) and corresponding networks focus on characterizing the 

pairwise correlation between two brain regions, while the high-order FC (HOFC) and networks 

can model more complex relationship between two brain region “pairs” (i.e., four regions). It is 

eye-catching and promising for clinical applications by its irreplaceable function of providing 

unique and novel information for brain disease classification. Since the number of brain region 

pairs is very large, clustering is often used to reduce the scale of HOFC network. However, a 

single HOFC network, generated by a specific clustering parameter setting, may lose multifaceted, 

highly complementary information contained in other HOFC networks. To accurately and 

comprehensively characterize such complex HOFC towards better discriminability of brain 

diseases, in this paper, we propose a novel HOFC based disease diagnosis framework, which can 

hierarchically generate multiple HOFC networks and further ensemble them with a selective 

feature fusion method. Specifically, we create a multi-layer HOFC network construction strategy, 

where the networks in upper layers are formed by hierarchically clustering the nodes of the 

networks in lower layers. In such a way, information is passed from lower layers to upper layers 

by effectively removing the most redundant part of information and, at the same time, retaining the 

most unique part. Then, the retained information/features from all HOFC networks are fed into a 

selective feature fusion method, which combines sequential forward selection and sparse 

regression, to further select the most discriminative feature subset for classification. Experimental 

results confirm that our novel method outperforms all the single HOFC networks corresponding to 

any single parameter setting in diagnosis of mild cognitive impairment (MCI) subjects.
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1 Introduction

Alzheimer’s disease (AD) is the most prevalent dementia, accounting for about 60–80 % of 

dementia cases among the worldwide elderly population. Mild cognitive impairment (MCI), 

as a prodromal stage of AD, tends to convert to clinical AD with an average annual 
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conversion rate of 10–15 % [1]. Early diagnosis of MCI is of great importance for possibly 

delaying the AD progression, and is always a hot spot in the translational clinical research.

Resting-state functional magnetic resonance imaging (RS-fMRI) can be used to infer 

functional connectivity (FC) among brain regions, and to characterize brain network 

abnormalities in MCI. Here, the FC is traditionally defined as the temporal correlation of the 

blood-oxygenation-level-dependent (BOLD) time series between two brain regions [2]. The 

whole brain network can further be constructed by accounting for FC of every brain region 

pairs. Recently, static FC calculated based on the entire BOLD time series has been 

challenged by dynamic FC and dynamic network studies. A well-adopted dynamic FC 

analysis strategy is to calculate FC in sliding windows [4–6]. Furthermore, multiple time-

varying FC networks can be constructed and used for MCI classification [5]. Nevertheless, 

these time-varying FC networks are still low-order, since they are estimated based on the 

raw BOLD time series, reflecting just the relationship among brain regions in a pairwise 

manner.

The series of time-varying low-order FC (LOFC) networks can be equivalently represented 

as a set of dynamic FC time series, each of which is associated with a pair of brain regions 

and characterizes their time-evolving FC. Then, we can further compute the correlation 

between two FC time series (each of them involves two brain regions) and obtain a high-

order FC (HOFC) which involves four brain regions (i.e., two pairs of brain regions). With 

this strategy, an HOFC network can be constructed in the whole brain. The graph theory 

based high-order features characterizing the properties of HOFC network can be extracted. 

HOFC has following merits: (1) it is computed based on FC time series, instead of raw 

BOLD time series, thus representing high-level features; (2) it reflects a more complex 

relationship among brain regions by characterizing how different brain region pairs, instead 

of two brain regions functionally interact with each other; (3) it is time invariant, solving the 

problem of phase mismatch among subjects.

However, the side-effect of HOFC (i.e., the increase of network scale from N2 to (N2)2, 

where N is the total number of brain regions) requires clustering-based dimension reduction 

and thus results in inevitable information loss when a single HOFC network (corresponding 

to a specific number of clusters) is used for classification. It is obvious that the clustering 

pattern in a high dimensional space is NOT a discrete structure; instead, rich information 

underlying in a continuous relationship between the network nodes in the space when 

viewing from different spatial scales could be used to boost classification accuracy. 

Accordingly, we first generate multiple HOFC networks for each subject; each network has 

different discriminative ability for disease identification. More importantly, these HOFC 

networks are organized in a hierarchical fashion, which means the network in each layer is 

generated by merging some nodes while retaining other nodes of the HOFC network in a 

previous layer. By doing so, the HOFC networks in two consecutive layers are highly 

overlapped. As a result, the features extracted from the HOFC network of each layer can be 

decomposed into two parts (blocks): one is redundant and the other is informative or 

complementary with respect to the features extracted from a previous layer. To further refine 

those informative feature blocks from all HOFC networks, a feature fusion strategy based on 
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sequential forward selection and sparse regression [10] is developed and the resulting feature 

subset is used for classification with linear support vector machine (SVM).

2 Approach

The proposed method consists of the following 8 steps. (1) For each subject, a sliding 

window with length N and step size s is applied to partition the entire BOLD time series into 

multiple overlapping segments [4, 5]. (2) Multiple LOFC networks are constructed, each of 

which is based on a respective segment of BOLD time series. By doing so, we actually 

obtain a set of FC time series, each describing the temporal variation of correlation between 

two brain regions. (3) All subjects’ FC time series associated with the same brain region pair 

are concatenated together to form a long FC time series. (4) The long FC time series from all 

brain region pairs are grouped into U clusters by a clustering algorithm, thus yielding 

consistent clustering results across different subjects. (5) For each subject, the mean of the 

FC time series within the same cluster is computed and then a HOFC network is constructed 

based on the correlation between the mean FC time series of different clusters. (6) Repeating 

steps (4) and (5) multiple times with different Us generates multiple HOFC networks. (7) 
The features extracted from all HOFC networks are analyzed based on correlation, and then 

a feature subset is selected by a feature selection method that combines sequential forward 

selection and sparse regression. (8) Support vector machine (SVM) [8] with linear kernel is 

finally trained with the selected features to classify MCI and NC subjects. The main 

flowchart of our hierarchical HOFC networks construction and feature extraction is shown in 

Fig. 1, where four brain regions denoted as A, B, C, and D are illustrated.

2.1 Hierarchical Clustering and Feature Decomposition

As shown in the top left panel of Fig. 1, we can obtain FC time series corresponding to each 

pair of brain regions by following the above steps (1) and (2). When repeating step (4) with 

different numbers of clusters, we use an agglomerative hierarchical clustering [9] to group 

these FC time series into ui and ui+1 clusters (ui>ui+1), respectively, in layer i and layer i+1. 

In Fig. 1, we have ui=5 and ui+1=4. When the difference between ui and ui+1 is small, which 

is true using the agglomerative hierarchical clustering, a few clusters in the layer i + 1 are 

newly formed by merging some closer clusters in the layer i, while other clusters in the layer 

i + 1 are the same as those in the layer i. This is illustrated in the right panels of Fig. 1, 

where the blue and pink clusters in the layer i are merged into a new red cluster in the layer i 
+ 1 while other clusters are kept the same. Based on the clustering results in the layers i and 

i + 1, the HOFC networks HONi and HONi+1 are constructed, respectively, where each node 

corresponds to each cluster and the weight for each edge is the Pearson’s correlation 

between the mean FC time series of two different clusters. As we can see from the upper 

right panel of Fig. 1, only the newly formed nodes and the associated edges (shown in red) 

in HONi+1 may contain extra information with respect to HONi.

Afterwards, the feature vectors  and  can be extracted from HONi 

and HONi+1, respectively. In this paper, weighted local clustering coefficients (WLCC) [7] is 

used as features. Each entry in Feai and Feai+1 corresponds to a node in HONi and HONi+1, 

respectively, thus also corresponding to a cluster in layers i and i + 1. Since only a small 
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number of nodes and edges in HONi+1 are different from those in HONi, Feai+1 can be 

decomposed as Feai+1 = [Di+1, Si+1], where D and S respectively refer to the nodes newly 

formed from and the nodes already existed in the previous layer. As a result, Si+1 in layer i 
+ 1 should be highly correlated with some features in Feai, while only Di+1 may contain 

some novel information with respect to Feai.

Generalizing the above observation to L levels, for each subject, the features extracted from 

all hierarchical HOFC networks can be condensed and expressed as Fea = [D0,D1,D2,⋯,DL], 

where D0 = S1. Each Di is called a feature block.

2.2 Selective Feature Fusion

Although the above agglomerative hierarchical clustering and correlation analysis can 

reduce the dimensionality of features to a large extent, the redundancy between different 

layers may still exist, especially when taking into account multiple layers. In addition, not all 

of the features in Fea are discriminative in terms of MCI classification. To benefit from the 

information contained in Fea and reduce redundancy, we propose a feature fusion method, 

by combining sequential forward selection and sparse regression [10], under the framework 

of wrapper-based feature selection [11]. Sequential forward selection can find discriminant 

feature block progressively, while sparse regression can select individual features that are 

predictive for classification.

Specifically, given a current set A of feature blocks, a new feature block Di from Fea – A 
can be selected and combined with A, thus producing an enlarged feature subset A∪Di. 

Then, l1-norm based sparse regression, i.e., least absolute shrinkage and selection operator 

(LASSO) is performed on all training samples with features within A∪Di to find a small 

subset C that is beneficial for classification. Next, the selected features of all training 

subjects are used to train a linear SVM model, and the classification accuracy on the 

validation subjects is used to guide the selection of Di. That is, the one yielding optimal 

accuracy is finally selected. In such a way, the feature block selected in the previous iteration 

will be kept and guild the selection of new feature block in the next iteration. The procedure 

above is repeated until either the optimal performance or the pre-defined number of feature 

blocks is reached.

3 Experiments

3.1 Data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is used in this study. 50 

MCI subjects and 49 normal controls (NCs) are selected from ADNI-GO and ADNI-2 

datasets. Subjects from both datasets were age- and gender-matched and were scanned using 

3.0T Philips scanners. The voxel size is 3.13 × 3.13 × 3.13 mm3. SPM8 software package 

(http://www.fil.ion.ucl.uk/spm/software/spm8) was used to preprocess the RS-fMRI data.

The first 3 volumes of each subject were discarded before preprocessing for magnetization 

equilibrium. A rigid-body transformation was used to correct head motion in subjects (and 

the subjects with head motion larger than 2 mm or 2° were discarded). The fMRI images 

were normalized to the Montreal Neurological Institute (MNI) space and spatially smoothed 
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with a Gaussian kernel with full width at half maximum (FWHM) of 6 × 6 × 6 mm3. We did 

not perform scrubbing to the data with frame-wise displacement larger than 0.5 mm, as it 

would introduce additional artifacts. We excluded the subjects who had more than 2.5 min 

(the maximum is 7 min) RS-fMRI data with large frame-wise displacement from further 

analysis. The RS-fMRI images were parcellated into 116 regions according to the 

Automated Anatomical Labeling (AAL) template. Mean RS-fMRI time series of each brain 

region was band-pass filtered (0.015 ≤ f ≤ 0.15 Hz). Head motion parameters (Friston24), 

mean BOLD time series of the white matter and the cerebrospinal fluid were regressed out.

3.2 HOFC Network and Feature Correlation Analysis

In this study, we use a sliding window with s = 1 and N = 50. Denote the number of clusters 

as U. To generate multiple layers, we start from one layer with a relatively large number of 

clusters (U = 220) because it can retain sufficient information. Then, the subsequent layers 

are added by gradually reducing U by 30 until the optimal performance is achieved. In such 

a way, we can eventually generate 4 HOFC networks from layer 1 to layer 4: HON1, HON2, 

HON3, and HON4, where the number of clusters equals 220, 190, 160, and 130, respectively. 

The averaged HOFC networks in layer 1 for MCI and NC subjects are shown in the left and 

middle of Fig. 2. The corresponding high-order feature vectors (WLCC) Fea1 ∈ R220, Fea2 

∈ R190, Fea3 ∈ R160, and Fea4 ∈ R130 are extracted. Since our method is a feature fusion 

method, the correlation between features from different HOFC networks provides important 

information about redundancy. To empirically verify the rationality of feature decomposition 

(Sect. 2.1), we compute the correlation between Fea1 and Fea2 and show the correlation 

matrices in the right of Fig. 2. The numbers of rows and columns of this matrix equal to 220 

and 190, respectively. As shown by the red straight lines in this matrix, most features in Fea2 

are highly correlated with features in Fea1. This observation is consistent for all HOFC 

networks, thus implying most features in the current layer are redundant with respect to 

those in the previous layer and thus should be eliminated before feature fusion. Based on this 

correlation, each feature vector Feai (i = 1, 2, 3, 4) can be decomposed into two feature 

blocks such as Feai = [Di, Si], where D1 ∈ R29, S1 ∈ R191, D2 ∈ R30, S2 ∈ R160, D3 ∈ R29, 

S3 ∈ R131, and D4 ∈ R30, S4 ∈ R100. Note that an extra level with 250 clusters is used to 

decompose Fea1 and then discarded. Consequently, only about 30 features, i.e., Di, of each 

layer (i > 1) are less correlated with the previous layer while others are redundant. To 

include sufficient information and meanwhile reduce the redundancy, five feature blocks S1 

∈ R191, D1 ∈ R29, D2 ∈ R30, D3 ∈ R29, and D4 ∈ R30 are engaged in the subsequent feature 

fusion, while others are discarded. Finally, the total number of features decreases from 700 

to 309 by this unsupervised correlation analysis.

3.3 Classification Accuracy

The proposed sequential forward selection and sparse regression based hierarchical HOFC 

networks feature fusion (HHON-SFS) is compared with some closely related methods, 

including (1) a feature fusion method (HHON-CON), which concatenates all features 

extracted from four HOFC networks, (2) four individual HOFC networks (HON1, HON2, 

HON3, and HON4), and (3) two LOFC networks based on partial correlation (LON-PAC) 

and Pearson’s correlation (LON-PEC), respectively. All methods were implemented in 

MATLAB 2012b environment. The SLEP [10] and Libsvm tool‐boxes were utilized, 
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respectively, to implement sparse regression and SVM classification. The leave-one-out 

cross validation (LOOCV) is adopted to evaluate performance of different methods. For the 

hyper-parameter in each method, we tune its value on the training subjects by using the 

nested LOOCV. To measure performances of different methods, we use the following 

indices: accuracy (ACC), area under ROC curve (AUC), sensitivity (SEN), specificity (SPE), 

Youden’s Index (YI), F-score, and balanced accuracy (BAC).

The experimental results are shown in Table 1. The HOFC networks achieve better accuracy 

than the two LOFC networks, indicating that the HOFC networks provide more 

discriminative biomarkers for MCI identification. Comparing across four individual HOFC 

networks, we can observe their performance is rather sensitive to the number of clusters. For 

example, too large or too small U will adversely affect the performance. Although the HOFC 

network HON2 (U = 190) achieves better performance than other individual HOFC 

networks, this does not mean that the information contained in other networks is completely 

useless in distinguishing MCI from NC subjects. To make full use of information in the four 

HOFC networks, HHON-CON directly concatenates Fea1, Fea2, Fea3, and Fea4 to form a 

combined feature vector of length 700. Although this method uses all features, the accuracy 

falls just between the best and the worst ones. This may be due to too many redundant 

features being used which makes the relationship between features complex, thus causing 

difficulty in individual feature selection and the potential over-fitting. In contrast, the 

proposed method, HHON-SFS, achieves the best performance among all competing 

methods. On one hand, this improvement can be attributed to the feature correlation analysis 

and also the resulting feature decomposition, which eliminates many redundant features. On 

the other hand, the combination of sequential forward selection and sparse regression makes 

it possible to evaluate the importance of feature blocks and individual features progressively. 

As a result, those crucial and complementary features have more probability to be selected 

and fused for classification.

4 Conclusion

In this paper, we propose to fuse information contained in multiple HOFC networks for a 

better MCI classification. To this end, hierarchical clustering is utilized to generate multiple 

HOFC networks, each being located at one layer. With such a framework, features extracted 

from the network at each layer can be refined, and only the informative feature block is 

taken into account. Specifically, by combining the sequential forward selection and sparse 

regression, a novel feature fusion method is developed. This method is able to selectively 

integrate informative feature blocks from different HOFC networks and further detect a 

small set of individual features that are discriminative for early diagnosis. Finally, SVM with 

linear kernel is used for MCI classification. The experimental results demonstrate the 

capability of the proposed approach in making full use of information contained in multiple 

scales of HOFC networks. Also, combing multiple HOFC networks is demonstrated to yield 

better classification performance than simple use of a single HOFC network.
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Fig. 1. 
Hierarchical HOFC networks construction and feature decomposition.
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Fig. 2. 
Averaged HOFC network in layer 1 for MCI (left) and NC (middle) subjects and feature 

correlation matrices between HOFC networks from layer 1 and layer 2 (right).
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