Table 3.
Torsion Angle | Window sizea | Featuresb | DRNN | DReRBM | DNN | DRBM |
---|---|---|---|---|---|---|
phi | 1 | 56 | 21.09 | 21.81 | 22.13 | 21.95 |
3 | 168 | 20.52 | 20.77 | 21.49 | 21.07 | |
5 | 280 | 20.39 | 20.92 | 21.24 | 20.89 | |
7 | 392 | 20.39 | 21.03 | 21.22 | 20.84 | |
9 | 504 | 20.40 | 20.95 | 21.28 | 21.62 | |
11 | 616 | 20.49 | 20.88 | 21.04 | 21.57 | |
13 | 728 | 20.56 | 20.98 | 21.27 | 21.79 | |
15 | 840 | 20.63 | 21.12 | 21.19 | 21.69 | |
17 | 952 | 20.69 | 21.04 | 21.38 | 21.66 | |
psi | 1 | 56 | 31.68 | 32.93 | 33.55 | 33.02 |
3 | 168 | 29.29 | 29.86 | 30.14 | 29.74 | |
5 | 280 | 28.96 | 29.94 | 29.25 | 28.92 | |
7 | 392 | 28.85 | 30.11 | 29.25 | 28.85 | |
9 | 504 | 28.86 | 29.94 | 29.38 | 29.61 | |
11 | 616 | 29.06 | 29.95 | 29.06 | 29.75 | |
13 | 728 | 29.27 | 30.13 | 29.38 | 30.19 | |
15 | 840 | 29.44 | 30.48 | 29.24 | 30.25 | |
17 | 952 | 29.72 | 30.36 | 29.54 | 30.33 |
aNumber of window size range from 1 to 17
bNumber of features as input for the deep learning model. For each residue, we used 7 kinds of features, represented by 56 numbers
The bold fond denotes the best result for each method