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Abstract

Cells exhibit stochastic behavior when the number of molecules is small. Hence a stochastic 

reaction-diffusion simulator capable of working at scale can provide a more accurate view of 

molecular dynamics within the cell. This paper describes a parallel discrete event simulator, 

Neuron Time Warp-Multi Thread (NTW-MT), developed for the simulation of reaction diffusion 

models of neurons. To the best of our knowledge, this is the first parallel discrete event simulator 

oriented towards stochastic simulation of chemical reactions in a neuron. The simulator was 

developed as part of the NEURON project. NTW-MT is optimistic and thread-based, which 

attempts to capitalize on multi-core architectures used in high performance machines. It makes use 

of a multi-level queue for the pending event set and a single roll-back message in place of 

individual anti-messages to disperse contention and decrease the overhead of processing rollbacks. 

Global Virtual Time is computed asynchronously both within and among processes to get rid of 
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the overhead for synchronizing threads. Memory usage is managed in order to avoid locking and 

unlocking when allocating and de-allocating memory and to maximize cache locality. We verified 

our simulator on a calcium buffer model. We examined its performance on a calcium wave model, 

comparing it to the performance of a process based optimistic simulator and a threaded simulator 

which uses a single priority queue for each thread. Our multi-threaded simulator is shown to 

achieve superior performance to these simulators. Finally, we demonstrated the scalability of our 

simulator on a larger CICR model and a more detailed CICR model.

1. INTRODUCTION

The human brain may be viewed as a sparsely connected network containing approximately 

1014 neurons. Each neuron receives inputs into thousands of dendrites and sends outputs to 

thousands of other neurons by means of its axon.

The neural membrane has ion channels which selectively control flow of various species – 

primarily sodium, potassium, and calcium. Movements of ions through these channels 

follow the concentration gradient from higher to lower. Additionally, there are pumps which 

depend on energy to move ions against the gradient. Electrical models for neurons [Lytton 

2002] can be constructed using the well-known laws of electricity (Ohm, Kirchkoff, 

capacitance). However, these electrical models only provide a limited view of neuronal 

activity since calcium, as well as many other species (nucleotides, peptides, proteins, etc) 

diffuse in the cytoplasm (the inside of the cell) and function as information messengers. In 

order to develop realistic models of neurons, it is necessary to develop models which 

account for the movement and functioning of these messengers.

The combination of chemical reactions within a cell, the flux of ions through the membrane, 

and the diffusion of ions in the cytoplasm can be modeled as a reaction-diffusion system and 

can be simulated by (parabolic) partial differential equations [McDougal et al. 2013]. 

However, such a continuous model is not appropriate when there are a small number of 

molecules, e.g. < 1000 molecules. In these cases, a stochastic model will provide a more 

realistic and accurate representation [Sterratt et al. 2011; Ross 2012; Blackwell 2013]. 

Generally the concentration of calcium in cytosol is very low, between 50–100 nM [Foskett 

et al. 2007], where M is a concentration unit used in biochemistry and 1 M = 1 mol/Liter. 

These low concentrations mean small numbers of ions with different localized 

concentrations of cytosolic calcium that can play an important role in intracellular dynamics.

It is well known that a system consisting of a collection of chemical reactions can be 

represented by a chemical master equation, the solution of which is a probability distribution 

of the chemical reactants in the system [Sterratt et al. 2011]. In general, it is very difficult to 

solve this equation. In [Gillespie 1977] a Monte Carlo simulation algorithm called the 

Stochastic Simulation Algorithm (SSA) is described. Under the assumption that the 

molecules of the system are uniformly distributed, the algorithm simulates a single trajectory 

of the chemical system. Simulating a number of these trajectories then gives a picture of the 

system. The Next Subvolume Method (NSM) [Elf and Ehrenberg 2004] is an extension of 

the SSA which incorporates the diffusion of molecules into the model.
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Because the size of a realistic simulation of a network of neurons is immense, it is necessary 

to make use of a parallel or distributed architecture. The NSM partitions space into cubes 

called sub-volumes. In PDES these sub-volumes can be represented as Logical Processes 

(LP) [Wang et al. 2011]. The diffusion of ions between neighboring sub-volumes is 

represented as events.

Communication latency is the main bottleneck of PDES systems [Fujimoto 1999]. The 

emergence and widespread use of multi-core processor significantly reduces this cost by 

using fast channels among cores on a multi-core chip. Alam [Alam et al. 2006] observed a 

significant benefit (approximately 8% to 12%) when communicating between processes 

running within a multi-core processor as opposed to between cores on different processors.

In a multi-threaded program, each thread has its own execution flow, and all of the threads 

share the same memory space. This feature makes it quite attractive to develop multi-

threaded PDES systems to achieve better performance-messages can be transferred among 

threads directly within a process. However this can also lead to contention, e.g. on the 

Pending Event Set of each thread [Chen et al. 2011; Dickman et al. 2013], resulting in a 

great deal of overhead to deal with the contention.

NTW-MT was developed as part of the NEURON project (www.neuron.yale.edu). 

NEURON [Carnevale and Hines 2013; 2006] is a widely used simulator in the neuroscience 

community. It makes use of deterministic simulators for reaction-diffusion [McDougal et al. 

2013] and electrical models. NTW-MT is intended to provide a more realistic picture of 

smaller populations of molecules and will be connected to NEURON.

The remainder of this paper is organized as follows. Section 2 describes background and 

related work, section 3 is devoted to the architecture and algorithms in our simulator, and 

section 4 describes our experimental results. The conclusion and future work are presented 

in section 5.

2. BACKGROUND AND RELATED WORK

2.1. Stochastic Simulation

There are two types of tools that have been used for stochastic simulation in neurons, 

particle-based methods and lattice-based methods [Blackwell 2013]. In particle-based 

methods, the state of the system is the number and location of particles in the subcellular 

space. The location of a particle and the system time are governed by probability 

distributions, e.g. the distribution in [Blackwell 2013]. Particles engage in a reaction when 

they are close enough. MCell [Bartol Jr et al. 1991], Smoldyn [Andrews et al. 2010] and 

CDS [Byrne et al. 2010] are particle-based simulators. NSM is a lattice-based simulation, in 

which space is partitioned into mesh grids. Reactions can happen between molecules in the 

same grid and molecules can diffuse to adjacent grids. MesoRD [Hattne et al. 2005] is an 

implementation of NSM, STEPS [Hepburn et al. 2012] is a spatial extension of the SSA, and 

NeuroRD [Blackwell 2013] are based on a spatial extension of the Gillespie tau-leap 

algorithm. However, these tools focus on developing serial versions, while our intention is to 

produce parallel simulation capable of large scale simulations.
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2.2. Process-based PDES and XTW

In PDES, LPs are assigned to a collection of Processing Elements (PE)s, each of which is 

implemented by a process. A PE executes the events at the LPs in non-decreasing simulation 

time order. This is done in order to guarantee local causality. A pending events set in each 

PE is used to sort and store pending events. Many process-based PDES have appeared, 

including TWOS [Jefferson et al. 1987], GTW [Das et al. 1994], the CTW family [Avril and 

Tropper 1995; Xu and Tropper 2005; Patoary et al. 2014], Parsec [Bagrodia et al. 1998], 

ROSS [Carothers et al. 2002], μsik [Perumalla 2005], JAMES II [Himmelspach and 

Uhrmacher 2007] and YH-SUPE [Yao and Zhang 2008].

As to the selection of the synchronization protocol, [Dematté and Mazza 2008] points out 

that a conservative synchronization algorithm for a stochastic simulator will perform poorly 

because of the zero-lookahead property of the exponential distribution and the fact that a 

dependency graph of the reactions is likely to be highly connected and filled with loops. 

This indicates that an optimistic synchronization algorithm such as Time Warp [Jefferson 

1985] is preferable. [Wang et al. 2009] presents an experimental analysis of several 

optimistic protocols for the parallel simulation of a reaction-diffusion system. [Jeschke et al. 

2008] uses NSM in an optimistic simulation along with an adaptive time window. [Jeschke 

et al. 2011] compares the performance of spatial τ-leaping with that of NSM and Gillespie’s 

Multi-particle Method (GMPM) in terms of speedup and accuracy.

We previously developed a process based simulator, Neuron Time Warp (NTW) [Patoary et 

al. 2014], which makes use of a multi-level queue. We verified and examined its 

performance on a calcium buffer model and a predator-prey [Schinazi 1997] model. The 

queueing structure described in this paper and the one in [Patoary et al. 2014] are outgrowths 

of the multi-level queue described in XTW [Xu and Tropper 2005].

2.3. Multi-threaded PDES

In a multi-threaded PDES simulator, a PE is implemented by a thread which can be assigned 

to a process. We do not distinguish between a PE and a thread in the following. To date there 

are two main schemes for storing and sorting the pending events for each thread, a global 

queue and a separated (distributed) queue. In a global queue scheme, as shown in part (a) of 

Fig. 1, a number of threads share a single priority queue. This scheme attempts to achieve 

load sharing at the expense of contention at the queue. Threaded WARPED [Miller 2010] 

adopted this architecture. The main drawback of this scheme is that there is too much 

contention at the global queue, as demonstrated by Chen [Chen et al. 2011]. This results in 

excessive overhead caused by locking operations-up to 50%–90%. Because threads have to 

wait for the output from the global queue the scalability is poor. Moreover, it is possible to 

have several events at the same LP processed by several threads simultaneously, thus a lock 

on each individual LP must be employed in order to preserve consistency.

In a separated queue scheme, as shown in part (b) of Fig. 1, each worker thread has its own 

priority queue and only processes events from that queue, thereby eliminating contention at 

the queue. However, there are still concurrent operations on the priority queues arising from 

other threads in the same process. In order to avoid locking the contents of individual LPs, 
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each LP is mapped to only one thread. This may lead to a load-imbalance, so it is necessary 

to balance the workload for each thread and process. [Chen et al. 2011] adopts the separated 

queue scheme and proposes a global scheduling mechanism to balance the workload 

between the threads in the same process. However, a global schedule still allows 

simultaneous processing of events at individual LPs, necessitating a locking mechanism. 

ROSS-MT [Jagtap et al. 2012] also employs a separated queue and uses an input queue to 

store the events sent from other threads. Contention on the input queue remains high. A 

hybrid scheme [Dickman et al. 2013] combines the above two schemes by creating several 

priority queues within one process and mapping a subset of the threads to a single queue, as 

shown in part (c) of Fig. 1.

ROOT-Sim [Vitali et al. 2012] makes use of interrupts to cope with synchronization. It 

considers the concurrent access (arrival of new event) to LPs to be an interrupt. The response 

to this interrupt consists of two steps: (1) place the interrupt (and associated parameters) in a 

queue and (2) process and remove the interrupt from the queue. This approach can lead to 

high memory usage.

2.4. GVT algorithms for multi-threaded PDES

In Time Warp, Global Virtual Time (GVT) is used to eliminate events and states via fossil 
collection which are not necessary to effect a rollback. In a distributed platform, Mattern’s 

[Mattern 1993] and Samadi’s [Samadi 1985] algorithm can be used. Both of them compute 

GVT by two rounds of message passing. Mattern’s algorithm does not require 

acknowledgements for each message, thereby resulting in better performance. Fujimoto 

[Fujimoto and Hybinette 1997] proposed an efficient algorithm for shared memory 

multiprocessors. In this algorithm, if p processes participate in a simulation, any process can 

trigger GVT computing by setting a variable GVTFlag to p. Other processes periodically 

check this variable, report their local simulation time and decrease GVTFlag by 1. GVT is 

computed when GVTFlag equals to zero. However this algorithm requires all of the 

processes to reside within one shared memory cluster, which constrains the scale of 

simulation. In [Pellegrini and Quaglia 2014] the authors propose a wait-free GVT computing 

algorithm by splitting the GVT computing phase in [Fujimoto and Hybinette 1997] into 

three phases. Better performance is achieved than Fujimoto’s original algorithm.

In order to compute GVT in multi-threaded PDES systems, Ross-MT [Jagtap et al. 2012] 

uses an optimized barrier to block all of the threads at wall clock time T. This can result in 

long waiting times if the duration for processing a single event is long. Each thread in [Chen 

et al. 2011] can receive and send messages, thus Mattern’s algorithm is applicable. In 

Threaded WARPED [Miller 2010], a manager thread is responsible for calculating the local 

GVT at a threaded Warped node. When a GVT compute message arrives at a node, the 

manager thread suspends all of the simulation objects in that node (to make sure new 

messages are not created within that node) and then sets the Least Time-Stamped Event 

(LTSE) to be the local GVT of that node. The computing of local GVT in Threaded 

WARPED still operates with a barrier. Overall, the present GVT computing algorithms are 

suitable for either pure distributed or pure shared memory platform. Our simulator, NTW-

MT is a hybrid of shared and distributed memory platform and needs hybrid algorithms.
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3. ARCHITECTURE AND ALGORITHMS

We employ a separated priority queue scheme in our architecture. The simulator architecture 

is depicted in Fig. 2. One of the processes is a controller, exercising global control functions 

(GVT computation and load balancing). The remaining processes are worker processes 

which process the events at the LPs that reside in the process. Each worker process contains 

a communication thread and several processing threads. All of the worker processes have the 

same number of threads.

The communication thread sends and receives messages for the process which hosts this 

communication thread. Processing threads can neither send nor receive messages. After 

initialization, the communication thread receives messages from shared memory, in which 

case the the message is from a family process residing in the same node (see section 3.5) or 

via MPI from remote nodes. Control messages are the first messages to be processed. LPs 

then schedule external events by placing them into the send buffer of the communication 

thread. To avoid contention for this buffer, it is partitioned into m segments, where m is the 

number of processing threads. The ith processing thread can write only into the ith segment. 

The communication thread scans the segments in the buffer and then sends out the messages. 

At present, the communication thread sends only one message per segment (a fairness 

policy).

LPs are partitioned into m × n subsets, where n is the number of worker processes and m is 

the number of processing threads. Each subset is mapped to a processing thread. Each 

processing thread includes a LP List which stores the LPs associated with the thread, a 

Thread Event Queue (TEQ) used in Multi-Level Queuing (MLQ) algorithm presented in 

section 3.1, a Thread Memory Allocator which is involved in the Memory Management 

presented in section 3.3 and a Thread Function. The Thread Function is responsible for 

processing the events, and is presented in algorithm 1, where LVT refers to Local Virtual 

Time.

ALGORITHM 1

Processing sequence of a PE

while simulation is running do

  Dequeue an event e from Thread Event Queue;

  % RB-messages are special messages used for roll-back, see section 3.2.

  if e.type != RB-message then

    if e.receiveTime < e.targetLP.LVT then

      e.targetLP rolls back to a time point prior to e.receiveTime according to algorithm 2;

    end

    e.targetLP advances Local Virtual Time to e.receiveTime and processes e;

  else

    Process e according to RB-message-processing algorithm 3;

  end

  Fetch an event from e.targetLP according to Multi-Level Queuing algorithm;
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end

An event has two timestamps, the receive time and the send time [Jefferson 1985]. The 

events in the priority queue are sorted by their receive time. There are two types of events: 

internal events which are scheduled by internal processing threads and external events from 

external processing threads. As the processing threads share the same memory space, 

internal events use a pointer to identify LPs. A PE can use this pointer to access the LP 

directly. External events use an integer identifier to represent LPs. They are converted into 

internal events upon receipt by a communication thread and are then inserted into LPs.

3.1. Multi-Level Queuing

Every thread in a process can access any priority queue in the same process, which can 

cause excessive contention [Dickman et al. 2013]. To further aggravate matters, during a 

roll-back processed events with a timestamp greater than the receive time are re-enqueued in 

the priority queue. Two ways are used to alleviate this contention (1) decreasing the 

probability by which a few threads access the same queue simultaneously and (2) decreasing 

the cost of a single operation on a queue. In a stochastic neuronal simulation, the virtual time 

increment can vary from 0 to a large value. Consider the example in Fig. 3.

In Fig. 3 event (12,10) is a straggler at LP 15, and the dashed-lined-events at LP 16 are 

pending events. LP 16 has four pending events which would be stored in a queue. One may 

notice that it is not necessary to store and sort all four events in the TEQ-only event (18,14) 

needs to stay in the TEQ. There are several reasons for this: (1) some insertions in the TEQ 

can be omitted, decreasing the probability of contention. (2) the size of the TEQ can be 

controlled and the cost of an operation eliminated. Events (20,13) and (18,14) would be 

cancelled due to the roll-back of LP 15, hence sorting them is wasteful. (3) to cancel an 

event which would not access the TEQ decreases the probability of contention. Suppose that 

(1) a PE holds x LPs, numbered from 0 to x − 1 (2) Si is the Pending Event Set (PES) of LPi 

and that the events in Si are in non-decreasing order in receive time. The minimum pending 

event of LPi is minPEi. It is easy to prove that minPE in PES is equal to the min{minPEi, i = 

0, 1, ⋯, x−1}. Therefore the PE only needs to compare each minPEi to find minPE. This 

indicates that any LP only needs to have one representative event in TEQ. The remaining 

events are stored in the LP Event Queue (LPEQ). Each LP has a LPEQ and all the LPEQs 

are linked to the corresponding TEQ.

In a three-dimensional environment, space is partitioned by a mesh grid, resulting in a 

maximum of 6 neighbors for each LP. Molecules diffuse through channels (in this paper, 

channels refer to a path for diffusion between neighbouring sub-volumes, and they are not 

biological channels.) between these neighbors. We use an input channel to receive events 

from a neighbor and store them in an Input Channel Event Queue (ICEQ). All of the ICEQs 

are linked to the corresponding LPEQ.

To control the size of a queue, a lower level queue can only submit an urgent event 
(definition 1) to an upper level queue. A lower level queue records the unprocessed events 
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which have been submitted to an upper level queue, and checks to see if an event is urgent 

when it receives it. Every input channel has a variable submit of event pointer which refers 

to the lower bound of unprocessed events that have been submitted to its LPEQ. Every 

LPEQ has a stack structure submitTrack which traces the unprocessed events which have 

been submitted to its TEQ. At the input channel level, urgency is checked by comparing the 

receive time of event ex and submit of this channel. Because a LPEQ receives events from 

several input channels, it may submit several events to the TEQ, and there may be several 

pointers in submitTrack, hence urgency is checked by comparing the receive time of event ex 

and the top element of this stack. In a reaction-diffusion simulation an event can have 

smaller receive time than a predecessor, thereby leading to the creation of an urgent event 

(see the example below).

Definition 3.1—An event  in a queue  at level i is urgent if its receive time is less than 

the receive time of any events  in its upper level queue  at level j (j > i).

At this point, we have three level queuing architecture, as shown in part (b) of Fig. 2. The 

access to TEQ, LPEQ and ICEQ is mutually exclusive and we use mutexes to prevent 

concurrency problems on them, whereas only the host LP can access ICPQ (Input Channel 

Processed event Queue), thereby no concurrency problem on ICPQs. The queuing works as 

follows.

— In the initialize phase, the TEQ, LPEQ and input channels are constructed, 

submitTrack of LPEQ is empty and submit of input channel is set to 0. Each LP 

schedules an initial event to itself and adds it to its TEQ and then add the initial 
event to submitTrack.

— Any processing thread and communication thread can insert events into a LP. To 

insert an event e, a thread first identifies the target LPx by routing and checks if 

it is located in the same process. If not, this event will be added to the send 

buffer of the communication thread. If so it is inserted in the target LP as 

follows.

1. Apply memory, find the target LP LPx, fill in the Targetpointer field of 

this event by the pointer to LPx.

2. Determine the input channel channelx, fill in the Channel Pointer field 

of this event by the pointer to channelx, check whether it is urgent. If it 

is not urgent, insert it into ICEQ. Otherwise submit it to the LPEQ and 

update submit.

3. At the LPEQ level, check urgency. If it is not urgent, insert it into 

LPEQ. Otherwise submit it to TEQ and insert its pointer to the top of 

submitTrack.

4. At the TEQ level, insert this event into the TEQ.

— After processing an event from input channel channels, a PE fetches an event 

from channels to make sure that there is a representative in the LPEQ, updates 

submit of channels, then inserts the new event in the LPEQ. At the level of the 
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LPEQ, this PE checks submitTrack and the smallest event in LPEQ at that time 

to determine whether to submit an event to the TEQ or not.

In the example in Fig. 3, LP 16 has two neighbors LP 15 and 17. Event (19, 11) comes from 

LP 15, arriving at channel [16, 15] (a channel is marked in the format [host LP, source LP]), 

finds submit of this channel to be 0, and is submitted to the LPEQ of LP 16, submit is set to 

(19, 11); submitTrack of LPEQ 16 is empty. Then this event is submitted to TEQ, the pointer 

to (19, 11) is pushed at the top of submitTrack and the insertion of (19, 11) now ends. It is in 

the TEQ, where it at time T1. Then event (20, 13) arrives at channel [16, 15]. It is not urgent 

and thus stays in ICEQ. This insertion ends at time T2. Event (18, 14) arrives, and is found 

to be urgent for channel [16, 15], then it is submitted to the LPEQ; it is also urgent for LPEQ 

16, and is submitted to the TEQ. The top of submitTrack becomes the pointer to event (18, 

14) at time T3. Event (18.5, 16) from LP 17 arrives at channel [16, 17], finds submit to be 0, 

and is submitted to LPEQ 16. submit is set as a pointer to (18.5, 16) at time T4. The 

successive insertions depend upon the relationship of the above time points.

— T4 < T1, this implies this event arrives before any events from LP 15. (18.5, 16) 

will be submitted to TEQ, (19, 11) will stay at LPEQ 16, (18, 14) will be 

submitted to TEQ, (20, 13) stays at ICEQ [16, 15]. top of submitTrack is pointer 

to (18, 14) followed by pointer to (18.5, 16).

— T1 < T4 < T3, event (18.5, 16) is urgent and will be submitted to TEQ. Event 

(18, 14) is also urgent when it arrives at LPEQ 16. In this case, there are three 

events, (18, 14), (18.5, 16) and (19, 11), in TEQ.

— T3 < T4, event (18.5, 16) is not urgent when it arrives at LPEQ 16, thus stays at 

LPEQ 16. Two event, (19, 11) and (18, 14) are submitted to TEQ.

3.2. RB-massage and Roll Back

XTW [Xu and Tropper 2005] uses one RB-message to cancel incorrect events instead of 

sending a series of anti-messages, eliminating the need for an output queue at each LP 

thereby reducing the overhead of a roll-back.

When a LP receives a straggler, it rolls back to a time point in prior to the straggler and then 

processes the straggler, as shown in algorithm 2. A LP does not store the processed events 

which were scheduled by itself. Processed events scheduled by other LPs are stored in the 

appropriate Input Channel Processed Queue (ICPQ).

ALGORITHM 2

Steps for roll-back caused by stragglers, head is the smallest event in any queue, rt (st) is 

receive time (send time) of an event

Input: Roll-back time rbt (receive time of the straggler message), straggler message straggler.

Output: The next event smallest of this LP.

Search the latest valid state s prior to rbt with timestamp t1;

Recover LVT of this LP to t1, recover state to s;

counter = 0;

Lin et al. Page 9

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for channel ch in input channel list do

  Recover events with receive time greater than t1 to ch.ICEQ from ch.ICPQ;

  if ch.ICEQ.head.rt < ch.submit.rt then

    Submit the smallest event to LPEQ from ch.ICEQ and update ch.submit;

    counter++;

  end

  if ch.scheduleHistory ≥ LVT then

    Send a RB-message (RB_PRIORITY, LVT) to ch.neighbour;

    ch.scheduleHistory=LVT;

  end

end

if counter > 0 then

  Re-enqueue straggler into LPEQ;

  Dequeue the smallest event from LPEQ as smallest;

else

  Return straggler as the smallest event;

end

In the above example, the message (12, 10) sent by LP 10 to LP 15 is a straggler, so LP 15 

should roll back to a point in time before time 12. Suppose a state at 11.5 is found, and the 

states with timestamp greater than 11.5 are released. After that, LP 15 recovers processed 

events with timestamp greater than 11.5, finds the smallest event and sends RB-messages to 

its neighbors, LP 16 and LP 25. However, it is not really necessary to send a RB message to 

every neighbour; we use a variable ScheduleHistory (SH) [Patoary et al. 2014] in the input 

channel in Fig. 2. SH records the upper bound of the send times of events sent to a LP. The 

use of SH can avoid sending unnecessary RB messages, see the example below.

RB-messages have a higher priority RB_PRIORITY, a negative real constant, than other 

normal events, the send time of RB-message is set as the present LVT of the LP that sends it. 

A RB-message (RB_PRIORITY, trb) sent from LP x to LP y announces that LP x has rolled 

back to trb, then the pre-sent events with send time greater than trb becomes invalid. LP y 
follows the steps in algorithm 3 to process RB-messages.

ALGORITHM 3

Steps for processing a RB-message, tail refers to the element with the greatest timestamp in 

a queue

Input: The RB-message rb

if rb.channel.ICPQ.tail.st < rb.st then

  Remove events with send time greater than or equal to rb.st in ICEQ and LPEQ;

  for event es in SubmitTrack do

    if es.channel == rb.channel & es.st ≥ rb.st then

      Remove es in TEQ;
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    end

  end

  if rb.channel.submit.st ≥ rb.st then

    rb.channel submits its smallest event to upper level queue and updates submit;

  end

else

  Search cut-point ecut in rb.channel.ICPQ;

  rbt = −1;

  if ecut is not NIL then

    rbt = ecut.rt;

  else

    rbt = rb.st;

  end

  rb.targetLP rolls back to a time point prior to rbt according to algorithm 4;

end

smallest = the smallest event in LPEQ;

if submitTrack is empty | smallest.rt < submitTrack.top.rt then

  Submit smallest to TEQ and push it to submitTrack;

end

The processing of a RB-message depends upon whether or not invalid events have been 

processed.

— The invalid events have not been processed. These events are removed and 

submit event to upper level queue if necessary. In the above example, a RB-

message (RB_PRIORITY, 12) will be sent by LP 15 to LP 16. Events (20, 13) 

and (18, 14) become invalid, while event (19, 11) is valid. The invalid events are 

removed from the queue in LP 16. This kind of RB-message does not interfere 

other LPs, for no successive rollback is triggered, thus we call it friendly RB-

message.

— The invalid events have been partly or totally processed. A roll-back is triggered, 

thus we call it aggressive RB-message. The send time of the RB-message is used 

to find the cut-point in the ICPQ, such that all events with a send time larger 

than the send time of the RB-message are after the cut-point. The LP sets the 

rollbacktime equal to the receive time of the first event after the cut − point. In 

the above example, a RB-message (RB_PRIORITY, 12) will be sent by LP 15 to 

LP 25, the events (19, 13.5) and (27, 15) become invalid while (19, 13.5) has 

been processed. A secondary roll-back is triggered and LP 25 follows steps in 

algorithm 4 to handle the roll-back.

ALGORITHM 4

Steps for roll-back triggered by a RB-message

Input: Roll-back time rbt, the RB-message rb
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Output: the number of events recovered to LPEQ nRecovered

Search the latest valid state s prior to rbt with timestamp t1;

Recover LVT of this LP to t1, recover state to s;

nRecovered = 0;

for channel ch in input channel list do

  if ch == rb.channel then

    Remove all ordinary events with send time greater than or equal to rb.st in ch.ICEQ,

      ch.ICPQ, LPEQ and TEQ;

    Recover events with receive time greater than t1 to ch.ICEQ from ch.ICPQ;

    if ch.submit.st ≥ rb.st & ch.ICEQ is not empty then

      Submit the smallest event in ch.ICEQ to LPEQ and update ch.submit;

      nRecovered++;

    end

  else

    Recover events with receive time greater than t1 to ch.ICEQ from ch.ICPQ;

  end

  if ch.ICEQ.head.rt < submit.rt then

    Submit the smallest event in ch.ICEQ to LPEQ and update ch.submit;

    nRecovered++;

  end

  if ch.scheduleHistory ≥ LVT then

    Send a RB-message (RB_PRIORITY, LVT) to ch.neighbour;

    Set ch.scheduleHistory to LVT;

  end

end

The basic operation of RB-rollback is the same as that of a roll-back triggered by a straggler, 

except for the recovery of processed events. The input channel which received the RB-

message removes all of the events with a send time greater than the send time of the RB-

message. Otherwise it moves the processed events with receive time greater than rollback 
time from ICPQ to ICEQ. Sending a RB-message is necessary for either type of roll-back. 

The ScheduleHistory of channel [25, 20] is 21. Suppose that the first event after the cut
−point is (22, 10.5). LP 25 will roll back to time 22, because 22 > 21 and no RB-message 

will be sent from LP 25 to LP 20. If the rollback time is 19, a RB-message (RB_PRIORITY, 

19) will be sent to LP 20 by LP 25, and LP 20 applies the above steps to process this RB-

message again. Our use of multi-level queue and RB-message is an extension of [Xu and 

Tropper 2005].

3.3. Memory Management

There are two problems that are important to focus on when designing a memory 

management system for PDES. First, PDES involves frequent memory allocations and 

deallocations, resulting in frequent locking and unlocking of memory. Second, sending data 

from one LP to another leads to cache misses if the target LP is located far from the sender 
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LP. These problems led us to try and eliminate locking when allocating and de-allocating 

memory and to try to maximize cache locality.

In order to process an event e, both e and the LP which processes e, say LPx, should be in 

cache. Also, when an LP, say LP y, schedules an event e2, there will be fewer write misses if 

e2 is near LP y.

To achieve the first goal, assigning each thread a memory buffer is enough, LPs in that 

thread can allocate memory from this buffer when they schedule events. However this 

scheme will increase cache misses because the buffer is shared by all of the LPs in the 

thread, and an event from this buffer can be far from a LP. When scheduling inter-thread 

messages, both the sender LP and the receiver LP may be far from the scheduled event.

A simple approach is to split the buffer into slices and to assign a slice to each LP, requiring 

that an LP only allocate memory from its private slice. Hence each LP owns a private buffer 

that is near to its data and there will be fewer write misses when an LP schedules an event.

When a LP x deallocates an event e, it can return e to the sender LP y or to its own buffer. 

However it is not wise to return e to the sender LP y, because LP y may be in another thread, 

and be allocating memory for another LP at that time (otherwise we need a lock on the 

buffer of any LP). LP x can return e to its own buffer and there would be no need for a lock. 

Once an event e has been deallocated, it can be reused by LP x. Now suppose that LP x 
schedules an event for LP z, and that this event uses the memory from e (note that e is from 

the buffer of LP y), e is far from both LP x and z.

The connection of LPs is static in our reaction diffusion simulations. Hence we can split the 

buffer of each LP into slices and bind each slice to an input channel. Memory is then 

allocated and deallocated to the slice. In this way we can achieve the two goals, as we see in 

the example in Fig. 4.

Fig. 4 shows three LPs which are distributed to three threads, and they schedule events and 

allocate memory as follows.

1. LP x schedules an event for LP y, and the memory is allocated from the channel 

buffer allocated to LP y. This event is nearby LP x, thus there are fewer write 

misses. Note that LP x is in cache.

2. LP y returns this memory to the channel buffer allocated to LP x. LP y has 

exclusive access to this buffer, thus no locks are needed.

3. LP y allocates events for LP x from the corresponding channel. This event is 

nearby LP x, hence there are fewer read misses when LP x processes this event.

We see that the memory for events is near either the sender or the receiver LP, and no lock is 

needed. It is possible for an event to be near both the sender and receiver LPs if the two LPs 

are in the same thread.
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We use on-the-fly fossil collection [Fujimoto and Hybinette 1997]. There is no explicit fossil 

collection (otherwise we traverse all of the LPs to reclaim memory). The allocation of events 

is as follows:

1. A LP inserts any processed events into corresponding ICPQ after processed.

2. The pre-allocated memory is pushed into a free buffer in each channel after 

initialized, and a LP allocates memory from this free buffer first.

3. If there is no free event available in the free buffer, it checks available event 

memory in ICPQ (any processed event with a timestamp less than GVT becomes 

available).

4. A processing thread also has a memory allocator (see Fig. 2), and a LP uses this 

allocator to get event memory if the above steps failed.

3.4. Asynchronous GVT Computing

Since a processing thread can neither send nor receive external events directly, it is not aware 

of external message passing. Additionally there is simultaneous reporting problem in GVT 

computing as Fig. 5 shows.

In Fig. 5, in order to compute a local GVT [Fujimoto 1999] the communication thread 

begins to check TEQi at wallclock time T1 and leaves TEQi at wallclock time . It then 

checks TEQj at wallclock time T4, . Processing thread j schedules an event with 

timestamp10 to thread i at wallclock time T2 and thread k schedules an event with 

timestamp15 at thread j at wallclock time T3. Suppose these time points satisfy the order 

 (this circumstance happens due to arbitrary order of locking and unlocking 

TEQs), then the event with timestamp 10 is not accounted for, resulting in an incorrect local 

GVT value, say 12. The point is that events sent between threads during a GVT computation 

in a process must be accounted for.

The message flow and corresponding data structure for computing GVT is depicted in Fig. 

6. Each worker process holds two sets of variables for the GVT computation; (color, 

whiteCount, minRed), which is used for interprocess communication, and (GVTFlag, 

localGVT) which, along with the minSend and localMin variable in each processing thread 

is used to find local GVT in each worker process.

In Mattern’s algorithm, a process can be either red or white. At the beginning, all processes 

are white. A white process becomes red when it receives a GVT-CUT message, while a red 
process becomes white when it receives a GVT-broadcast message notifying it of the latest 

GVT value. Messages take on the color of the sending process. A GVT-CUT message is 

used to notify all worker processes to start a GVT computation. A cut message has two 

fields (tempGVT, count), where tempGVT is the the latest GVT and count is the number of 

white messages sent but not received since the last GVT. The controller process triggers a 

GVT computation by sending a GVT-CUT message (∞, 0) to the first worker process every 

TGVT seconds. Upon receiving an external message, a worker process counts the number of 

white messages received since the last GVT. It follows the steps in algorithm 5 to receive a 
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GVT-CUT message. In Fujimoto’s algorithm, a process checks the GVTFlag variable before 

processing an event and updates its local GVT if GVTFlag is greater than zero. A process 

computes GVT if that process is red. It then inserts a GVT-CMP message into the TEQ of 

each processing thread. A GVT-CMP message is a special control message which requires 

each processing thread to report its local GVT. Hence each processing thread only modifies 

the GVTflag and updates its local minimum timestamp once during a GVT computation.

ALGORITHM 5

Steps for communication thread receiving an external event

Input: External event e received via shared memory or MPI

if e is a non-control message then

  if e.color == WHITE then

    whiteCount−;

  end

else

  % Only the GVT-computing-related message is described here

  if e.type == GVT-CUT then

    Set color of this process to RED;

    Set localGVT to e.tempGVT, cache e.count;

    % write lock on GVTFlag

    Set GVTFlag to the number of processing threads m;

    for processing thread T in the same process do

      Insert a GVT – CMP message into the TEQ of T;

    end

  end

end

A processing thread reports its local GVT value while processing a GVT-CMP messages in 

its TEQ, as depicted in algorithm 6, and records this value in its localMin variable. The local 

GVT value in a processing thread is the minimum of the smallest receive time of the 

pending events in the TEQ and the smallest send time of the RB-messages in the TEQ. Note 

that the current event being processed by this thread is the GVT-CMT event, thus there are 

no partially processed ordinary events in this thread. The processing thread updates the 

localMin value and decreases GVTFlag by 1. When the GVTFlag equals zero all of the 

processing threads in a process have reported their GVT values. The processing thread that 

decreases the GVTFlag to zero inserts a GVT-CUT message into the send buffer of the 

communication thread in order to indicate that the local computing is finished. The steps are 

shown in algorithm 6. When a processing thread schedules normal events to other 

processing threads within the same process, it checks GVTFlag and updates its minSend 
variable if GVTFlag is greater than zero, as presented in algorithm 7. Here we can see 

simultaneous access and modification to GVTFlag by threads in the same process, 

necessitating concurrency protection on it. Note that GVTFlag can be accessed when a 

thread schedules internal events and modified only when that process is computing GVT, 

which indicates that read access is much more than write access. Based on this observation, 

Lin et al. Page 15

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we use a read-write spin lock on GVTFlag to improve performance in our simulator, and the 

lock operations are marked in algorithm 5, 6 and 7.

ALGORITHM 6

Steps for processing threads processing a GVT – CMP message

Set t1 to the smallest receive time of ordinary events in TEQ;

Set t2 to the smallest send time of RB-messages in TEQ;

Set localMin to min(localMin, t1, t2);

% write lock on GVTFlag

GVTFlag−;

% read lock on GVTFlag

if GVTFlag == 0 then

  Insert a GVT – CUT message in the send buffer of the communication thread;

end

ALGORITHM 7

Steps for processing threads scheduling internal events

Insert event e to target LP by Multi-Level Queuing algorithm;

% read lock on GVTFlag

if GVTFlag > 0 then

  if e.type == RB-message then

    minSend=min(minSend, e.st);

  else

    minSend=min(minSend, e.rt);

  end

end

A communication thread follows the steps in algorithm 8 to compute its local GVT when 

sending inter-process messages. For ordinary messages, it counts the number of white 
messages sent and received since the last GVT and updates the minimum among receive 

time (send time of RB-message) of red messages sent since the latest round of GVT 

computing. The final value of the local GVT in a process is calculated when the 

communication thread sends out a GVT-CUT message. The localGVT value is the minimum 

among localGVT and localMin, minSend in each processing thread. Then it forwards a 

GVT-CUT message (localGVT, count) to the next worker process, resets count to zero and 

localMin, minSend in each processing thread to ∞.

GVT-CUT messages are passed from one worker process to another and eventually return to 

the controller process. The controller process checks whether the count field in the received 

GVT-CUT message equals zero. If it does, a new GVT value tempGVT in the received 

GVT-CUT message is obtained and the controller process broadcasts this value to all of the 

worker processes. Otherwise (some transient messages were missed in this round) the 
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controller process forwards this GVT-CUT message to the first worker process and triggers a 

new round.

ALGORITHM 8

Steps for communication thread sending external events

Input: External event e to be sent

if e is a non-control message then

  if e.color == WHITE then

    whiteCount++;

  else

    if e.type == RB-message then

      minRed=min(minRed, e.st);

    else

      minRed=min(minRed, e.rt);

    end

  end

else

  if e.type == GVT-CUT then

    for processing thread T in the same process do

      localGVT=min(localGVT, T.localMin, T.minSend);

    end

    Set count to the sum of whiteCount and cached count;

    whiteCount=0;

    localGVT=min(localGVT, minRed);

    Forward a GVT-CUT message (localGVT, count) to the next process;

  end

end

A worker process becomes white when it receives a GVT broadcast message. It then updates 

its GVT value to the received value and resets color to white, minRed to ∞, and whiteCount 
to zero.

A correctness proof to this asynchronous GVT algorithm can be found in online appendix.

3.5. Hybrid Communication

We call the worker processes located in the same node a family. In part (a) of Fig. 2, assume 

that there are c processes in a node. The shared memory is partitioned into c segments, 

numbered 0, 1, ⋯, c − 1, Each process uses one of the segments as its receive buffer. Each 

segment has a semaphore associated with it to control access to the segment. For example, 

when process 0 is about to send data to its family member process 2, process 0 needs to hold 

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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the semaphore for process 2, after which it releases the semaphore when it is finished 

writing. When receiving data, process 0 must hold the semaphore.

Together, we have three-level communication mechanism, communication between threads 

within same process is completed by pointers, to shared memory for processes in the same 

node, and by MPI for remote processes.

4. EXPERIMENTS AND RESULTS

4.1. Platform

We use two platforms. One machine (PEPI) is a cluster node with 4 Intel(R) Xeon(R) E7 

4860 2.27 GHz, 10 cores per processor, 1 TB memory, with Linux 2.6.32-358.2.1.el6.x86 

64, Red Hat Enterprise Linux Server release 6.4 (Santiago). The other is the SW2 node (of 

Guillimin at McGill HPC center), consisting of two Dual Intel(R) Sandy Bridge EP E5-2670 

2.6 GHz CPUs, 8 cores per processor, 8 GB of memory per core, and a Non-blocking QDR 

InfiniBand network with 40 Gbps between nodes. The node runs Linux 

2.6.32-279.22.1.el6.x86_64 GNU/Linux.

4.2. Verification

Free calcium is buffered by intracellular buffers (e.g. calmodulin or parvalbumin) and is 

therefore unavailable. However, it can escape from these buffers, resulting in an almost 

constant concentration of cytosolic calcium. This observation can be used to verify our 

simulator. The buffer model includes two reactions as follows.

We executed this buffer model using the deterministic NEURON simulator on a ”Y” shaped 

geometry which consists of three cylinders (10 µm long, 1 µm diameter, and a sketch can be 

found in [Patoary et al. 2014]). To show spatial effects, we initialize high concentration of 

free calcium in one cylinder and low concentration in the remaining two cylinders, and then 

trace the evolution of the molecules. The initial high and low concentration of Ca2+ is set to 

1.0 mM and 0.1 mM, while the concentration of Buf and CaBuf is set to 0.5 mM and 0.001 

mM everywhere. The reaction rates kf and kb are set to 0.06 and 0.01. In NTW-MT, the 

geometry is partitioned into 2766 sub-volumes, and the length of each subvolume is 0.25 

µm. High concentration of Ca2+ is initialized in the first 922 sub-volumes (922/2766=1/3) by 

setting 10 molecules in each of those subvolumes, while 1 calcium molecule is set in each of 

the remaining 1844 sub-volumes. The initial numbers of Buf and CaBuf molecules in each 

subvolume are set to 5 and 0, respectively. From Fig. 7, we can see that the stochastic 

approach exhibits a similar behavior to the deterministic approach.

4.3. Calcium waves

Calcium plays a very important role in regulating a great variety of cellular processes, from 

fertilization through gene transcription, muscle contraction to cell death. Calcium for 

signaling is sourced from both extracellular calcium that enters through the cell membrane, 
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and from intracellular sources [Berridge 1998]. Some major intracellular sources are 

accessed though Ca2+-induced-Ca2+-release (CICR) [Berridge 1998; Roderick et al. 2003]. 

A brief introduction to the intracellular CICR dynamics is given in the online appendix. 

CICR can happen spontaneously at a local spot within cells even without any external 

stimulation [Ross 2012], this kind of localized CICR event is observed and called as ”spark” 

[Cheng et al. 1993] or ”puff” [Parker and Ivorra 1990]. This type of local event occurs 

stochastically in both temporal and spatial dimensions. In reproducing such events, a 

stochastic simulation should be employed.

4.4. Calcium wave model

A deterministic CICR model has been developed in NEURON [Neymotin et al. 2015]. 

Based on this model we developed a discrete event model and simulated it. In our 

experiments we only take the Inositol 1,4,5-triphosphate (IP3) and Ca2+ into account. 

Because the real CICR model is complex and we cannot use the differential equations 

directly, we simplified it by assuming (1) the IP3 receptor opens when the concentration of 

IP3 and Ca2+ are both higher than some respective threshold and (2) an opening IP3 receptor 

channel will close for a period of time determined by an exponential distribution. To be 

more specific, once when the two thresholds are reached in a subvolume, the IP3 receptor 

opens in that subvolume opens immediately and will close in a duration 10 × ln(u), u ~ U(0, 

1). The reactions include:

where  refers to Ca2+ in Endoplasmic Reticulum (ER),  refers to Ca2+ in cytosol, 

[•] refers to the concentration of the corresponding species •, m = [IP3]/([IP3]+kIP3), 

, kIP3, kact, νIP3R, νleak, νSERCA and kSERCA are given constant 

parameters, the value can be found in [Neymotin et al. 2015] and listed in online appendix. 

 can only diffuse within ER, cytosolic Ca2+ and IP3 can only diffuse within cytosol.

The initial concentrations of Ca2+ (in the ER and cytosol) and IP3 are set to 9.511765 µM, 

0.1 µM and 0.1 µM respectively. In each subvolume, 17% of the volume is the ER while the 

remaining 83% is cytosol. The threshold for controlling the channel opening is 0.2 µM and 2 

µM for cytosolic Ca2+ and IP3, respectively.

We made use of the following scenario. In the beginning both the concentrations of cytosolic 

Ca2+ and IP3 are less than their respective threshold. At some time point, we inject IP3 
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molecules into the middle 8 sub-volumes by adding 50 µM IP3 molecules to those sub-

volumes to trigger the release reaction in those sub-volumes. We ran this simplified model 

on a one-dimensional geometry to give an example, the figures are shown in the online 

appendix. As those appended figures show, this simplified model can produce a calcium 

wave as expected.

4.5. Geometry

We simulate the intracellular Ca2+ wave in a CA1 hippocampal pyramidal neuron [Ishizuka 

et al. 1995]. The hippocampal pyramidal neuron used in our experiment is taken from 

NeuroMorpho.Org [Ascoli et al. 2007] (NO. c91662), and a three-dimensional view of this 

neuron is given in online appendix. The neuron is partitioned into mesh grids, and each grid 

is taken to be a subvolume. In general, the topology of a network of cells can play an 

important role as, for example, it can be difficult to partition the space into cubes. 

Algorithms from computer graphics, such as the marching cubes algorithm, can be 

employed to deal with this issue. We select 14749 sub-volumes with a distance of less than 

50 µm from soma (a three-dimension view of the selected region is also given in online 

appendix.), and the length of each subvolume to be 0.5 µm. The sub-volumes are evenly 

distributed among the processing threads.

4.6. Performance

The performance of NTW-MT is compared to two other versions. One is a process-based 

parallel simulator which uses a controller process to calculate GVT. Memory operations 

employ the standard new and delete mechanism. A thread+SQ version uses threads but does 

not use the MLQ algorithm. Each thread uses a single priority queue to hold the pending 

events. We know from [Xu and Tropper 2005] that RB messages result in superior 

performance when compared to anti-messages and do not compare the simulator to one with 

anti-messages.

In the thread+SQ case, when 32 processing threads are used, a roll-back avalanche occurs. 

This phenomenon is much more serious for the process-based version, which essentially 

cannot get beyond 8 processes. We consider these results inaccurate in terms of performance 

and do not include them.

The placement of threads is an important issue, it affects the memory usage and 

communication. We consider three placements- (1) within process in which all of the 

processing threads are in the same process, thereby no interprocess events; (2) within node 
in which processes exchange messages via shared memory; (3) hybrid respectively which 

makes use of MPI for remote processes and the preceding techniques otherwise.

4.6.1. within Process Mode—We run this experiment in the PEPI machine by starting 

up two processes, one controller and one worker process, and creating the processing threads 

within the worker process. The results are shown in Fig. 8.

From Fig. 8(a), we can see that the execution time decreases with an increase in the number 

of processing threads. The process-based version is slowest because each process receives 

and sends events in the main processing loop and communication is time-consuming.
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When fewer than 8 processing threads are involved in the simulation, the thread+MLQ 

version is slower than the thread+SQ version. The greatest difference (about 13%) occurs 

when one processing thread is used. Because the essence of MLQ is the dispersion of 

contention on a single queue, it is of no use if there is no contention.

rollbacks increase for all of the versions in Fig. 8(b). The process-based version suffers more 

rollbacks (25%–35%) than the other two versions. The roll-back of the two thread version is 

almost same in the few thread cases, while the MLQ version experienced fewer (around 

18%) rollbacks than the SQ version. The events are inserted into thread queue directly in the 

SQ version resulting in a greater delay.

The size of the TEQ scales well-it contains no more than 1.5 times the average number of 

LPs per processing thread. Hence the access time for the TEQ is well controlled, see Fig. 

9(a). In the MLQ algorithm, an event insertion may end at different levels of the queuing 

system-the input channel, the LPEQ and the TEQ. Define the hit rate of a level to be the 

proportion of insertions ending at each level. In the process-based and thread+SQ version, 

all of the events are inserted into the thread queue. From Fig. 9(b), we can see that most 

insertions end at the LPEQ when more than 8 threads are used, suggesting that the 

contention is dispersed.

A roll-back is caused by either a straggler or an anti-message. In our implementation, we 

replace a sequence of anti-messages by a single RB-message, which decrease the number of 

events in the whole system. In Fig. 10, let r, rp and rs denote the total number of roll-back, 

roll-back caused by straggler, and roll-back caused by RB-messages. Let rm, rmf and rma 

denote the total number of RB-messages, the number of friendly RB-messages and the 

number of aggressive RB-messages, then we have r = rp + rs and rm = rmf + rma.

From Fig. 10, we can see that when all of the processing threads are in the same process, the 

roll-back triggered by a straggler shows a gradual increase. This is because event insertion is 

done by pointer and contention on priority queues is dispersed, thus communication delay is 

negligible.

There are three obvious crossover points in Fig. 10. The first one happens between the total 

roll-back and total RB-message curves. Before the crossover the two curves are similar, 

implying that a roll-back causes a RB-message. However, after the crossover a roll-back can 

result in several RB messages due to imbalanced execution of processing threads. The 

second one happens between the number of friendly RB-message and roll-back by straggler 

curves. Before the crossover the number of friendly RB-messages is low, which implies that 

most RB messages are triggered by secondary rollbacks. Both of the crossover points take 

place when 7 processing threads are involved. The explanation for this is as follows. In a 

three-dimensional grid one subvolume can have no more than 6 adjacent sub-volumes, 

resulting in at most 7 threads inserting events at an individual LP simultaneously. Let μ = 

number of processing threads/7 as the mean concurrency at a LP, if μ ≤ 1, a LP receives one 

event in an event-processing cycle on average and sends only one RB-message on average 

once it rolled back (see the usage of the ScheduleHistory variable in section 3.2); in contrast 

a LP sends more than one RB-message during rolling back if μ > 1. The third one happens 
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between the roll-back by straggler and the roll-back by RB-message curves. Before the 

crossover, roll-back triggered by a straggler dominates, while roll-back by RB-message 

increases after the crossover point. Note that after the third cross point, a LP can receive 

twice the number of events in an event processing cycle on average, thus the roll-back by RB 

message exhibits a sharp increase.

4.6.2. within Node Mode—All of the processes reside in the same node and transfer 

external messages via shared memory. This experiment was done on the PEPI machine.

From Fig. 11(a), we see that placing more threads in the same process results in better 

performance. This is reasonable because less interprocess communication is used. However, 

comparing these results to those obtained by placing all of the processing threads in the 

same process, we do not see a great difference. The combination of communication threads 

and shared memory results in a short latency.

4.6.3. Hybrid Mode—The number of threads is limited by the number of physical cores in 

a node. The obvious conclusion is that several nodes must be employed in a large scale 

simulation. We conducted such a hybrid experiment on the Guillimin machine and used the 

MPI option ppn (process per node) to dispatch worker processes to nodes.

The Guillimin machine uses a well-optimized infiniBand for remote communication. From 

the results in Fig. 12(a), we again see that placing all of the processing threads in the same 

process results in the best performance. When remote communication is involved, 

performance decreases and the number of rollbacks increases.

In the purely remote communication case, the send buffer of the communication thread 

overflows when more than 8 threads are in the same process. One communication thread 

cannot accommodate 8 or more processing threads. This indicates the importance of 

determining the number of processing threads in one worker process.

4.6.4. Scalability—To determine the scalability of NTW-MT for larger geometries, we 

increase the total number of LPs in the simulation. This is done by selecting subvolumes in a 

larger region around the soma of the CA1 neuron. There are 23547 subvolumes within a 

radius 120 μm from the soma of the CA1 neuron. We ran the model with same scenario in 

Guillimin in hybrid mode; the results are depicted in Fig. 13.

Comparing Fig. 12(a) and 13(a), the total number of LPs increases, resulting an increase in 

total execution time, whereas the two curves show similar shape. The number of rollbacks is 

low when 2 threads are used, so their role in estimating their contribution to the execution 

time can be ignored. Note that there is almost no contention when one thread is used, hence 

we do not use the execution time of one thread case to make estimates. Since the initial 

condition, scenario parameters and end condition are same in the two runs, we assume that 

the mean computational cost of an individual LP during the simulation is approximately the 

same, and that the execution consists of two parts-a computational part (tc) and an overhead 

part (to). Let θ be the ratio of number of LPs in the two geometries, θ = 23547/14749 ≈ 1.6. 

When 2 threads are used, the bigger geometry has an execution time of about 1.9 times the 
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execution time of the small geometry, tb = 1.9ts (the superscript b refers to bigger geometry), 

, then . We see that the 

overhead in the bigger geometry plays a bigger role than in the smaller geometry. There are 

four major reasons for this: (1) more events were scheduled in the bigger geometry, leading 

to more time spent in allocating memory for events and writing events; (2) the LPEQ and 

ICEQ are protected by mutexes (section 3.1), there are more locking and unlocking 

operations when more LPs are involved; (3) the size of the TEQ increases with the number 

of LPs (the size of the LPEQ and the ICEQ depends on the number of neighbors (6), and has 

little to do with the total number of LPs). As a result it takes more time to operate on the 

TEQs (we use STL multiset). The STL multiset is implemented as a Red-Black tree. The 

cost of a single operation is proportional to log2(q), where q is the number of elements in the 

queue. From the analysis in section 4.6.1, the size of the TEQ is about 1.5 times as the 

number of LPs in a thread, then η = log2(1.5 × 23547/2)/log2(1.5 × 14749/2) ≈ 1.05. (4) 

more LPs consume more memory, which may lead to more cache misses.

When 16 threads are used the execution time for the bigger geometry is about 2.45 times 

that of the smaller one. When using either 2 or 16 threads the number of rollbacks for the 

larger geometry is much higher than for the smaller geometry. This is because rollbacks in 

the bigger geometry have longer ”rollback chains”. A rollback chain is a list of LPs such that 

a primary rollback of the header LP leads to secondary rollbacks at the successive LPs in the 

list. In a bigger geometry, because there are more LPs which cover a wider spatial region, a 

rollback can spread further.

4.6.5. CICR Model + Channel State Transition Model—An IP3R channel is a 

tetramer of four IP3R molecules [Foskett et al. 2007]. Each IP3R molecule is a linear amino 

acid sequence. The four molecules have a pore in their center, allowing Ca2+ to flow through 

the pore when the channel is open. In each IP3R molecule (subunit), there are three sites: 

one binds with IP3 for activation, another binds with cytsolic Ca2+ for activation while the 

last binds with cytsolic Ca2+ for inactivation. A subunit is activated if both activation sites 

are bound and the inactivation site is not bound. An activated subunit becomes inactivated 

when the inactivation site is bound. The conductance of an IP3R channel is proportional to 

the number of activated subunits, and a channel is considered as open if three of the four 

subunits are activated [De Young and Keizer 1992]. Since the binding and unbinding rate of 

activation sites is much faster than the inactivation site (on the order of 2000 and 10 

respectively [Li and Rinzel 1994]), we assume that the two activation sites are in a dynamic 

steady state (the number of bound sites is almost constant) before the inactivation site is 

bound. More details can be found in the online appendix.

The binding and unbinding rate of the inactivation site is related to the concentration of the 

cytosolic Ca2+. From [Neymotin et al. 2015] we know that an inactivation site is bound with 

Ca2+ at a rate kb=(1−hinf)/τ, and is unbound at a rate ku=hinf/τ, where hinf is computed as 

, Kinh and τ are given constant. An inactivation site can be in a bound 

(1) or an unbound (0) state. Hence an individual IP3R can be in one of the 8 states sijk, where 

i, j, k is 0 or 1, and only the state s000 allows Ca2+ to flow from the ER to the cytosol. As a 
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result, there are 12 bidirectional reactions for the state transition of an individual IP3R as 

follows.

As a (sanity) check for the state transition of the subunits, we initialize 8 × k IP3R channels 

in each subvolume (k channels in each state), use 200 sub-volumes in a linear geometry, 

inhibit release, leak and pumping reactions in each subvolume, i.e. only the state transition 

reactions can occur. The ctysolic Ca2+ concentration is initialized as 9.6 × 10−5 mM, τ is 

400 ms, and the simulation lasts 5 virtual seconds (5s ≫ 400 ms). We count the number of 

subunits in each state, as displayed in table I, h = [3 × s000 + 2 × (s001 + s010 + s100) + (s011 

+ s101 + s110)]/(200 × 3 × 8 × k). Kinh = 0.0019 mM, 

. We see that h 
converges to hinf as k → ∞.

In total, there are 27 reactions (along with the 3 reactions in the simplified model) and 11 

species (3 species in the simplified model and IP3R channel in each state sijk). We call this 

model the 8-states model. With the same configuration, we run the 8-states model with 

14749 LPs on PEPI and show the results in Fig. 14.

Comparing Fig. 11(a) and 14(a), we see that NTW-MT scales well for the complex model 

(8-states model). Its execution time is about 1.8 times that of the simplified model. The roll-

backs do not exhibit a significant difference between Fig. 11(b) and 14(b). The complex 

model involves more computation for processing events. LPs spend extra time in (1) saving 

more states (a state copy consists of 11 integers in the 8-states model) and (2) computing the 

propensity of the reactions- the complex model contains more reactions, thereby taking more 

time to compute the propensity of the reactions.

5. CONCLUSIONS AND FUTURE WORK

This paper is concerned with the development of a parallel discrete event simulator for 

reaction diffusion models used in the simulation of neurons. To the best of our knowledge, 

this is the first parallel discrete event simulator oriented towards stochastic simulation of 

chemical reactions in a neuron. The research was done as part of the NEURON project 

(www.neuron.yale.edu).

Our parallel simulator is optimistic and is thread based. It makes use of the NSM algorithm 

[Elf and Ehrenberg 2004]. The use of threads is an attempt to capitalize on multicore 

architectures used in high performance machines. Communication latency is minimized by 

self-adaptive communication which selects the proper communication method (i.e. pointer, 

shared memory and MPI) upon the location of receiver. It makes use of a multi-level queue 

for the pending event set and a single roll-back message in place of individual anti-messages 

to disperse contention and decrease overhead of roll-back. Memory management avoids 

locking and unlocking when allocating and deallocating memory and maximizes cache 
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locality. The GVT is computed asynchronously both within and among processes to reduce 

the overhead for thread synchronization.

We verified our simulator by comparing the result to that of the deterministic solution in 

NEURON on a calcium buffer model. To examine its performance, we simulated a discrete 

event model for calcium wave propagation in a hippocampal pyramidal neuron and 

compared it to the performance of (1) a process based optimistic simulator and (2) a 

threaded simulator which uses a single priority queue for each thread. NTW-MT exhibited 

superior performance when all of the threads were in the same process. The effects of shared 

memory and MPI based communication were investigated; the multilevel queue simulator 

proved to be scalable. Finally, we we demonstrated the scalability of our simulator on a 

larger CICR model and on a more detailed CICR model which included channel state 

transition.

The need for load balancing algorithms and for window control was made clear during the 

course of our our experiments. We are introducing window control and load balancing 

techniques based on the use of techniques from artificial intelligence [Meraji and Tropper 

2012]. The need to optimize state saving, e.g. by using reverse computation, was also 

indicated by our experiments.

Although NTW-MT was developed for the simulation of stochastic reaction and diffusion 

models of neurons, the techniques that we developed can be more widely applied. For one, 

NTW-MT is applicable to general reaction-diffusion systems. Its multithreaded architecture, 

asynchronous GVT algorithm and its use of hybrid communication are, in actuality, general-

purpose mechanisms for PDES.
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Fig. 1. 
Three scheme for storing and dispatching pending events to thread.
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Fig. 2. 
Architecture of NTW-MT simulator.
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Fig. 3. 
This example shows 6 LPs (rounded rectangles) which are distributed over three processes 

(dashed rectangles). Some are located in the same processing thread (an ellipse). The 

number in each LP is the local virtual time of the LP, and is also used to identify the LP. 

Each arrow indicates an event. The number on each arrow is the timestamp of the event 

(receive time, send time). Some LPs and events are omitted.
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Fig. 4. 
An example of memory allocation of events. The style of arrows is used to mark sender LP, 

and the number on each arrow tells the sequence number of that operation.
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Fig. 5. 
An example of simultaneous reporting problem within a worker process.
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Fig. 6. 
Message flow and data structure of asynchronous GVT computing.
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Fig. 7. 
Deterministic NEURON simulation vs. stochastic NTW-MT simulation, Ca H and Ca L 

refer to high and low concentration of calcium in respective region in deterministic and 

stochastic simulation.
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Fig. 8. 
Execution time and roll-back with all of the processing threads running within one process 

in the PEPI machine.
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Fig. 9. 
Maximum size of TEQ and hit rate in within process mode in the PEPI machine.

Lin et al. Page 37

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Detailed analysis of rollback of NTW-MT in within process mode in the PEPI machine.
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Fig. 11. 
Execution time and roll-back with shared memory communication in within node mode.
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Fig. 12. 
Execution time and roll-back with hybrid communication, ppn refers to process per node.
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Fig. 13. 
Execution time and rollbacks of the simplified model in bigger geometry.
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Fig. 14. 
Execution time and rollbacks of the 8-states model.
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