
Multithreaded Stochastic PDES for Reactions and Diffusions in
Neurons

Zhongwei Lin,
State Key Laboratory of High Performance Computing and College of Information System and
Management, National University of Defense Technology, Changsha, Hunan, China;
zwlin@nudt.edu.cn

Carl Tropper,
School of Computer Science, McGill University, Montreal, Quebec, Canada;
carltropper@gmail.com

Robert A. Mcdougal,
Department of Neurobiology, Yale University, New Haven, Connecticut, USA;
robert.mcdougal@yale.edu

Mohammand Nazrul Ishlam Patoary,
School of Computer Science, McGill University, Montreal, Quebec, Canada;
mohammad.patoary@mail.mcgill.ca

William W. Lytton,
SUNY Downstate Medical Center, Brooklyn, NY, 11203, USA; blytton@downstate.edu

Yiping Yao, and
College of Information System and Management, National University of Defense Technology,
Changsha, Hunan, China; yipingyao@qq.com

Michael L. Hines
Department of Neurobiology, Yale University, New Haven, Connecticut, USA;
michael.hines@yale.edu

Abstract

Cells exhibit stochastic behavior when the number of molecules is small. Hence a stochastic

reaction-diffusion simulator capable of working at scale can provide a more accurate view of

molecular dynamics within the cell. This paper describes a parallel discrete event simulator,

Neuron Time Warp-Multi Thread (NTW-MT), developed for the simulation of reaction diffusion

models of neurons. To the best of our knowledge, this is the first parallel discrete event simulator

oriented towards stochastic simulation of chemical reactions in a neuron. The simulator was

developed as part of the NEURON project. NTW-MT is optimistic and thread-based, which

attempts to capitalize on multi-core architectures used in high performance machines. It makes use

of a multi-level queue for the pending event set and a single roll-back message in place of

individual anti-messages to disperse contention and decrease the overhead of processing rollbacks.

Global Virtual Time is computed asynchronously both within and among processes to get rid of

HHS Public Access
Author manuscript
ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
ACM Trans Model Comput Simul. 2017 July ; 27(2): . doi:10.1145/2987373.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the overhead for synchronizing threads. Memory usage is managed in order to avoid locking and

unlocking when allocating and de-allocating memory and to maximize cache locality. We verified

our simulator on a calcium buffer model. We examined its performance on a calcium wave model,

comparing it to the performance of a process based optimistic simulator and a threaded simulator

which uses a single priority queue for each thread. Our multi-threaded simulator is shown to

achieve superior performance to these simulators. Finally, we demonstrated the scalability of our

simulator on a larger CICR model and a more detailed CICR model.

1. INTRODUCTION

The human brain may be viewed as a sparsely connected network containing approximately

1014 neurons. Each neuron receives inputs into thousands of dendrites and sends outputs to

thousands of other neurons by means of its axon.

The neural membrane has ion channels which selectively control flow of various species –

primarily sodium, potassium, and calcium. Movements of ions through these channels

follow the concentration gradient from higher to lower. Additionally, there are pumps which

depend on energy to move ions against the gradient. Electrical models for neurons [Lytton

2002] can be constructed using the well-known laws of electricity (Ohm, Kirchkoff,

capacitance). However, these electrical models only provide a limited view of neuronal

activity since calcium, as well as many other species (nucleotides, peptides, proteins, etc)

diffuse in the cytoplasm (the inside of the cell) and function as information messengers. In

order to develop realistic models of neurons, it is necessary to develop models which

account for the movement and functioning of these messengers.

The combination of chemical reactions within a cell, the flux of ions through the membrane,

and the diffusion of ions in the cytoplasm can be modeled as a reaction-diffusion system and

can be simulated by (parabolic) partial differential equations [McDougal et al. 2013].

However, such a continuous model is not appropriate when there are a small number of

molecules, e.g. < 1000 molecules. In these cases, a stochastic model will provide a more

realistic and accurate representation [Sterratt et al. 2011; Ross 2012; Blackwell 2013].

Generally the concentration of calcium in cytosol is very low, between 50–100 nM [Foskett

et al. 2007], where M is a concentration unit used in biochemistry and 1 M = 1 mol/Liter.

These low concentrations mean small numbers of ions with different localized

concentrations of cytosolic calcium that can play an important role in intracellular dynamics.

It is well known that a system consisting of a collection of chemical reactions can be

represented by a chemical master equation, the solution of which is a probability distribution

of the chemical reactants in the system [Sterratt et al. 2011]. In general, it is very difficult to

solve this equation. In [Gillespie 1977] a Monte Carlo simulation algorithm called the

Stochastic Simulation Algorithm (SSA) is described. Under the assumption that the

molecules of the system are uniformly distributed, the algorithm simulates a single trajectory

of the chemical system. Simulating a number of these trajectories then gives a picture of the

system. The Next Subvolume Method (NSM) [Elf and Ehrenberg 2004] is an extension of

the SSA which incorporates the diffusion of molecules into the model.

Lin et al. Page 2

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Because the size of a realistic simulation of a network of neurons is immense, it is necessary

to make use of a parallel or distributed architecture. The NSM partitions space into cubes

called sub-volumes. In PDES these sub-volumes can be represented as Logical Processes

(LP) [Wang et al. 2011]. The diffusion of ions between neighboring sub-volumes is

represented as events.

Communication latency is the main bottleneck of PDES systems [Fujimoto 1999]. The

emergence and widespread use of multi-core processor significantly reduces this cost by

using fast channels among cores on a multi-core chip. Alam [Alam et al. 2006] observed a

significant benefit (approximately 8% to 12%) when communicating between processes

running within a multi-core processor as opposed to between cores on different processors.

In a multi-threaded program, each thread has its own execution flow, and all of the threads

share the same memory space. This feature makes it quite attractive to develop multi-

threaded PDES systems to achieve better performance-messages can be transferred among

threads directly within a process. However this can also lead to contention, e.g. on the

Pending Event Set of each thread [Chen et al. 2011; Dickman et al. 2013], resulting in a

great deal of overhead to deal with the contention.

NTW-MT was developed as part of the NEURON project (www.neuron.yale.edu).

NEURON [Carnevale and Hines 2013; 2006] is a widely used simulator in the neuroscience

community. It makes use of deterministic simulators for reaction-diffusion [McDougal et al.

2013] and electrical models. NTW-MT is intended to provide a more realistic picture of

smaller populations of molecules and will be connected to NEURON.

The remainder of this paper is organized as follows. Section 2 describes background and

related work, section 3 is devoted to the architecture and algorithms in our simulator, and

section 4 describes our experimental results. The conclusion and future work are presented

in section 5.

2. BACKGROUND AND RELATED WORK

2.1. Stochastic Simulation

There are two types of tools that have been used for stochastic simulation in neurons,

particle-based methods and lattice-based methods [Blackwell 2013]. In particle-based

methods, the state of the system is the number and location of particles in the subcellular

space. The location of a particle and the system time are governed by probability

distributions, e.g. the distribution in [Blackwell 2013]. Particles engage in a reaction when

they are close enough. MCell [Bartol Jr et al. 1991], Smoldyn [Andrews et al. 2010] and

CDS [Byrne et al. 2010] are particle-based simulators. NSM is a lattice-based simulation, in

which space is partitioned into mesh grids. Reactions can happen between molecules in the

same grid and molecules can diffuse to adjacent grids. MesoRD [Hattne et al. 2005] is an

implementation of NSM, STEPS [Hepburn et al. 2012] is a spatial extension of the SSA, and

NeuroRD [Blackwell 2013] are based on a spatial extension of the Gillespie tau-leap

algorithm. However, these tools focus on developing serial versions, while our intention is to

produce parallel simulation capable of large scale simulations.

Lin et al. Page 3

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neuron.yale.edu

2.2. Process-based PDES and XTW

In PDES, LPs are assigned to a collection of Processing Elements (PE)s, each of which is

implemented by a process. A PE executes the events at the LPs in non-decreasing simulation

time order. This is done in order to guarantee local causality. A pending events set in each

PE is used to sort and store pending events. Many process-based PDES have appeared,

including TWOS [Jefferson et al. 1987], GTW [Das et al. 1994], the CTW family [Avril and

Tropper 1995; Xu and Tropper 2005; Patoary et al. 2014], Parsec [Bagrodia et al. 1998],

ROSS [Carothers et al. 2002], μsik [Perumalla 2005], JAMES II [Himmelspach and

Uhrmacher 2007] and YH-SUPE [Yao and Zhang 2008].

As to the selection of the synchronization protocol, [Dematté and Mazza 2008] points out

that a conservative synchronization algorithm for a stochastic simulator will perform poorly

because of the zero-lookahead property of the exponential distribution and the fact that a

dependency graph of the reactions is likely to be highly connected and filled with loops.

This indicates that an optimistic synchronization algorithm such as Time Warp [Jefferson

1985] is preferable. [Wang et al. 2009] presents an experimental analysis of several

optimistic protocols for the parallel simulation of a reaction-diffusion system. [Jeschke et al.

2008] uses NSM in an optimistic simulation along with an adaptive time window. [Jeschke

et al. 2011] compares the performance of spatial τ-leaping with that of NSM and Gillespie’s

Multi-particle Method (GMPM) in terms of speedup and accuracy.

We previously developed a process based simulator, Neuron Time Warp (NTW) [Patoary et

al. 2014], which makes use of a multi-level queue. We verified and examined its

performance on a calcium buffer model and a predator-prey [Schinazi 1997] model. The

queueing structure described in this paper and the one in [Patoary et al. 2014] are outgrowths

of the multi-level queue described in XTW [Xu and Tropper 2005].

2.3. Multi-threaded PDES

In a multi-threaded PDES simulator, a PE is implemented by a thread which can be assigned

to a process. We do not distinguish between a PE and a thread in the following. To date there

are two main schemes for storing and sorting the pending events for each thread, a global

queue and a separated (distributed) queue. In a global queue scheme, as shown in part (a) of

Fig. 1, a number of threads share a single priority queue. This scheme attempts to achieve

load sharing at the expense of contention at the queue. Threaded WARPED [Miller 2010]

adopted this architecture. The main drawback of this scheme is that there is too much

contention at the global queue, as demonstrated by Chen [Chen et al. 2011]. This results in

excessive overhead caused by locking operations-up to 50%–90%. Because threads have to

wait for the output from the global queue the scalability is poor. Moreover, it is possible to

have several events at the same LP processed by several threads simultaneously, thus a lock

on each individual LP must be employed in order to preserve consistency.

In a separated queue scheme, as shown in part (b) of Fig. 1, each worker thread has its own

priority queue and only processes events from that queue, thereby eliminating contention at

the queue. However, there are still concurrent operations on the priority queues arising from

other threads in the same process. In order to avoid locking the contents of individual LPs,

Lin et al. Page 4

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

each LP is mapped to only one thread. This may lead to a load-imbalance, so it is necessary

to balance the workload for each thread and process. [Chen et al. 2011] adopts the separated

queue scheme and proposes a global scheduling mechanism to balance the workload

between the threads in the same process. However, a global schedule still allows

simultaneous processing of events at individual LPs, necessitating a locking mechanism.

ROSS-MT [Jagtap et al. 2012] also employs a separated queue and uses an input queue to

store the events sent from other threads. Contention on the input queue remains high. A

hybrid scheme [Dickman et al. 2013] combines the above two schemes by creating several

priority queues within one process and mapping a subset of the threads to a single queue, as

shown in part (c) of Fig. 1.

ROOT-Sim [Vitali et al. 2012] makes use of interrupts to cope with synchronization. It

considers the concurrent access (arrival of new event) to LPs to be an interrupt. The response

to this interrupt consists of two steps: (1) place the interrupt (and associated parameters) in a

queue and (2) process and remove the interrupt from the queue. This approach can lead to

high memory usage.

2.4. GVT algorithms for multi-threaded PDES

In Time Warp, Global Virtual Time (GVT) is used to eliminate events and states via fossil
collection which are not necessary to effect a rollback. In a distributed platform, Mattern’s

[Mattern 1993] and Samadi’s [Samadi 1985] algorithm can be used. Both of them compute

GVT by two rounds of message passing. Mattern’s algorithm does not require

acknowledgements for each message, thereby resulting in better performance. Fujimoto

[Fujimoto and Hybinette 1997] proposed an efficient algorithm for shared memory

multiprocessors. In this algorithm, if p processes participate in a simulation, any process can

trigger GVT computing by setting a variable GVTFlag to p. Other processes periodically

check this variable, report their local simulation time and decrease GVTFlag by 1. GVT is

computed when GVTFlag equals to zero. However this algorithm requires all of the

processes to reside within one shared memory cluster, which constrains the scale of

simulation. In [Pellegrini and Quaglia 2014] the authors propose a wait-free GVT computing

algorithm by splitting the GVT computing phase in [Fujimoto and Hybinette 1997] into

three phases. Better performance is achieved than Fujimoto’s original algorithm.

In order to compute GVT in multi-threaded PDES systems, Ross-MT [Jagtap et al. 2012]

uses an optimized barrier to block all of the threads at wall clock time T. This can result in

long waiting times if the duration for processing a single event is long. Each thread in [Chen

et al. 2011] can receive and send messages, thus Mattern’s algorithm is applicable. In

Threaded WARPED [Miller 2010], a manager thread is responsible for calculating the local

GVT at a threaded Warped node. When a GVT compute message arrives at a node, the

manager thread suspends all of the simulation objects in that node (to make sure new

messages are not created within that node) and then sets the Least Time-Stamped Event

(LTSE) to be the local GVT of that node. The computing of local GVT in Threaded

WARPED still operates with a barrier. Overall, the present GVT computing algorithms are

suitable for either pure distributed or pure shared memory platform. Our simulator, NTW-

MT is a hybrid of shared and distributed memory platform and needs hybrid algorithms.

Lin et al. Page 5

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3. ARCHITECTURE AND ALGORITHMS

We employ a separated priority queue scheme in our architecture. The simulator architecture

is depicted in Fig. 2. One of the processes is a controller, exercising global control functions

(GVT computation and load balancing). The remaining processes are worker processes

which process the events at the LPs that reside in the process. Each worker process contains

a communication thread and several processing threads. All of the worker processes have the

same number of threads.

The communication thread sends and receives messages for the process which hosts this

communication thread. Processing threads can neither send nor receive messages. After

initialization, the communication thread receives messages from shared memory, in which

case the the message is from a family process residing in the same node (see section 3.5) or

via MPI from remote nodes. Control messages are the first messages to be processed. LPs

then schedule external events by placing them into the send buffer of the communication

thread. To avoid contention for this buffer, it is partitioned into m segments, where m is the

number of processing threads. The ith processing thread can write only into the ith segment.

The communication thread scans the segments in the buffer and then sends out the messages.

At present, the communication thread sends only one message per segment (a fairness

policy).

LPs are partitioned into m × n subsets, where n is the number of worker processes and m is

the number of processing threads. Each subset is mapped to a processing thread. Each

processing thread includes a LP List which stores the LPs associated with the thread, a

Thread Event Queue (TEQ) used in Multi-Level Queuing (MLQ) algorithm presented in

section 3.1, a Thread Memory Allocator which is involved in the Memory Management

presented in section 3.3 and a Thread Function. The Thread Function is responsible for

processing the events, and is presented in algorithm 1, where LVT refers to Local Virtual

Time.

ALGORITHM 1

Processing sequence of a PE

while simulation is running do

 Dequeue an event e from Thread Event Queue;

 % RB-messages are special messages used for roll-back, see section 3.2.

 if e.type != RB-message then

 if e.receiveTime < e.targetLP.LVT then

 e.targetLP rolls back to a time point prior to e.receiveTime according to algorithm 2;

 end

 e.targetLP advances Local Virtual Time to e.receiveTime and processes e;

 else

 Process e according to RB-message-processing algorithm 3;

 end

 Fetch an event from e.targetLP according to Multi-Level Queuing algorithm;

Lin et al. Page 6

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

end

An event has two timestamps, the receive time and the send time [Jefferson 1985]. The

events in the priority queue are sorted by their receive time. There are two types of events:

internal events which are scheduled by internal processing threads and external events from

external processing threads. As the processing threads share the same memory space,

internal events use a pointer to identify LPs. A PE can use this pointer to access the LP

directly. External events use an integer identifier to represent LPs. They are converted into

internal events upon receipt by a communication thread and are then inserted into LPs.

3.1. Multi-Level Queuing

Every thread in a process can access any priority queue in the same process, which can

cause excessive contention [Dickman et al. 2013]. To further aggravate matters, during a

roll-back processed events with a timestamp greater than the receive time are re-enqueued in

the priority queue. Two ways are used to alleviate this contention (1) decreasing the

probability by which a few threads access the same queue simultaneously and (2) decreasing

the cost of a single operation on a queue. In a stochastic neuronal simulation, the virtual time

increment can vary from 0 to a large value. Consider the example in Fig. 3.

In Fig. 3 event (12,10) is a straggler at LP 15, and the dashed-lined-events at LP 16 are

pending events. LP 16 has four pending events which would be stored in a queue. One may

notice that it is not necessary to store and sort all four events in the TEQ-only event (18,14)

needs to stay in the TEQ. There are several reasons for this: (1) some insertions in the TEQ

can be omitted, decreasing the probability of contention. (2) the size of the TEQ can be

controlled and the cost of an operation eliminated. Events (20,13) and (18,14) would be

cancelled due to the roll-back of LP 15, hence sorting them is wasteful. (3) to cancel an

event which would not access the TEQ decreases the probability of contention. Suppose that

(1) a PE holds x LPs, numbered from 0 to x − 1 (2) Si is the Pending Event Set (PES) of LPi

and that the events in Si are in non-decreasing order in receive time. The minimum pending

event of LPi is minPEi. It is easy to prove that minPE in PES is equal to the min{minPEi, i =

0, 1, ⋯, x−1}. Therefore the PE only needs to compare each minPEi to find minPE. This

indicates that any LP only needs to have one representative event in TEQ. The remaining

events are stored in the LP Event Queue (LPEQ). Each LP has a LPEQ and all the LPEQs

are linked to the corresponding TEQ.

In a three-dimensional environment, space is partitioned by a mesh grid, resulting in a

maximum of 6 neighbors for each LP. Molecules diffuse through channels (in this paper,

channels refer to a path for diffusion between neighbouring sub-volumes, and they are not

biological channels.) between these neighbors. We use an input channel to receive events

from a neighbor and store them in an Input Channel Event Queue (ICEQ). All of the ICEQs

are linked to the corresponding LPEQ.

To control the size of a queue, a lower level queue can only submit an urgent event
(definition 1) to an upper level queue. A lower level queue records the unprocessed events

Lin et al. Page 7

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which have been submitted to an upper level queue, and checks to see if an event is urgent

when it receives it. Every input channel has a variable submit of event pointer which refers

to the lower bound of unprocessed events that have been submitted to its LPEQ. Every

LPEQ has a stack structure submitTrack which traces the unprocessed events which have

been submitted to its TEQ. At the input channel level, urgency is checked by comparing the

receive time of event ex and submit of this channel. Because a LPEQ receives events from

several input channels, it may submit several events to the TEQ, and there may be several

pointers in submitTrack, hence urgency is checked by comparing the receive time of event ex

and the top element of this stack. In a reaction-diffusion simulation an event can have

smaller receive time than a predecessor, thereby leading to the creation of an urgent event

(see the example below).

Definition 3.1—An event in a queue at level i is urgent if its receive time is less than

the receive time of any events in its upper level queue at level j (j > i).

At this point, we have three level queuing architecture, as shown in part (b) of Fig. 2. The

access to TEQ, LPEQ and ICEQ is mutually exclusive and we use mutexes to prevent

concurrency problems on them, whereas only the host LP can access ICPQ (Input Channel

Processed event Queue), thereby no concurrency problem on ICPQs. The queuing works as

follows.

— In the initialize phase, the TEQ, LPEQ and input channels are constructed,

submitTrack of LPEQ is empty and submit of input channel is set to 0. Each LP

schedules an initial event to itself and adds it to its TEQ and then add the initial
event to submitTrack.

— Any processing thread and communication thread can insert events into a LP. To

insert an event e, a thread first identifies the target LPx by routing and checks if

it is located in the same process. If not, this event will be added to the send

buffer of the communication thread. If so it is inserted in the target LP as

follows.

1. Apply memory, find the target LP LPx, fill in the Targetpointer field of

this event by the pointer to LPx.

2. Determine the input channel channelx, fill in the Channel Pointer field

of this event by the pointer to channelx, check whether it is urgent. If it

is not urgent, insert it into ICEQ. Otherwise submit it to the LPEQ and

update submit.

3. At the LPEQ level, check urgency. If it is not urgent, insert it into

LPEQ. Otherwise submit it to TEQ and insert its pointer to the top of

submitTrack.

4. At the TEQ level, insert this event into the TEQ.

— After processing an event from input channel channels, a PE fetches an event

from channels to make sure that there is a representative in the LPEQ, updates

submit of channels, then inserts the new event in the LPEQ. At the level of the

Lin et al. Page 8

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LPEQ, this PE checks submitTrack and the smallest event in LPEQ at that time

to determine whether to submit an event to the TEQ or not.

In the example in Fig. 3, LP 16 has two neighbors LP 15 and 17. Event (19, 11) comes from

LP 15, arriving at channel [16, 15] (a channel is marked in the format [host LP, source LP]),

finds submit of this channel to be 0, and is submitted to the LPEQ of LP 16, submit is set to

(19, 11); submitTrack of LPEQ 16 is empty. Then this event is submitted to TEQ, the pointer

to (19, 11) is pushed at the top of submitTrack and the insertion of (19, 11) now ends. It is in

the TEQ, where it at time T1. Then event (20, 13) arrives at channel [16, 15]. It is not urgent

and thus stays in ICEQ. This insertion ends at time T2. Event (18, 14) arrives, and is found

to be urgent for channel [16, 15], then it is submitted to the LPEQ; it is also urgent for LPEQ

16, and is submitted to the TEQ. The top of submitTrack becomes the pointer to event (18,

14) at time T3. Event (18.5, 16) from LP 17 arrives at channel [16, 17], finds submit to be 0,

and is submitted to LPEQ 16. submit is set as a pointer to (18.5, 16) at time T4. The

successive insertions depend upon the relationship of the above time points.

— T4 < T1, this implies this event arrives before any events from LP 15. (18.5, 16)

will be submitted to TEQ, (19, 11) will stay at LPEQ 16, (18, 14) will be

submitted to TEQ, (20, 13) stays at ICEQ [16, 15]. top of submitTrack is pointer

to (18, 14) followed by pointer to (18.5, 16).

— T1 < T4 < T3, event (18.5, 16) is urgent and will be submitted to TEQ. Event

(18, 14) is also urgent when it arrives at LPEQ 16. In this case, there are three

events, (18, 14), (18.5, 16) and (19, 11), in TEQ.

— T3 < T4, event (18.5, 16) is not urgent when it arrives at LPEQ 16, thus stays at

LPEQ 16. Two event, (19, 11) and (18, 14) are submitted to TEQ.

3.2. RB-massage and Roll Back

XTW [Xu and Tropper 2005] uses one RB-message to cancel incorrect events instead of

sending a series of anti-messages, eliminating the need for an output queue at each LP

thereby reducing the overhead of a roll-back.

When a LP receives a straggler, it rolls back to a time point in prior to the straggler and then

processes the straggler, as shown in algorithm 2. A LP does not store the processed events

which were scheduled by itself. Processed events scheduled by other LPs are stored in the

appropriate Input Channel Processed Queue (ICPQ).

ALGORITHM 2

Steps for roll-back caused by stragglers, head is the smallest event in any queue, rt (st) is

receive time (send time) of an event

Input: Roll-back time rbt (receive time of the straggler message), straggler message straggler.

Output: The next event smallest of this LP.

Search the latest valid state s prior to rbt with timestamp t1;

Recover LVT of this LP to t1, recover state to s;

counter = 0;

Lin et al. Page 9

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for channel ch in input channel list do

 Recover events with receive time greater than t1 to ch.ICEQ from ch.ICPQ;

 if ch.ICEQ.head.rt < ch.submit.rt then

 Submit the smallest event to LPEQ from ch.ICEQ and update ch.submit;

 counter++;

 end

 if ch.scheduleHistory ≥ LVT then

 Send a RB-message (RB_PRIORITY, LVT) to ch.neighbour;

 ch.scheduleHistory=LVT;

 end

end

if counter > 0 then

 Re-enqueue straggler into LPEQ;

 Dequeue the smallest event from LPEQ as smallest;

else

 Return straggler as the smallest event;

end

In the above example, the message (12, 10) sent by LP 10 to LP 15 is a straggler, so LP 15

should roll back to a point in time before time 12. Suppose a state at 11.5 is found, and the

states with timestamp greater than 11.5 are released. After that, LP 15 recovers processed

events with timestamp greater than 11.5, finds the smallest event and sends RB-messages to

its neighbors, LP 16 and LP 25. However, it is not really necessary to send a RB message to

every neighbour; we use a variable ScheduleHistory (SH) [Patoary et al. 2014] in the input

channel in Fig. 2. SH records the upper bound of the send times of events sent to a LP. The

use of SH can avoid sending unnecessary RB messages, see the example below.

RB-messages have a higher priority RB_PRIORITY, a negative real constant, than other

normal events, the send time of RB-message is set as the present LVT of the LP that sends it.

A RB-message (RB_PRIORITY, trb) sent from LP x to LP y announces that LP x has rolled

back to trb, then the pre-sent events with send time greater than trb becomes invalid. LP y
follows the steps in algorithm 3 to process RB-messages.

ALGORITHM 3

Steps for processing a RB-message, tail refers to the element with the greatest timestamp in

a queue

Input: The RB-message rb

if rb.channel.ICPQ.tail.st < rb.st then

 Remove events with send time greater than or equal to rb.st in ICEQ and LPEQ;

 for event es in SubmitTrack do

 if es.channel == rb.channel & es.st ≥ rb.st then

 Remove es in TEQ;

Lin et al. Page 10

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 end

 end

 if rb.channel.submit.st ≥ rb.st then

 rb.channel submits its smallest event to upper level queue and updates submit;

 end

else

 Search cut-point ecut in rb.channel.ICPQ;

 rbt = −1;

 if ecut is not NIL then

 rbt = ecut.rt;

 else

 rbt = rb.st;

 end

 rb.targetLP rolls back to a time point prior to rbt according to algorithm 4;

end

smallest = the smallest event in LPEQ;

if submitTrack is empty | smallest.rt < submitTrack.top.rt then

 Submit smallest to TEQ and push it to submitTrack;

end

The processing of a RB-message depends upon whether or not invalid events have been

processed.

— The invalid events have not been processed. These events are removed and

submit event to upper level queue if necessary. In the above example, a RB-

message (RB_PRIORITY, 12) will be sent by LP 15 to LP 16. Events (20, 13)

and (18, 14) become invalid, while event (19, 11) is valid. The invalid events are

removed from the queue in LP 16. This kind of RB-message does not interfere

other LPs, for no successive rollback is triggered, thus we call it friendly RB-

message.

— The invalid events have been partly or totally processed. A roll-back is triggered,

thus we call it aggressive RB-message. The send time of the RB-message is used

to find the cut-point in the ICPQ, such that all events with a send time larger

than the send time of the RB-message are after the cut-point. The LP sets the

rollbacktime equal to the receive time of the first event after the cut − point. In

the above example, a RB-message (RB_PRIORITY, 12) will be sent by LP 15 to

LP 25, the events (19, 13.5) and (27, 15) become invalid while (19, 13.5) has

been processed. A secondary roll-back is triggered and LP 25 follows steps in

algorithm 4 to handle the roll-back.

ALGORITHM 4

Steps for roll-back triggered by a RB-message

Input: Roll-back time rbt, the RB-message rb

Lin et al. Page 11

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Output: the number of events recovered to LPEQ nRecovered

Search the latest valid state s prior to rbt with timestamp t1;

Recover LVT of this LP to t1, recover state to s;

nRecovered = 0;

for channel ch in input channel list do

 if ch == rb.channel then

 Remove all ordinary events with send time greater than or equal to rb.st in ch.ICEQ,

 ch.ICPQ, LPEQ and TEQ;

 Recover events with receive time greater than t1 to ch.ICEQ from ch.ICPQ;

 if ch.submit.st ≥ rb.st & ch.ICEQ is not empty then

 Submit the smallest event in ch.ICEQ to LPEQ and update ch.submit;

 nRecovered++;

 end

 else

 Recover events with receive time greater than t1 to ch.ICEQ from ch.ICPQ;

 end

 if ch.ICEQ.head.rt < submit.rt then

 Submit the smallest event in ch.ICEQ to LPEQ and update ch.submit;

 nRecovered++;

 end

 if ch.scheduleHistory ≥ LVT then

 Send a RB-message (RB_PRIORITY, LVT) to ch.neighbour;

 Set ch.scheduleHistory to LVT;

 end

end

The basic operation of RB-rollback is the same as that of a roll-back triggered by a straggler,

except for the recovery of processed events. The input channel which received the RB-

message removes all of the events with a send time greater than the send time of the RB-

message. Otherwise it moves the processed events with receive time greater than rollback
time from ICPQ to ICEQ. Sending a RB-message is necessary for either type of roll-back.

The ScheduleHistory of channel [25, 20] is 21. Suppose that the first event after the cut
−point is (22, 10.5). LP 25 will roll back to time 22, because 22 > 21 and no RB-message

will be sent from LP 25 to LP 20. If the rollback time is 19, a RB-message (RB_PRIORITY,

19) will be sent to LP 20 by LP 25, and LP 20 applies the above steps to process this RB-

message again. Our use of multi-level queue and RB-message is an extension of [Xu and

Tropper 2005].

3.3. Memory Management

There are two problems that are important to focus on when designing a memory

management system for PDES. First, PDES involves frequent memory allocations and

deallocations, resulting in frequent locking and unlocking of memory. Second, sending data

from one LP to another leads to cache misses if the target LP is located far from the sender

Lin et al. Page 12

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LP. These problems led us to try and eliminate locking when allocating and de-allocating

memory and to try to maximize cache locality.

In order to process an event e, both e and the LP which processes e, say LPx, should be in

cache. Also, when an LP, say LP y, schedules an event e2, there will be fewer write misses if

e2 is near LP y.

To achieve the first goal, assigning each thread a memory buffer is enough, LPs in that

thread can allocate memory from this buffer when they schedule events. However this

scheme will increase cache misses because the buffer is shared by all of the LPs in the

thread, and an event from this buffer can be far from a LP. When scheduling inter-thread

messages, both the sender LP and the receiver LP may be far from the scheduled event.

A simple approach is to split the buffer into slices and to assign a slice to each LP, requiring

that an LP only allocate memory from its private slice. Hence each LP owns a private buffer

that is near to its data and there will be fewer write misses when an LP schedules an event.

When a LP x deallocates an event e, it can return e to the sender LP y or to its own buffer.

However it is not wise to return e to the sender LP y, because LP y may be in another thread,

and be allocating memory for another LP at that time (otherwise we need a lock on the

buffer of any LP). LP x can return e to its own buffer and there would be no need for a lock.

Once an event e has been deallocated, it can be reused by LP x. Now suppose that LP x
schedules an event for LP z, and that this event uses the memory from e (note that e is from

the buffer of LP y), e is far from both LP x and z.

The connection of LPs is static in our reaction diffusion simulations. Hence we can split the

buffer of each LP into slices and bind each slice to an input channel. Memory is then

allocated and deallocated to the slice. In this way we can achieve the two goals, as we see in

the example in Fig. 4.

Fig. 4 shows three LPs which are distributed to three threads, and they schedule events and

allocate memory as follows.

1. LP x schedules an event for LP y, and the memory is allocated from the channel

buffer allocated to LP y. This event is nearby LP x, thus there are fewer write

misses. Note that LP x is in cache.

2. LP y returns this memory to the channel buffer allocated to LP x. LP y has

exclusive access to this buffer, thus no locks are needed.

3. LP y allocates events for LP x from the corresponding channel. This event is

nearby LP x, hence there are fewer read misses when LP x processes this event.

We see that the memory for events is near either the sender or the receiver LP, and no lock is

needed. It is possible for an event to be near both the sender and receiver LPs if the two LPs

are in the same thread.

Lin et al. Page 13

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We use on-the-fly fossil collection [Fujimoto and Hybinette 1997]. There is no explicit fossil

collection (otherwise we traverse all of the LPs to reclaim memory). The allocation of events

is as follows:

1. A LP inserts any processed events into corresponding ICPQ after processed.

2. The pre-allocated memory is pushed into a free buffer in each channel after

initialized, and a LP allocates memory from this free buffer first.

3. If there is no free event available in the free buffer, it checks available event

memory in ICPQ (any processed event with a timestamp less than GVT becomes

available).

4. A processing thread also has a memory allocator (see Fig. 2), and a LP uses this

allocator to get event memory if the above steps failed.

3.4. Asynchronous GVT Computing

Since a processing thread can neither send nor receive external events directly, it is not aware

of external message passing. Additionally there is simultaneous reporting problem in GVT

computing as Fig. 5 shows.

In Fig. 5, in order to compute a local GVT [Fujimoto 1999] the communication thread

begins to check TEQi at wallclock time T1 and leaves TEQi at wallclock time . It then

checks TEQj at wallclock time T4, . Processing thread j schedules an event with

timestamp10 to thread i at wallclock time T2 and thread k schedules an event with

timestamp15 at thread j at wallclock time T3. Suppose these time points satisfy the order

 (this circumstance happens due to arbitrary order of locking and unlocking

TEQs), then the event with timestamp 10 is not accounted for, resulting in an incorrect local

GVT value, say 12. The point is that events sent between threads during a GVT computation

in a process must be accounted for.

The message flow and corresponding data structure for computing GVT is depicted in Fig.

6. Each worker process holds two sets of variables for the GVT computation; (color,

whiteCount, minRed), which is used for interprocess communication, and (GVTFlag,

localGVT) which, along with the minSend and localMin variable in each processing thread

is used to find local GVT in each worker process.

In Mattern’s algorithm, a process can be either red or white. At the beginning, all processes

are white. A white process becomes red when it receives a GVT-CUT message, while a red
process becomes white when it receives a GVT-broadcast message notifying it of the latest

GVT value. Messages take on the color of the sending process. A GVT-CUT message is

used to notify all worker processes to start a GVT computation. A cut message has two

fields (tempGVT, count), where tempGVT is the the latest GVT and count is the number of

white messages sent but not received since the last GVT. The controller process triggers a

GVT computation by sending a GVT-CUT message (∞, 0) to the first worker process every

TGVT seconds. Upon receiving an external message, a worker process counts the number of

white messages received since the last GVT. It follows the steps in algorithm 5 to receive a

Lin et al. Page 14

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

GVT-CUT message. In Fujimoto’s algorithm, a process checks the GVTFlag variable before

processing an event and updates its local GVT if GVTFlag is greater than zero. A process

computes GVT if that process is red. It then inserts a GVT-CMP message into the TEQ of

each processing thread. A GVT-CMP message is a special control message which requires

each processing thread to report its local GVT. Hence each processing thread only modifies

the GVTflag and updates its local minimum timestamp once during a GVT computation.

ALGORITHM 5

Steps for communication thread receiving an external event

Input: External event e received via shared memory or MPI

if e is a non-control message then

 if e.color == WHITE then

 whiteCount−;

 end

else

 % Only the GVT-computing-related message is described here

 if e.type == GVT-CUT then

 Set color of this process to RED;

 Set localGVT to e.tempGVT, cache e.count;

 % write lock on GVTFlag

 Set GVTFlag to the number of processing threads m;

 for processing thread T in the same process do

 Insert a GVT – CMP message into the TEQ of T;

 end

 end

end

A processing thread reports its local GVT value while processing a GVT-CMP messages in

its TEQ, as depicted in algorithm 6, and records this value in its localMin variable. The local

GVT value in a processing thread is the minimum of the smallest receive time of the

pending events in the TEQ and the smallest send time of the RB-messages in the TEQ. Note

that the current event being processed by this thread is the GVT-CMT event, thus there are

no partially processed ordinary events in this thread. The processing thread updates the

localMin value and decreases GVTFlag by 1. When the GVTFlag equals zero all of the

processing threads in a process have reported their GVT values. The processing thread that

decreases the GVTFlag to zero inserts a GVT-CUT message into the send buffer of the

communication thread in order to indicate that the local computing is finished. The steps are

shown in algorithm 6. When a processing thread schedules normal events to other

processing threads within the same process, it checks GVTFlag and updates its minSend
variable if GVTFlag is greater than zero, as presented in algorithm 7. Here we can see

simultaneous access and modification to GVTFlag by threads in the same process,

necessitating concurrency protection on it. Note that GVTFlag can be accessed when a

thread schedules internal events and modified only when that process is computing GVT,

which indicates that read access is much more than write access. Based on this observation,

Lin et al. Page 15

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

we use a read-write spin lock on GVTFlag to improve performance in our simulator, and the

lock operations are marked in algorithm 5, 6 and 7.

ALGORITHM 6

Steps for processing threads processing a GVT – CMP message

Set t1 to the smallest receive time of ordinary events in TEQ;

Set t2 to the smallest send time of RB-messages in TEQ;

Set localMin to min(localMin, t1, t2);

% write lock on GVTFlag

GVTFlag−;

% read lock on GVTFlag

if GVTFlag == 0 then

 Insert a GVT – CUT message in the send buffer of the communication thread;

end

ALGORITHM 7

Steps for processing threads scheduling internal events

Insert event e to target LP by Multi-Level Queuing algorithm;

% read lock on GVTFlag

if GVTFlag > 0 then

 if e.type == RB-message then

 minSend=min(minSend, e.st);

 else

 minSend=min(minSend, e.rt);

 end

end

A communication thread follows the steps in algorithm 8 to compute its local GVT when

sending inter-process messages. For ordinary messages, it counts the number of white
messages sent and received since the last GVT and updates the minimum among receive

time (send time of RB-message) of red messages sent since the latest round of GVT

computing. The final value of the local GVT in a process is calculated when the

communication thread sends out a GVT-CUT message. The localGVT value is the minimum

among localGVT and localMin, minSend in each processing thread. Then it forwards a

GVT-CUT message (localGVT, count) to the next worker process, resets count to zero and

localMin, minSend in each processing thread to ∞.

GVT-CUT messages are passed from one worker process to another and eventually return to

the controller process. The controller process checks whether the count field in the received

GVT-CUT message equals zero. If it does, a new GVT value tempGVT in the received

GVT-CUT message is obtained and the controller process broadcasts this value to all of the

worker processes. Otherwise (some transient messages were missed in this round) the

Lin et al. Page 16

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

controller process forwards this GVT-CUT message to the first worker process and triggers a

new round.

ALGORITHM 8

Steps for communication thread sending external events

Input: External event e to be sent

if e is a non-control message then

 if e.color == WHITE then

 whiteCount++;

 else

 if e.type == RB-message then

 minRed=min(minRed, e.st);

 else

 minRed=min(minRed, e.rt);

 end

 end

else

 if e.type == GVT-CUT then

 for processing thread T in the same process do

 localGVT=min(localGVT, T.localMin, T.minSend);

 end

 Set count to the sum of whiteCount and cached count;

 whiteCount=0;

 localGVT=min(localGVT, minRed);

 Forward a GVT-CUT message (localGVT, count) to the next process;

 end

end

A worker process becomes white when it receives a GVT broadcast message. It then updates

its GVT value to the received value and resets color to white, minRed to ∞, and whiteCount
to zero.

A correctness proof to this asynchronous GVT algorithm can be found in online appendix.

3.5. Hybrid Communication

We call the worker processes located in the same node a family. In part (a) of Fig. 2, assume

that there are c processes in a node. The shared memory is partitioned into c segments,

numbered 0, 1, ⋯, c − 1, Each process uses one of the segments as its receive buffer. Each

segment has a semaphore associated with it to control access to the segment. For example,

when process 0 is about to send data to its family member process 2, process 0 needs to hold

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

Lin et al. Page 17

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the semaphore for process 2, after which it releases the semaphore when it is finished

writing. When receiving data, process 0 must hold the semaphore.

Together, we have three-level communication mechanism, communication between threads

within same process is completed by pointers, to shared memory for processes in the same

node, and by MPI for remote processes.

4. EXPERIMENTS AND RESULTS

4.1. Platform

We use two platforms. One machine (PEPI) is a cluster node with 4 Intel(R) Xeon(R) E7

4860 2.27 GHz, 10 cores per processor, 1 TB memory, with Linux 2.6.32-358.2.1.el6.x86

64, Red Hat Enterprise Linux Server release 6.4 (Santiago). The other is the SW2 node (of

Guillimin at McGill HPC center), consisting of two Dual Intel(R) Sandy Bridge EP E5-2670

2.6 GHz CPUs, 8 cores per processor, 8 GB of memory per core, and a Non-blocking QDR

InfiniBand network with 40 Gbps between nodes. The node runs Linux

2.6.32-279.22.1.el6.x86_64 GNU/Linux.

4.2. Verification

Free calcium is buffered by intracellular buffers (e.g. calmodulin or parvalbumin) and is

therefore unavailable. However, it can escape from these buffers, resulting in an almost

constant concentration of cytosolic calcium. This observation can be used to verify our

simulator. The buffer model includes two reactions as follows.

We executed this buffer model using the deterministic NEURON simulator on a ”Y” shaped

geometry which consists of three cylinders (10 µm long, 1 µm diameter, and a sketch can be

found in [Patoary et al. 2014]). To show spatial effects, we initialize high concentration of

free calcium in one cylinder and low concentration in the remaining two cylinders, and then

trace the evolution of the molecules. The initial high and low concentration of Ca2+ is set to

1.0 mM and 0.1 mM, while the concentration of Buf and CaBuf is set to 0.5 mM and 0.001

mM everywhere. The reaction rates kf and kb are set to 0.06 and 0.01. In NTW-MT, the

geometry is partitioned into 2766 sub-volumes, and the length of each subvolume is 0.25

µm. High concentration of Ca2+ is initialized in the first 922 sub-volumes (922/2766=1/3) by

setting 10 molecules in each of those subvolumes, while 1 calcium molecule is set in each of

the remaining 1844 sub-volumes. The initial numbers of Buf and CaBuf molecules in each

subvolume are set to 5 and 0, respectively. From Fig. 7, we can see that the stochastic

approach exhibits a similar behavior to the deterministic approach.

4.3. Calcium waves

Calcium plays a very important role in regulating a great variety of cellular processes, from

fertilization through gene transcription, muscle contraction to cell death. Calcium for

signaling is sourced from both extracellular calcium that enters through the cell membrane,

Lin et al. Page 18

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and from intracellular sources [Berridge 1998]. Some major intracellular sources are

accessed though Ca2+-induced-Ca2+-release (CICR) [Berridge 1998; Roderick et al. 2003].

A brief introduction to the intracellular CICR dynamics is given in the online appendix.

CICR can happen spontaneously at a local spot within cells even without any external

stimulation [Ross 2012], this kind of localized CICR event is observed and called as ”spark”

[Cheng et al. 1993] or ”puff” [Parker and Ivorra 1990]. This type of local event occurs

stochastically in both temporal and spatial dimensions. In reproducing such events, a

stochastic simulation should be employed.

4.4. Calcium wave model

A deterministic CICR model has been developed in NEURON [Neymotin et al. 2015].

Based on this model we developed a discrete event model and simulated it. In our

experiments we only take the Inositol 1,4,5-triphosphate (IP3) and Ca2+ into account.

Because the real CICR model is complex and we cannot use the differential equations

directly, we simplified it by assuming (1) the IP3 receptor opens when the concentration of

IP3 and Ca2+ are both higher than some respective threshold and (2) an opening IP3 receptor

channel will close for a period of time determined by an exponential distribution. To be

more specific, once when the two thresholds are reached in a subvolume, the IP3 receptor

opens in that subvolume opens immediately and will close in a duration 10 × ln(u), u ~ U(0,

1). The reactions include:

where refers to Ca2+ in Endoplasmic Reticulum (ER), refers to Ca2+ in cytosol,

[•] refers to the concentration of the corresponding species •, m = [IP3]/([IP3]+kIP3),

, kIP3, kact, νIP3R, νleak, νSERCA and kSERCA are given constant

parameters, the value can be found in [Neymotin et al. 2015] and listed in online appendix.

 can only diffuse within ER, cytosolic Ca2+ and IP3 can only diffuse within cytosol.

The initial concentrations of Ca2+ (in the ER and cytosol) and IP3 are set to 9.511765 µM,

0.1 µM and 0.1 µM respectively. In each subvolume, 17% of the volume is the ER while the

remaining 83% is cytosol. The threshold for controlling the channel opening is 0.2 µM and 2

µM for cytosolic Ca2+ and IP3, respectively.

We made use of the following scenario. In the beginning both the concentrations of cytosolic

Ca2+ and IP3 are less than their respective threshold. At some time point, we inject IP3

Lin et al. Page 19

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

molecules into the middle 8 sub-volumes by adding 50 µM IP3 molecules to those sub-

volumes to trigger the release reaction in those sub-volumes. We ran this simplified model

on a one-dimensional geometry to give an example, the figures are shown in the online

appendix. As those appended figures show, this simplified model can produce a calcium

wave as expected.

4.5. Geometry

We simulate the intracellular Ca2+ wave in a CA1 hippocampal pyramidal neuron [Ishizuka

et al. 1995]. The hippocampal pyramidal neuron used in our experiment is taken from

NeuroMorpho.Org [Ascoli et al. 2007] (NO. c91662), and a three-dimensional view of this

neuron is given in online appendix. The neuron is partitioned into mesh grids, and each grid

is taken to be a subvolume. In general, the topology of a network of cells can play an

important role as, for example, it can be difficult to partition the space into cubes.

Algorithms from computer graphics, such as the marching cubes algorithm, can be

employed to deal with this issue. We select 14749 sub-volumes with a distance of less than

50 µm from soma (a three-dimension view of the selected region is also given in online

appendix.), and the length of each subvolume to be 0.5 µm. The sub-volumes are evenly

distributed among the processing threads.

4.6. Performance

The performance of NTW-MT is compared to two other versions. One is a process-based

parallel simulator which uses a controller process to calculate GVT. Memory operations

employ the standard new and delete mechanism. A thread+SQ version uses threads but does

not use the MLQ algorithm. Each thread uses a single priority queue to hold the pending

events. We know from [Xu and Tropper 2005] that RB messages result in superior

performance when compared to anti-messages and do not compare the simulator to one with

anti-messages.

In the thread+SQ case, when 32 processing threads are used, a roll-back avalanche occurs.

This phenomenon is much more serious for the process-based version, which essentially

cannot get beyond 8 processes. We consider these results inaccurate in terms of performance

and do not include them.

The placement of threads is an important issue, it affects the memory usage and

communication. We consider three placements- (1) within process in which all of the

processing threads are in the same process, thereby no interprocess events; (2) within node
in which processes exchange messages via shared memory; (3) hybrid respectively which

makes use of MPI for remote processes and the preceding techniques otherwise.

4.6.1. within Process Mode—We run this experiment in the PEPI machine by starting

up two processes, one controller and one worker process, and creating the processing threads

within the worker process. The results are shown in Fig. 8.

From Fig. 8(a), we can see that the execution time decreases with an increase in the number

of processing threads. The process-based version is slowest because each process receives

and sends events in the main processing loop and communication is time-consuming.

Lin et al. Page 20

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://NeuroMorpho.Org

When fewer than 8 processing threads are involved in the simulation, the thread+MLQ

version is slower than the thread+SQ version. The greatest difference (about 13%) occurs

when one processing thread is used. Because the essence of MLQ is the dispersion of

contention on a single queue, it is of no use if there is no contention.

rollbacks increase for all of the versions in Fig. 8(b). The process-based version suffers more

rollbacks (25%–35%) than the other two versions. The roll-back of the two thread version is

almost same in the few thread cases, while the MLQ version experienced fewer (around

18%) rollbacks than the SQ version. The events are inserted into thread queue directly in the

SQ version resulting in a greater delay.

The size of the TEQ scales well-it contains no more than 1.5 times the average number of

LPs per processing thread. Hence the access time for the TEQ is well controlled, see Fig.

9(a). In the MLQ algorithm, an event insertion may end at different levels of the queuing

system-the input channel, the LPEQ and the TEQ. Define the hit rate of a level to be the

proportion of insertions ending at each level. In the process-based and thread+SQ version,

all of the events are inserted into the thread queue. From Fig. 9(b), we can see that most

insertions end at the LPEQ when more than 8 threads are used, suggesting that the

contention is dispersed.

A roll-back is caused by either a straggler or an anti-message. In our implementation, we

replace a sequence of anti-messages by a single RB-message, which decrease the number of

events in the whole system. In Fig. 10, let r, rp and rs denote the total number of roll-back,

roll-back caused by straggler, and roll-back caused by RB-messages. Let rm, rmf and rma

denote the total number of RB-messages, the number of friendly RB-messages and the

number of aggressive RB-messages, then we have r = rp + rs and rm = rmf + rma.

From Fig. 10, we can see that when all of the processing threads are in the same process, the

roll-back triggered by a straggler shows a gradual increase. This is because event insertion is

done by pointer and contention on priority queues is dispersed, thus communication delay is

negligible.

There are three obvious crossover points in Fig. 10. The first one happens between the total

roll-back and total RB-message curves. Before the crossover the two curves are similar,

implying that a roll-back causes a RB-message. However, after the crossover a roll-back can

result in several RB messages due to imbalanced execution of processing threads. The

second one happens between the number of friendly RB-message and roll-back by straggler

curves. Before the crossover the number of friendly RB-messages is low, which implies that

most RB messages are triggered by secondary rollbacks. Both of the crossover points take

place when 7 processing threads are involved. The explanation for this is as follows. In a

three-dimensional grid one subvolume can have no more than 6 adjacent sub-volumes,

resulting in at most 7 threads inserting events at an individual LP simultaneously. Let μ =

number of processing threads/7 as the mean concurrency at a LP, if μ ≤ 1, a LP receives one

event in an event-processing cycle on average and sends only one RB-message on average

once it rolled back (see the usage of the ScheduleHistory variable in section 3.2); in contrast

a LP sends more than one RB-message during rolling back if μ > 1. The third one happens

Lin et al. Page 21

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

between the roll-back by straggler and the roll-back by RB-message curves. Before the

crossover, roll-back triggered by a straggler dominates, while roll-back by RB-message

increases after the crossover point. Note that after the third cross point, a LP can receive

twice the number of events in an event processing cycle on average, thus the roll-back by RB

message exhibits a sharp increase.

4.6.2. within Node Mode—All of the processes reside in the same node and transfer

external messages via shared memory. This experiment was done on the PEPI machine.

From Fig. 11(a), we see that placing more threads in the same process results in better

performance. This is reasonable because less interprocess communication is used. However,

comparing these results to those obtained by placing all of the processing threads in the

same process, we do not see a great difference. The combination of communication threads

and shared memory results in a short latency.

4.6.3. Hybrid Mode—The number of threads is limited by the number of physical cores in

a node. The obvious conclusion is that several nodes must be employed in a large scale

simulation. We conducted such a hybrid experiment on the Guillimin machine and used the

MPI option ppn (process per node) to dispatch worker processes to nodes.

The Guillimin machine uses a well-optimized infiniBand for remote communication. From

the results in Fig. 12(a), we again see that placing all of the processing threads in the same

process results in the best performance. When remote communication is involved,

performance decreases and the number of rollbacks increases.

In the purely remote communication case, the send buffer of the communication thread

overflows when more than 8 threads are in the same process. One communication thread

cannot accommodate 8 or more processing threads. This indicates the importance of

determining the number of processing threads in one worker process.

4.6.4. Scalability—To determine the scalability of NTW-MT for larger geometries, we

increase the total number of LPs in the simulation. This is done by selecting subvolumes in a

larger region around the soma of the CA1 neuron. There are 23547 subvolumes within a

radius 120 μm from the soma of the CA1 neuron. We ran the model with same scenario in

Guillimin in hybrid mode; the results are depicted in Fig. 13.

Comparing Fig. 12(a) and 13(a), the total number of LPs increases, resulting an increase in

total execution time, whereas the two curves show similar shape. The number of rollbacks is

low when 2 threads are used, so their role in estimating their contribution to the execution

time can be ignored. Note that there is almost no contention when one thread is used, hence

we do not use the execution time of one thread case to make estimates. Since the initial

condition, scenario parameters and end condition are same in the two runs, we assume that

the mean computational cost of an individual LP during the simulation is approximately the

same, and that the execution consists of two parts-a computational part (tc) and an overhead

part (to). Let θ be the ratio of number of LPs in the two geometries, θ = 23547/14749 ≈ 1.6.

When 2 threads are used, the bigger geometry has an execution time of about 1.9 times the

Lin et al. Page 22

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

execution time of the small geometry, tb = 1.9ts (the superscript b refers to bigger geometry),

, then . We see that the

overhead in the bigger geometry plays a bigger role than in the smaller geometry. There are

four major reasons for this: (1) more events were scheduled in the bigger geometry, leading

to more time spent in allocating memory for events and writing events; (2) the LPEQ and

ICEQ are protected by mutexes (section 3.1), there are more locking and unlocking

operations when more LPs are involved; (3) the size of the TEQ increases with the number

of LPs (the size of the LPEQ and the ICEQ depends on the number of neighbors (6), and has

little to do with the total number of LPs). As a result it takes more time to operate on the

TEQs (we use STL multiset). The STL multiset is implemented as a Red-Black tree. The

cost of a single operation is proportional to log2(q), where q is the number of elements in the

queue. From the analysis in section 4.6.1, the size of the TEQ is about 1.5 times as the

number of LPs in a thread, then η = log2(1.5 × 23547/2)/log2(1.5 × 14749/2) ≈ 1.05. (4)

more LPs consume more memory, which may lead to more cache misses.

When 16 threads are used the execution time for the bigger geometry is about 2.45 times

that of the smaller one. When using either 2 or 16 threads the number of rollbacks for the

larger geometry is much higher than for the smaller geometry. This is because rollbacks in

the bigger geometry have longer ”rollback chains”. A rollback chain is a list of LPs such that

a primary rollback of the header LP leads to secondary rollbacks at the successive LPs in the

list. In a bigger geometry, because there are more LPs which cover a wider spatial region, a

rollback can spread further.

4.6.5. CICR Model + Channel State Transition Model—An IP3R channel is a

tetramer of four IP3R molecules [Foskett et al. 2007]. Each IP3R molecule is a linear amino

acid sequence. The four molecules have a pore in their center, allowing Ca2+ to flow through

the pore when the channel is open. In each IP3R molecule (subunit), there are three sites:

one binds with IP3 for activation, another binds with cytsolic Ca2+ for activation while the

last binds with cytsolic Ca2+ for inactivation. A subunit is activated if both activation sites

are bound and the inactivation site is not bound. An activated subunit becomes inactivated

when the inactivation site is bound. The conductance of an IP3R channel is proportional to

the number of activated subunits, and a channel is considered as open if three of the four

subunits are activated [De Young and Keizer 1992]. Since the binding and unbinding rate of

activation sites is much faster than the inactivation site (on the order of 2000 and 10

respectively [Li and Rinzel 1994]), we assume that the two activation sites are in a dynamic

steady state (the number of bound sites is almost constant) before the inactivation site is

bound. More details can be found in the online appendix.

The binding and unbinding rate of the inactivation site is related to the concentration of the

cytosolic Ca2+. From [Neymotin et al. 2015] we know that an inactivation site is bound with

Ca2+ at a rate kb=(1−hinf)/τ, and is unbound at a rate ku=hinf/τ, where hinf is computed as

, Kinh and τ are given constant. An inactivation site can be in a bound

(1) or an unbound (0) state. Hence an individual IP3R can be in one of the 8 states sijk, where

i, j, k is 0 or 1, and only the state s000 allows Ca2+ to flow from the ER to the cytosol. As a

Lin et al. Page 23

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

result, there are 12 bidirectional reactions for the state transition of an individual IP3R as

follows.

As a (sanity) check for the state transition of the subunits, we initialize 8 × k IP3R channels

in each subvolume (k channels in each state), use 200 sub-volumes in a linear geometry,

inhibit release, leak and pumping reactions in each subvolume, i.e. only the state transition

reactions can occur. The ctysolic Ca2+ concentration is initialized as 9.6 × 10−5 mM, τ is

400 ms, and the simulation lasts 5 virtual seconds (5s ≫ 400 ms). We count the number of

subunits in each state, as displayed in table I, h = [3 × s000 + 2 × (s001 + s010 + s100) + (s011

+ s101 + s110)]/(200 × 3 × 8 × k). Kinh = 0.0019 mM,

. We see that h
converges to hinf as k → ∞.

In total, there are 27 reactions (along with the 3 reactions in the simplified model) and 11

species (3 species in the simplified model and IP3R channel in each state sijk). We call this

model the 8-states model. With the same configuration, we run the 8-states model with

14749 LPs on PEPI and show the results in Fig. 14.

Comparing Fig. 11(a) and 14(a), we see that NTW-MT scales well for the complex model

(8-states model). Its execution time is about 1.8 times that of the simplified model. The roll-

backs do not exhibit a significant difference between Fig. 11(b) and 14(b). The complex

model involves more computation for processing events. LPs spend extra time in (1) saving

more states (a state copy consists of 11 integers in the 8-states model) and (2) computing the

propensity of the reactions- the complex model contains more reactions, thereby taking more

time to compute the propensity of the reactions.

5. CONCLUSIONS AND FUTURE WORK

This paper is concerned with the development of a parallel discrete event simulator for

reaction diffusion models used in the simulation of neurons. To the best of our knowledge,

this is the first parallel discrete event simulator oriented towards stochastic simulation of

chemical reactions in a neuron. The research was done as part of the NEURON project

(www.neuron.yale.edu).

Our parallel simulator is optimistic and is thread based. It makes use of the NSM algorithm

[Elf and Ehrenberg 2004]. The use of threads is an attempt to capitalize on multicore

architectures used in high performance machines. Communication latency is minimized by

self-adaptive communication which selects the proper communication method (i.e. pointer,

shared memory and MPI) upon the location of receiver. It makes use of a multi-level queue

for the pending event set and a single roll-back message in place of individual anti-messages

to disperse contention and decrease overhead of roll-back. Memory management avoids

locking and unlocking when allocating and deallocating memory and maximizes cache

Lin et al. Page 24

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neuron.yale.edu

locality. The GVT is computed asynchronously both within and among processes to reduce

the overhead for thread synchronization.

We verified our simulator by comparing the result to that of the deterministic solution in

NEURON on a calcium buffer model. To examine its performance, we simulated a discrete

event model for calcium wave propagation in a hippocampal pyramidal neuron and

compared it to the performance of (1) a process based optimistic simulator and (2) a

threaded simulator which uses a single priority queue for each thread. NTW-MT exhibited

superior performance when all of the threads were in the same process. The effects of shared

memory and MPI based communication were investigated; the multilevel queue simulator

proved to be scalable. Finally, we we demonstrated the scalability of our simulator on a

larger CICR model and on a more detailed CICR model which included channel state

transition.

The need for load balancing algorithms and for window control was made clear during the

course of our our experiments. We are introducing window control and load balancing

techniques based on the use of techniques from artificial intelligence [Meraji and Tropper

2012]. The need to optimize state saving, e.g. by using reverse computation, was also

indicated by our experiments.

Although NTW-MT was developed for the simulation of stochastic reaction and diffusion

models of neurons, the techniques that we developed can be more widely applied. For one,

NTW-MT is applicable to general reaction-diffusion systems. Its multithreaded architecture,

asynchronous GVT algorithm and its use of hybrid communication are, in actuality, general-

purpose mechanisms for PDES.

Acknowledgments

This work is supported by China Scholarship Council and in part by the National Natural Science Foundation of
China (No. 61170048), Research Project of State Key Laboratory of High Performance Computing of National
University of Defense Technology (No. 201303-05) and the Research Fund for the Doctoral Program of High
Education of China (No. 20124307110017). This work is also funded by National Institutes of Health grants
R01MH086638 and T15LM007056.

REFERENCES

Alam, Sadaf R., Barrett, Richard F., Kuehn, Jeffery A., Roth, Philip C., Vetter, Jeffrey S. Proceedings
of the 2006 IEEE International Symposium on Workload Characterization. San Jose, California,
USA: IEEE; 2006. Characterization of scientific workloads on systems with multi-core processors;
p. 225-236.

Andrews, Steven S., Addy, Nathan J., Brent, Roger, Arkin, Adam P. Detailed simulations of cell
biology with Smoldyn 2.1. PLoS Comput Biol. 2010; 6(3):e1000705. (2010). [PubMed: 20300644]

Ascoli, Giorgio A., Donohue, Duncan E., Halavi, Maryam. NeuroMorpho.Org: A Central Resource for
Neuronal Morphologies. The Journal of Neuroscience. 2007; 27(35):9247–9251. (2007). [PubMed:
17728438]

Avril, Hervé, Tropper, Carl. Parallel and Distributed Simulation, 1995. (PADS’95), Proceedings., Ninth
Workshop on. IEEE; 1995 Jun 14–16. Clustered time warp and logic simulation; p. 112-119.(1995)

Bagrodia, Rajive, Meyer, Richard, Takai, Mineo, Chen, Yu-an, Zeng, Xiang, Martin, Jay, Song, Ha
Yoon. Parsec: A parallel simulation environment for complex systems. Computer. 1998; 31(10):77–
85. (1998).

Lin et al. Page 25

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://NeuroMorpho.Org

Bartol TM Jr, Land BR, Salpeter EE, Salpeter MM. Monte Carlo simulation of miniature endplate
current generation in the vertebrate neuromuscular junction. Biophysical Journal. 1991; 59(6):1290.
(1991). [PubMed: 1873466]

Berridge, Michael J. Neuronal Calcium Signaling. Neuron. 1998; 21(1):13–26. (1998). [PubMed:
9697848]

Blackwell KT. Approaches and tools for modeling signaling pathways and calcium dynamics in
neurons. Journal of neuroscience methods. 2013; 220(2):131–140. (2013). [PubMed: 23743449]

Byrne, Michael J., Waxham, M Neal, Kubota, Yoshihisa. Cellular dynamic simulator: an event driven
molecular simulation environment for cellular physiology. Neuroinformatics. 2010; 8(2):63–82.
(2010). [PubMed: 20361275]

Carnevale, Nicholas T., Hines, Michael L. The NEURON book. New York, NY, USA: Cambridge
University Press; 2006.

Carnevale, Nicholas T., Hines, Michael L. NEURON, for empirically-based simulations of neurons and
networks of neurons. 2009–2013 http://www.neuron.yale.edu. (2009–2013).

Carothers, Christopher D., Bauer, David, Pearce, Shawn. ROSS: A high-performance, low-memory,
modular Time Warp system. J. Parallel and Distrib. Comput. 2002; 62(11):1648–1669. (2002).

Chen, Li-li, Lu, Ya-shuai, Yao, Yi-ping, Peng, Shao-liang, Wu, Ling-da. Proceedings of the 2011 IEEE
Workshop on Principles of Advanced and Distributed Simulation. Nice, France: IEEE Computer
Society; 2011. A well-balanced time warp system on multi-core environments; p. 1-9.

Cheng, Heping, Lederer, WJ., Cannell, Mark B. Calcium sparks: elementary events underlying
excitation-contraction coupling in heart muscle. Science. 1993; 262(5134):740–744. (1993).
[PubMed: 8235594]

Das, Samir, Fujimoto, Richard, Panesar, Kiran, Allison, Don, Hybinette, Maria. Simulation Conference
Proceedings. IEEE; 1994 Winter. GTW: a time warp system for shared memory multiprocessors;
p. 1332-1339.1994

De Young, Gary W., Keizer, Joel. A single-pool inositol 1, 4, 5-trisphosphate- receptor-based model
for agonist-stimulated oscillations in Ca2+ concentration. Proceedings of the National Academy of
Sciences. 1992; 89(20):9895–9899. (1992).

Dematté, Lorenzo, Mazza, Tommaso. On parallel stochastic simulation of diffusive systems. In:
Heiner, Monika, Uhrmacher, Adelinde M., editors. Computational methods in systems biology
(Lecture Notes in Computer Science). Vol. 5307. Berlin Heidelberg, Germany: Springer; 2008. p.
191-210.

Dickman, Tom, Gupta, Sounak, Wilsey, Philip A. Proceedings of the 2013 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’13). New York, NY, USA: ACM;
2013. Event Pool Structures for PDES on Many-core Beowulf Clusters; p. 103-114.

Elf, Johan, Ehrenberg, Mns. Spontaneous separation of bi-stable biochemical systems into spatial
domains of opposite phases. Systems biology. 2004; 1(2):230–236. (2004). [PubMed: 17051695]

Foskett, J. Kevin, White, Carl, Cheung, King-Ho, Daniel Mak, Don-On. Inositol Trisphosphate
Receptor Ca2+ Release Channels. Physiological Reviews. 2007; 87(2):593–658. (2007). [PubMed:
17429043]

Fujimoto, Richard M. Parallel and Distribution Simulation Systems. 1st. New York, NY, USA: John
Wiley & Sons, Inc.; 1999.

Fujimoto, Richard M., Hybinette, Maria. Computing global virtual time in shared-memory
multiprocessors. ACM Transactions on Modeling and Computer Simulation (TOMACS). 1997;
7(4):425–446. (1997).

Gillespie, Daniel T. Exact stochastic simulation of coupled chemical reactions. The journal of physical
chemistry. 1977; 81(25):2340–2361. (1977).

Hattne, Johan, Fange, David, Elf, Johan. Stochastic reaction-diffusion simulation with MesoRD.
Bioinformatics. 2005; 21(12):2923–2924. (2005). [PubMed: 15817692]

Hepburn, Iain, Chen, Weiliang, Wils, Stefan, De Schutter, Erik. STEPS: efficient simulation of
stochastic reaction–diffusion models in realistic morphologies. BMC systems biology. 2012; 6(1):
36. (2012). [PubMed: 22574658]

Himmelspach, J., Uhrmacher, AM. Simulation Symposium, 2007. ANSS ’07. 40th Annual. IEEE
Computer Society; 2007. Plug’n Simulate; p. 137-143.

Lin et al. Page 26

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neuron.yale.edu

Ishizuka, Norio, Cowan, W Maxwell, Amaral, David G. A quantitative analysis of the dendritic
organization of pyramidal cells in the rat hippocampus. Journal of Comparative Neurology. 1995;
362(1):17–45. (1995). [PubMed: 8576427]

Jagtap, Deepak, Abu-Ghazaleh, Nael, Ponomarev, Dmitry. Proceedings of the 26th IEEE International
Parallel & Distributed Processing Symposium (IPDPS). Shanghai, China: IEEE; 2012.
Optimization of parallel discrete event simulator for multi-core systems; p. 520-531.

Jefferson, D., Beckman, B., Wieland, F., Blume, L., Diloreto, M. Proceedings of the Eleventh ACM
Symposium on Operating Systems Principles (SOSP ’87). New York, NY, USA: ACM; 1987.
Time Warp Operating System; p. 77-93.

Jefferson, David R. Virtual time. ACM Transactions on Programming Languages and Systems
(TOPLAS). 1985; 7(3):404–425. (1985).

Jeschke, Matthias, Ewald, Roland, Uhrmacher, Adelinde M. Exploring the performance of spatial
stochastic simulation algorithms. J. Comput. Phys. 2011; 230(7):2562–2574. (2011).

Jeschke, Matthias, Park, Alfred, Ewald, Roland, Fujimoto, Richard, Uhrmacher, Adelinde M.
Proceedings of the 22nd Workshop on Principles of Advanced and Distributed Simulation
(PADS ’08). Washington, DC, USA: IEEE Computer Society; 2008. Parallel and Distributed
Spatial Simulation of Chemical Reactions; p. 51-59.

Li, Yue-Xian, Rinzel, John. Equations for InsP 3 receptor-mediated [Ca 2+] i oscillations derived from
a detailed kinetic model: a Hodgkin-Huxley like formalism. Journal of theoretical Biology. 1994;
166(4):461–473. (1994). [PubMed: 8176949]

Lytton, William W. From Computer to Brain. New York, USA: Springer-Verlag; 2002.

Mattern, Friedemann. Efficient algorithms for distributed snapshots and global virtual time
approximation. J. Parallel and Distrib. Comput. 1993; 18(4):423–434. (1993).

McDougal, Robert A., Hines, Michael L., Lytton, William W. Reaction-diffusion in the NEURON
simulator. Frontiers in Neuroinformatics. 2013; 7(28) (2013).

Meraji, Sina, Tropper, Carl. Optimizing techniques for parallel digital logic simulation. Parallel and
Distributed Systems, IEEE Transactions on. 2012; 23(6):1135–1146. (2012).

Miller, Ryan James. Ph.D. Dissertation. University of Cincinnati; 2010. Optimistic parallel discrete
event simulation on a beowulf cluster of multi-core machines.

Neymotin, Samuel A., McDougal, Robert A., Sherif, Mohamed A., Fall, Christopher P., Hines,
Michael L., Lytton, William W. Neuronal Calcium Wave Propagation Varies with Changes in
Endoplasmic Reticulum Parameters: A Computer Model. Neural Computation. 2015 Mar; 27(4):
898–924. (2015). [PubMed: 25734493]

Parker, Ian, Ivorra, Isabel. Localized all-or-none calcium liberation by inositol trisphosphate. Science.
1990; 250(4983):977–979. (1990). [PubMed: 2237441]

Patoary, Mohammand Nazrul Ishlam, Tropper, Carl, Lin, Zhongwei, McDougal, Robert, Lytton,
William W. Proceedings of the 2014 Winter Simulation Conference (WSC ’14). Piscataway, NJ,
USA: IEEE Press; 2014. Neuron Time Warp; p. 3447-3458.

Pellegrini, Alessandro, Quaglia, Francesco. IEEE 26th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). Paris, France: IEEE; 2014. Wait-
Free Global Virtual Time Computation in Shared Memory TimeWarp Systems; p. 9-16.

Perumalla, Kalyan S. Principles of Advanced and Distributed Simulation, PADS 2005 Workshop on.
IEEE; 2005 Jun 1–3. μsik-a micro-kernel for parallel/distributed simulation systems; p. 59-68.
(2005)

Roderick, H. Llewelyn, Berridge, Michael J., Bootman, Martin D. Calcium-induced calcium release.
Current Biology. 2003; 13(11):R425. (2003). [PubMed: 12781146]

Ross, William N. Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci. 2012
Mar; 13(3):157–168. (2012). [PubMed: 22314443]

Samadi, Behrokh. Ph.D. Dissertation. Los Angeles: University of California; 1985. Distributed
Simulation, Algorithms and Performance Analysis (Load Balancing, Distributed Processing).
AAI8513157

Schinazi, Rinaldo B. Predator-prey and host-parasite spatial stochastic models. The Annals of Applied
Probability. 1997; 7(1):1–9. (1997).

Lin et al. Page 27

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sterratt, David, Graham, Bruce, Gillies, Andrew, Willshaw, David. Principles of computational
modelling in neuroscience. New York, USA: Cambridge University Press; 2011.

Vitali, Roberto, Pellegrini, Alessandro, Quaglia, Francesco. Principles of Advanced and Distributed
Simulation (PADS), 2012 ACM/IEEE/SCS 26th Workshop on. Zhangjiajie, China: IEEE; 2012.
Towards symmetric multi-threaded optimistic simulation kernels; p. 211-220.

Wang, Bing, Hou, Bonan, Xing, Fei, Yao, Yiping. Abstract Next Subvolume Method: A logical
process- based approach for spatial stochastic simulation of chemical reactions. Computational
biology and chemistry. 2011; 35(3):193–198. (2011). [PubMed: 21704266]

Wang, Bing, Yao, Yiping, Zhao, Yuliang, Hou, Bonan, Peng, Shaoliang. Proceedings of the 2009
International Conference on High Performance Computational Systems Biology. Trento, Italy:
2009. Experimental Analysis of Optimistic Synchronization Algorithms for Parallel Simulation of
Reaction-Diffusion Systems; p. 91-100.

Xu, Qing, Tropper, Carl. Proceedings of the 19th Workshop on Principles of Advanced and Distributed
Simulation. Monterey, California, USA: IEEE Computer Society; 2005. XTW, a parallel and
distributed logic simulator; p. 181-188.

Yao, Yingping, Zhang, Yingxing. Solution for Analytic Simulation Based on Parallel Processing.
Journal of System Simulation. 2008; 20(24):6617–6621. (2008).

Lin et al. Page 28

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Three scheme for storing and dispatching pending events to thread.

Lin et al. Page 29

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Architecture of NTW-MT simulator.

Lin et al. Page 30

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
This example shows 6 LPs (rounded rectangles) which are distributed over three processes

(dashed rectangles). Some are located in the same processing thread (an ellipse). The

number in each LP is the local virtual time of the LP, and is also used to identify the LP.

Each arrow indicates an event. The number on each arrow is the timestamp of the event

(receive time, send time). Some LPs and events are omitted.

Lin et al. Page 31

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
An example of memory allocation of events. The style of arrows is used to mark sender LP,

and the number on each arrow tells the sequence number of that operation.

Lin et al. Page 32

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
An example of simultaneous reporting problem within a worker process.

Lin et al. Page 33

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Message flow and data structure of asynchronous GVT computing.

Lin et al. Page 34

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Deterministic NEURON simulation vs. stochastic NTW-MT simulation, Ca H and Ca L

refer to high and low concentration of calcium in respective region in deterministic and

stochastic simulation.

Lin et al. Page 35

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Execution time and roll-back with all of the processing threads running within one process

in the PEPI machine.

Lin et al. Page 36

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Maximum size of TEQ and hit rate in within process mode in the PEPI machine.

Lin et al. Page 37

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
Detailed analysis of rollback of NTW-MT in within process mode in the PEPI machine.

Lin et al. Page 38

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
Execution time and roll-back with shared memory communication in within node mode.

Lin et al. Page 39

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
Execution time and roll-back with hybrid communication, ppn refers to process per node.

Lin et al. Page 40

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 13.
Execution time and rollbacks of the simplified model in bigger geometry.

Lin et al. Page 41

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 14.
Execution time and rollbacks of the 8-states model.

Lin et al. Page 42

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lin et al. Page 43

Ta
b

le
 I

N
um

be
r

of
 a

ct
iv

at
ed

 s
ub

un
its

 w
ith

 v
ar

io
us

 in
iti

al
 n

um
be

r
of

 I
P 3

R
 c

ha
nn

el

k
s 0

00
s 0

01
s 0

10
s 0

11
s 1

00
s 1

01
s 1

10
s 1

11
h

10
13

80
3

71
4

70
6

32
67

0
30

42
3

0.
95

19
37

5
68

70
35

1
35

3
19

37
0

18
17

2
0.

95
05

1
13

92
67

68
2

62
4

5
0

0.
95

48

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2018 July 01.

	Abstract
	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	2.1. Stochastic Simulation
	2.2. Process-based PDES and XTW
	2.3. Multi-threaded PDES
	2.4. GVT algorithms for multi-threaded PDES

	3. ARCHITECTURE AND ALGORITHMS
	ALGORITHM 1
	3.1. Multi-Level Queuing
	Definition 3.1

	3.2. RB-massage and Roll Back

	ALGORITHM 2
	ALGORITHM 3
	ALGORITHM 4
	3.3. Memory Management
	3.4. Asynchronous GVT Computing

	ALGORITHM 5
	ALGORITHM 6
	ALGORITHM 7
	ALGORITHM 8
	3.5. Hybrid Communication

	4. EXPERIMENTS AND RESULTS
	4.1. Platform
	4.2. Verification
	4.3. Calcium waves
	4.4. Calcium wave model
	4.5. Geometry
	4.6. Performance
	4.6.1. within Process Mode
	4.6.2. within Node Mode
	4.6.3. Hybrid Mode
	4.6.4. Scalability
	4.6.5. CICR Model + Channel State Transition Model

	5. CONCLUSIONS AND FUTURE WORK
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Fig. 14
	Table I

