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Abstract

The proposed spectral CT method solves the constrained one-step spectral CT reconstruction 

(cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-

ray detection process and enforcing convex constraints on the basis map images. In order to apply 

the optimization-based reconstruction approach to experimental data, the presented method 

empirically estimates the effective energy-window spectra using a calibration procedure. The 

amplitudes of the estimated spectra were further optimized as part of the reconstruction process to 

reduce ring artifacts. A validation approach was developed to select constraint parameters. The 

proposed spectral CT method was evaluated through simulations and experiments with a photon-

counting detector. Basis material map images were successfully reconstructed using the presented 

empirical spectral modeling and cOSSCIR optimization approach. In simulations, the cOSSCIR 

approach accurately reconstructed the basis map images (< 1% error). In experiments, the 

proposed method estimated the LDPE region of the basis maps with 0.5% error in the PMMA 

image and 4% error in the aluminum image. For the Teflon region, the experimental results 

demonstrated 8% and 31% error in the PMMA and aluminum basis material maps, respectively, 

compared to −24% and 126% error without estimation of the effective energy window spectra, 

with residual errors likely due to insufficient modeling of detector effects. The cOSSCIR 

algorithm estimated the material decomposition angle to within 1.3 degree error, where, for 

reference, the difference in angle between PMMA and muscle tissue is 2.1 degrees. The joint 

estimation of spectral-response scaling coefficients and basis material maps was found to reduce 

ring artifacts in both a phantom and tissue specimen. The presented validation procedure 

demonstrated feasibility for automated determination of algorithm constraint parameters.
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I. Introduction

Photon-counting detectors can simultaneously acquire X-ray measurements at multiple 

energy windows [1]. From the spectral data, basis material map images can be reconstructed 

to quantify material composition and density [2].

One approach for generating basis material maps first decomposes the spectral projection 

data into basis sinograms that represent the path length through the selected basis materials 

[2], [3], [4]. From these basis sinograms, basis material map images can be reconstructed 

using conventional or iterative CT reconstruction techniques [5], [6], [7], [8]. This ‘two-step’ 

method is susceptible to noise, due to instability of the decomposition step. A second 

approach performs the standard flat-field normalization and negative logarithm followed by 

conventional CT reconstruction of each energy-window measurement, resulting in images 

reconstructed at different effective energies. The reconstructed images are then combined to 

estimate the basis material map images [9], [10]. This method, while relatively simple, is 

susceptible to beam hardening effects. A third approach is to directly estimate the basis 

material maps from the energy-window measurements, for which several iterative algorithms 

have been proposed [11], [12], [13], [14], [15]. The direct inversion approach is challenging 

due to the ill-conditioned inversion and nonlinear polyenergetic X-ray measurement model.

We previously developed an optimization-based approach to directly estimate the basis 

material map images from the measured projection data (i.e., ‘one-step’ inversion). This 

optimization-based approach models the polyenergetic x-ray transmission, which causes the 

optimization problem to be nonconvex, while incorporating non-smooth, convex constraints 

to stabilize the reconstruction and potentially reduce noise and/or dose [16]. To our 

knowledge, this nonconvex, constrained optimization problem can only be solved by the 

mirrored convex-concave (MOCCA) optimization algorithm [17]. The one-step inversion 

approach was previously demonstrated using simulated data that assumed a photon-counting 

detector with ideal energy response [16].

In practice, photon-counting detectors are susceptible to numerous effects that degrade the 

energy response, leading to photons detected in the incorrect energy windows [1]. Modeling 

and compensating for these nonideal effects is an active area of photon-counting CT 

research [18], [19], [20]. Because of the complex factors affecting photon-counting 

detection, experimental studies are required to effectively evaluate reconstruction 

algorithms. Several iterative spectral CT reconstruction approaches have been recently 

investigated on experimental data, for example demonstrating the potential to reduce noise 

[8], [21], perform material decomposition [22], and improve contrast-to-noise ratio [23]. To 

our knowledge, this paper presents the first experimental implementation of a spectral CT 

iterative algorithm that both models the nonlinear polyenergetic X-ray transmission while 

enforcing convex constraints on the basis maps.

The presented spectral CT method consists of: (1) empirical effective spectra estimation; (2) 

formulation of a constrained, non-convex optimization problem (cOSSCIR) that includes 

scaling of the estimated spectra; (3) solution by the MOCCA algorithm; and (4) validation 

procedure for determining constraint parameters. Steps 1,2, and 4 represent novel 
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approaches presented in this paper for the purpose of reconstructing experimental photon-

counting data. Section II presents a brief overview of the cOSSCIR optimization problem, 

Section III describes the empirical methods for modeling the detector spectral response, and 

Section IV describes the employed constraints and the validation procedure for selecting 

constraint parameters. The simulation and experimental methods are presented in Sections V 

and VI, respectively, with results in Sections VII and VIII, followed by discussion (Section 

IX) and conclusions (Section X).

II. Constrained One-Step Spectral CT Image Reconstruction (cOSSCIR)

This section presents a brief overview of the constrained One-Step Spectral CT Image 

Reconstruction (cOSSCIR) optimization problem. A full derivation and pseudo-code can be 

found in our previous publications [17], [16].

Basis material decomposition is performed by expressing the energy-dependent linear 

attenuation coefficient for energy E and spatial location r⃗, μ(E, r ⃗), as a basis expansion [2]

(1)

where μm(E) is the mth basis function and fm(r⃗) is the spatial map of the contribution of that 

basis function to the total X-ray attenuation. The basis coefficients, fm, provide quantitative 

information about the composition and density of the imaged material.

The goal of the investigated algorithm is to reconstruct the basis material maps fm(r⃗) from 

counts data measured at multiple energy windows. The continuous basis material maps, 

fm(r⃗), can be discretized by a voxel representation where fkm is the value of the basis map for 

material m and at voxel k. Eq. 2 is the discretized nonlinear forward model assumed by the 

optimization problem in this work, expressing the expected number of counts ĉwℓ detected 

for ray ℓ in energy window w as a function of the discretized basis material maps, fkm:

(2)

Here Nwℓ is the number of photons detected for ray ℓ in energy window w in the absence of 

an object, and swℓi represents the fraction of photons at discretized energy interval i detected 

in energy window w for ray ℓ the absence of an object. The line integration of the discrete 

material maps is performed by multiplication with matrix X, where Xℓk is the length of 

intersection between ray ℓ and voxel k,

The reconstruction approach investigated in this work inverts Eq. 2 to directly estimate the 

basis material maps, fkm, from photon counts detected for ray ℓ in energy window w, cwℓ. 

The basis material maps are estimated through the following constrained optimization
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(3)

where DTPL is the data discrepancy function that assumes transmission Poisson likelihood 

(TPL),

(4)

Indicator functions δ(Pi) enforce the convex constraints f ∈ Pi, and are defined as

(5)

where the Pi are convex sets corresponding to the desired constraints.

Minimizing the TPL discrepancy is equivalent to maximizing the likelihood assuming that 

the counts data are Poisson distributed, which is the case for an ideal photon counting 

detector. In practice, nonideal effects such as charge sharing, K-escape, and pileup alter this 

distribution. Although these effects introduce inconsistencies with the Poisson model, the 

TPL can be a useful measure of data discrepancy because it gives more weight to the 

measurements with higher counts [16].

The mirrored convex-concave (MOCCA) was previously proposed to perform the 

optimization described in Eq. 3 [17], [16]. The algorithm uses a convex-concave 

generalization to the Chambolle-Pock algorithm to handle the non-convex data discrepancy 

term. The algorithm derivation and pseudo-code are available in previous publications [17], 

[16].

III. Modeling the detector spectral response

The forward model described in Eq. 2 assumes prior knowledge of the spectrum for each 

acquired energy window w and ray ℓ given by swℓi across energies i. In a photon-counting 

detector with ideal spectral response, each channel records the number of photons detected 

above its energy threshold. The counts measured in consecutive channels can be subtracted 

to calculate the number of photons detected between two energy thresholds, which we refer 

to as an energy window. In an ideal photon-counting detector, the energy windows are 

discrete and non-overlapping, as plotted in Fig. 1.

In practice, numerous physical effects introduce errors in the number and energy of photons 

recorded by the detector [1]. One interpretation of these nonideal effects is that photons are 

detected in the incorrect discrete energy bins. Another interpretation is that these nonideal 
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effects cause the energy windows to overlap, as photons with energy outside of the window 

thresholds contribute to the energy window measurement, as plotted in Fig. 1.

Nonideal detector effects can be incorporated into the optimization framework by including 

the effects in the data model (Eq. 2). Such models are under development for both flux-

independent and flux-dependent effects [5], [18], [19]. One approach for modeling the flux-

independent effects first measures the detector spectral response functions using 

monoenergetic measurements, for example using isotopes or synchrotron facilities [5]. The 

detector spectral response functions, R(E, E′), represent the probability of a photon with 

energy E being detected at energy E′. The effective spectrum for each energy window can 

be calculated by integrating the energy response functions over E′ for the range of energies 

between the comparator thresholds for that window. Including the spectral response 

functions in the forward data model was previously shown to reduce error in material 

decomposition estimates [5]. However, monoenergetic calibration measurements pose 

challenges for routine calibration, such as long acquisition times.

In this work, nonideal effects were incorporated into the reconstruction algorithm by 

empirically estimating the effective spectrum for each energy-window measurement and for 

each ray (swℓi in Eq. 2) using calibration transmission measurements, as will be described in 

Section VI-B. This approach should approximately account for the flux-independent 

detector effects. Pulse-pileup is not considered directly in this work, but could be 

incorporated in the future with the further development of pileup models.

Photon-counting CT images are also known to be susceptible to ring artifacts, due to 

variations in the energy thresholds and spectral response across detector pixels [5], [24], 

[25]. Despite these issues, the decomposed basis material map images should theoretically 

be immune to ring artifacts if the forward model (Eq. 2) completely describes the 

measurement process. In practice, the effective spectra estimated through calibration only 

approximately model the true detector response. Also, the spectral estimation is based on a 

limited combination of calibration materials. The resulting errors in material decomposition 

estimates obtained from projection data may vary across detector pixels due to varying 

detector response, leading to rings in the basis material map images that can be more severe 

than in the reconstructed energy-window images. Ring artifacts may also be introduced 

when the detector pixel spectral responses drift between the time of calibration and data 

acquisition, due to effects such as temperature.

We propose an empirical spectral-response scaling method to adjust, during reconstruction, 

the amplitude of the estimated effective spectra to further reduce the data discrepancy. The 

proposed scaling factors adjust the number of photons detected in each energy window for 

each detector pixel, which is an approximate correction for errors in the distribution of 

photon energies detected by each window.

The spectral-response scaling factor, awp, for window w and detector pixel p is incorporated 

into the cOSSCIR data model as,
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(6)

where pℓ is the detector pixel corresponding to ray ℓ. We assume that the scaling factor for 

each detector pixel is constant over the scan time such that the scaling factor depends only 

on the detector pixel. The vector of awp scaling factors are estimated jointly with the basis 

material maps using the MOCCA optimization algorithm:

(7)

Application of the MOCCA algorithm to the new data model with spectral-response scaling 

in Eq. (6) is straightforward because a and f enter the model as a linear combination.

IV. Convex Constraints and Validation Procedure

A major advantage of our cOSSCIR optimization approach is that constraints can be readily 

incorporated to stabilize inversion of the data model. In this work, total variation (TV) 

constraints were placed on the basis material map images, and an ℓ2-norm constraint on the 

spectral-response scaling factors.

The TV constraints were formulated as

where ∇ represents the finite-differencing approximation to the gradient, and we use |·| to 

represent a spatial magnitude operator so that  is the gradient magnitude image (GMI) 

of transformed material map m. Transformation of the basis material maps was introduced in 

our previous work to improve convergence of the one-step algorithm [16]. This μ-

preconditioning step orthogonalizes the basis material attenuation functions.

For the cases where the spectral-response scaling factors awp were jointly estimated during 

reconstruction (Section III), an additional constraint was placed on the magnitude of the 

vector of scaling factors to control the strong linear dependence between the scaling 

coefficients and the basis material maps.
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In the current application with two basis materials, such as PMMA and aluminum as used in 

this study, there are two TV constraint parameters, γm, and a spectral-response scaling 

constraint parameter, α. Determining the optimal settings of these parameters is a difficult 

task even by visual assessment, because obtaining basis maps at each setting of the three 

constraint parameters entails full iterative image reconstruction making a grid search 

impractical. The parameter tuning issue is even more acute when considering spectral CT for 

estimation tasks, as the quantitative values in the reconstructed basis material maps will vary 

with γm and α.

We investigated an automatic method of constraint parameter determination. One way to 

view constraints is that they prevent overfitting the available data. The measured counts data 

contain inconsistencies, due to both noise from random physical processes, and systematic 

error from unmodeled physics. In minimizing a data discrepancy term, the resulting basis 

material maps can become contaminated by these inconsistencies. Random noise can lead to 

the model over-fitting to the data if parameters are not constrained sufficiently.

We use a validation method to select constraint values to avoid this problem of over-fitting. 

The proposed validation method selects constraint parameters that minimize the TPL data 

discrepancy for data that was not used in the reconstruction of the basis images. More 

specifically, the validation method first randomly removes 10% of the data from the set of 

measurements across all detector pixels, projection angles, energy windows to serve as a 

“testing” dataset. For a particular set of constraint parameters, the basis images are then 

reconstructed from the remaining 90% of the data, the “training” set. From the reconstructed 

basis images and estimated scaling factors the TPL data discrepancy was calculated for the 

testing set. By repeating this method with different constraint parameters, the parameters 

were optimized to be the values that minimized the testing TPL data discrepancy. Once the 

validated constraint parameters were obtained, reconstruction was performed using all 

counts data.

In order to perform the validation optimization, we employed constrained optimization by 

linear approximation (COBYLA) [26]. This algorithm is a standard small-scale solver that 

avoids the use of numerical differentiation in deriving descent steps. This is necessary 

because the testing TPL data discrepancy is effectively a non-smooth function of the 

constraint parameters, as objective values result from numerical solution of the cOSSCIR 

optimization problem. In our implementation, the MOCCA algorithm was run for 2000 

iterations and the obtained solutions were checked against the TV and spectral-response 

scaling constraints. It was observed that each of the constraints were active and the 

computed TV and spectrum scaling vector norm agreed with the constraint parameters to 

better than 0.01% for all computations.

Care must be taken in selecting the initial values of the constraint parameters so as to 

minimize the number of COBYLA iterations necessary. Also, it is helpful to include scaling 

factors so that the parameter values are all of comparable magnitude. In order to properly 

initialize the COBYLA algorithm, we found it helpful to do two coarse grid searches. First, 

we performed a one-dimensional grid search on the testing TPL using only the spectral-

response scaling constraint. Second, we performed a two-dimensional grid search varying 
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the basis material map TV constraints without use of spectral-response scaling, i.e. awp = 0. 

Using the results of these grid searches, it was possible to initialize the COBYLA algorithm 

so that the testing TPL was minimized within 50 iterations.

V. Simulation Study Methods

The simulations were designed to validate the novel algorithmic components presented in 

this paper: the joint estimation of spectral-response scaling factors with the basis maps, and 

the validation technique to select constraint parameters. An extensive simulation study of the 

cOSSCIR approach was previously published [16].

A. Image reconstruction at ideal constraint parameter settings

A simulation study was performed to establish that, under relatively ideal conditions, the 

image reconstruction with spectral-response scaling using cOSSCIR provides accurate 

results.

We designed a computer simulation, shown in Fig. 2, of the experimental rod phantom 

shown in Fig. 3. The simulation was designed such that spectral-response scaling and 

Poisson noise were the only sources of data inconsistency. As such, the discretization of the 

voxelized phantom matched that of the reconstructed images. The materials in the rod 

phantom were modeled and the NIST values [27] for energy dependent attenuation data 

were used to generate mean counts data as specified in Eq. (6). The simulated energy 

window spectra were equal to spectra obtained experimentally as will be described in in Sec. 

VI-B. To simulate the detector pixel-to-pixel spectral variations found in the experimental 

data, a test vector of spectral-response scaling coefficients awp (also shown in Fig. 2) that 

resulted from experimental data were applied to the simulated spectra. By using the 

experimentally measured spectra, we modeled realistic variation across the detector pixels 

and absolute count values that allowed generation of Poisson noise that closely modeled the 

experiment.

The simulated data were reconstructed by the cOSSCIR approach into PMMA and 

aluminum basis material maps. During reconstruction, cOSSCIR assumed the same baseline 

energy-window spectra, swli, as the simulations, however the reconstruction algorithm did 

not have knowledge of the spectral-response scaling factors, awp, that were modeled during 

simulation. This simulation design validates that cOSSCIR algorithm produces accurate 

decomposition results while estimating the spectral-response scaling factors. One advantage 

of the constrained optimization framework is that, for simulation studies, ideal constraint 

values can be determined from the ground truth software phantom. During cOSSCIR 

reconstruction of the simulated data, the constraint parameters were set to their respective 

phantom values.
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Because the cOSSCIR optimization is actually performed on transformed basis maps, we 

also tested use of the TV constraints on the transformed maps:

where numerical indices are employed because they are applied to the transformed basis 

material maps. The transformed basis maps do not have physical meaning as the 

orthogonalized basis attenuation functions can have negative values.

B. Testing the use of validation for parameter selection

The other novel aspect of the proposed framework is the use of validation to arrive at useful 

values of the constraint parameters. Simulations were performed to evaluate that the 

proposed validation technique can arrive at reasonable values for the spectral-response 

scaling and basis map TV constraint parameters. For this same simulation of the rod 

phantom we determined optimal values of the constraint parameters using the validation 

procedure described in Sec. IV. These constraint values were then applied to a cOSSCIR 

reconstruction using 100% of the spectral CT data.

VI. Experimental study methods

A. Spectral CT acquisition

The bench-top system consisted of a microfocus X-ray tube (L9181-02, Hamamatsu, 

Shizouka, Japan) and a CdZnTe detector (NEXIS, Nova R & D, Riverside, CA) with two 

rows of 128, 1 mm pixels with five user-defined energy thresholds per detector pixel. This 

study used data from one detector row. Acquisitions were performed at 100 kV, 2-mm 

aluminum filtration, and with a raw-beam flux of 1.08 × 105 counts/(s · mm2) compared to a 

maximum detector count rate of 2 × 106 counts/(s · mm2). The source-to-detector distance 

was 82 cm and the source-to-isocenter distance was 55 cm. CT data was acquired at 200 

views per rotation, with 0.132 mAs per view. Spectral CT data was acquired at three energy 

windows, with threshold settings of 25 keV to 40 keV, 40 keV to 60 keV, and > 60 keV.

CT images were acquired of a 6.35-cm-diameter acrylic phantom (Fig. 3) with 1-cm-

diameter rod inserts of acrylic, Teflon, low-density polyethylene (LDPE) and air. This 

phantom provided regions of known material composition for evaluating the bias of the 

decomposition algorithm. A chicken tissue specimen was also imaged to demonstrate the 

algorithm performance for a more complex object.

B. Spectral models

The cOSSCIR optimization requires a model for the effective spectra of each energy window 

measurement. Reconstruction of PMMA and aluminum basis images was performed 

assuming an ideal detector response and the 100 kV spectrum with 2-mm aluminum 

filtration output by the Spec78 software [28] and sampled at 1 keV intervals between 10 keV 
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and 100 keV. The ideal spectrum was divided into discrete energy windows with thresholds 

of 25 keV, 40 keV, and 60 keV, as plotted in Fig. 1. Performing a reconstruction with the 

ideal spectrum provides a reference for the amount of nonideality in the experimental data, 

which helps us evaluate the compensation provided by the spectral estimation method.

Another set of reconstructions was performed with effective spectra that were estimated 

using a previously proposed empirical method [29]. A step wedge phantom (Fig. 3b) was 

used to acquire 25 transmission measurements through all combinations of PMMA (0–4 

slabs of 2.54-cm thickness) and aluminum (0–4 slabs of 0.635-cm thickness). Transmission 

measurements were performed at 0.6 mAs for each measurement and at the same incident 

flux as the CT acquisitions. The previously proposed Expectation-Maximization (EM) 

iterative algorithm [29] estimated the normalized, discretized spectra (swℓi in Eq. 2) from the 

set of calibration measurements for each spectral window and ray measurement. 

Reconstruction was performed using the empirically estimated spectra with and without the 

additional spectral-response scaling correction described in Section III.

C. Comparison two-step decomposition and reconstruction

The energy-window data were also reconstructed into PMMA and aluminum basis images 

using a two-step approach in which decomposition was performed in the projection domain, 

followed by filtered backprojection reconstruction of the basis images [5]. Both iterative and 

empirical methods have been proposed to perform this inversion in the projection domain 

[3], [5], [30]. An iterative maximum likelihood expectation (MLE) algorithm, based on a 

Poisson noise model, was implemented to estimate the basis map sinograms, as in previous 

work [3], [5]. The decomposition algorithm used the same empirically estimated spectra for 

each energy window and ray measurement, swℓi, as in the cOSSCIR approach. The basis 

images were reconstructed from the estimated basis sinograms using fan-beam filtered 

backprojection reconstruction and the same reconstruction grid as the cOSSCIR algorithm. 

An additional decomposition and reconstruction was performed with the estimated spectra 

adjusted by the scaling factors output by the cOSSCIR optimization approach. The resulting 

basis map images provide a comparison to the cOSSCIR images, with both reconstructions 

assuming the same estimated spectra.

D. Evaluation metrics

The mean value was calculated in 770-image-pixel regions of interest (ROIs) in the Teflon 

and LDPE region of the rod phantom in the reconstructed PMMA and Aluminum basis 

material map images. Teflon and LDPE were used as test materials because they were not 

included in the empirical calibration. The ground truth basis material coefficients were 

obtained from the NIST attenuation functions [27] and the measured density of the test 

materials. The percent error in the reconstructed basis material map images was calculated 

relative to the ground truth coefficients. The standard deviation of the basis map values was 

calculated within each ROI and then normalized by the root mean square of the ROI, to 

account for the different orders of magnitude between the PMMA and aluminum basis map 

values. Because of potential negative basis map values, the root mean square of the ROI was 

used for normalization rather than the mean of the ROI. Quantitative evaluation of the basis 

material map images does not provide a complete picture of the performance of material 
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decomposition estimator. For example, the contribution of the two basis materials to the 

overall attenuation may be unequal. A small error in the estimated coefficient of a basis 

material with high contribution to the overall attenuation could be meaningful, while a large 

error in the estimated coefficient of a basis material with small contribution may be 

negligible. Evaluating the noise standard deviation or ring artifact level in the two basis 

material map images separately can also be problematic, as the noise or ring artifacts may be 

correlated. Therefore, additional metrics were calculated to further evaluate the performance 

of the basis material image estimates.

For each image pixel in the reconstructed basis material maps, the two basis material 

coefficients resulting from decomposition define a vector in the two dimensional space 

spanned by the basis materials. The direction of this vector represents a unique material 

composition, while the magnitude of the vector is related to the material density. For each 

investigated reconstruction approach, the basis decomposition vector angle and magnitude 

were calculated and averaged within the rod ROIs.

The basis material map images were also linearly combined to form an image representing 

the monoenergetic linear attenuation coefficient at each image pixel, as described by

(8)

Using this method, the 25, 35, 45, 65, and 85-keV images were calculated for all of the 

investigated approaches using the NIST attenuation data from PMMA and aluminum [27]. 

The percent error and normalized standard deviation in the Teflon and LDPE ROIs of the 

monoenergetic images were calculated.

VII. Simulation study results

A. Image reconstruction at ideal constraint parameter settings

Fig. 4 presents the results of the simulation study that assumed realistic energy window 

spectra and detector pixel-to-pixel variations while using the ideal constraint parameters. 

The error in the Teflon and LDPE regions of the PMMA map was less than or equal to 1% 

regardless of whether the TV constraint was applied to the original or transformed basis 

material maps. The error in the aluminum map was 0.4% (Teflon) and 0.5% (LDPE) when 

the TV constraints were applied to the the transformed basis material maps (i.e., μ 
preconditioning [16]), compared to 2% error (Teflon) and 5% error (LDPE) when the TV 

constraint was applied to the untransformed basis material maps, demonstrating a slight 

advantage when using the transformed basis material maps. The benefit in employing the 

TV constraints for the transformed maps is seen in the convergence properties of cOSSCIR. 

The absolute difference between the TV values of the estimated maps and the true TV values 

are are shown in Fig. 5, where it is seen that the TV value for faluminum is particularly slow to 

converge for the case where TV is applied directly to the basis material maps. Algorithm 

efficiency is of particular concern because we intend to perform searches over the 

constrained parameter space. As a result we choose to apply the TV constraints to the 
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transformed basis material maps for all subsequent cOSSCIR reconstructions. This 

simulation study demonstrates that highly accurate image reconstruction and spectrum 

scaling estimation is possible under conditions where the only sources of data inconsistency 

are noise and effective spectra amplitude.

B. Testing the use of validation for parameter selection

When applied to the simulated data, the validation procedure arrived at constraint values that 

closely matched the actual phantom values; we observe that the ratios are all close to 1:

The resulting images are shown in Fig. 4 The quantitative error in the basis map values was 

0.3% for the PMMA map and −0.9% for the aluminum maps in the Teflon region. In the 

LDPE region, the error was and 0.5% and 1.7% for the PMMA and aluminum maps, 

respectively. These quantitative results demonstrate that the constraint values arrived at 

through validation perform nearly as well as the actual phantom values in terms of material 

map quantification. Also, the reconstructed images visually resemble the actual phantom.

VIII. Experimental study results

A. Rod phantom results

Fig. 6 displays the reconstructed PMMA basis, aluminum basis, and 45 keV monoenergetic 

images for the rod phantom. Images are displayed for the proposed method at the optimal 

constraint settings with spectral-response scaling (labeled as “cOSSCIR”) and also for 

cOSSCIR reconstruction without spectral-response scaling (labeled as “TV only”). Fig. 6 

also displays images that were reconstructed by a two step process of MLE decomposition 

into basis sinograms followed by filtered backprojection. MLE decomposition was 

performed using three different estimates for the spectra: assuming the energy window 

spectra estimated by the empirical calibration method (labeled as “Two-step”), the spectra 

adjusted by the spectral-response scaling coefficients estimated by the cOSSCIR algorithm 

(labeled as “Two-step adjusted”), and the discrete spectra expected for a detector with ideal 

energy response (labeled as “Two-step ideal spectra”), as plotted in Fig. 1. For reference, a 

ground-truth depiction of the phantom is presented.

Comparing the images in Fig. 6 reconstructed by cOSSCIR with only a TV constraint to the 

images reconstructed by the two-step method demonstrates considerable reduction in ring 

artifacts due to only the TV constraint in the cOSSCIR method. However, residual ring 

artifacts are visible in the cOSSCIR TV-only image, which were further reduced when the 

spectral-response scaling term was included in the cOSS-CIR reconstruction. Ring artifacts 

were also reduced when the two-step method used the spectra adjusted by spectral-response 

scaling, suggesting that this scaling is effectively reducing ring artifacts.
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Error in the image values, particularly in the aluminum basis images when compared to the 

ground truth, can be seen in the images reconstructed by the two-step method assuming ideal 

spectra. For example, the background PMMA phantom region is zero in the ground truth 

aluminum image but has negative value in the image reconstructed by the two-step method 

with ideal spectra. Also, the Teflon region is bright in the ground-truth aluminum basis 

image but is dark in the image reconstructed assuming ideal spectra. The images 

reconstructed by the two-step method assuming ideal spectra demonstrate the nonideality 

present in the experimental energy window data. The use of empirically estimated spectra 

improved the qualitative agreement between the reconstructed and ground truth images, 

although error can still be seen, for example negative values in the PMMA regions of the 

aluminum basis images.

The percent error and normalized standard deviation in the Teflon and LDPE regions of the 

phantom are plotted in Fig. 7 for the investigated reconstruction methods. The plots 

demonstrate that the -23% PMMA basis image error and 126% aluminum basis image error 

in the Teflon ROI obtained when assuming ideal spectra were reduced to 8% and 31% error, 

respectively, for the proposed cOSSCIR method. The two-step method resulted in error 

similar to cOSSCIR, with 10% and 30% error for the PMMA and aluminum basis image 

values, respectively. The use of the optimized spectral-response scaling parameter had a 

small effect (<5% difference) in the error for both the cOSSCIR and two-step approaches. 

Similar trends are seen in the LDPE results, with 0.5% error in the PMMA image and 4% 

error in the aluminum image for the cOSSCIR approach. The normalized standard deviation 

plotted in Fig. 7 quantifies the variation due to both noise and ring artifacts. Incorporating 

the scaled spectra that were determined by cOSSCIR into the two-step method reduced the 

normalized standard deviation in the Teflon region, with the cOSSCIR reconstructions 

providing the lowest normalized standard deviation.

Table I and II compare the angle and magnitude, respectively, of the material decomposition 

vectors in the two-dimensional space with the horizontal component of each vector 

representing the PMMA coefficient and vertical component representing the aluminum 

coefficient. The angle and magnitude are compared for the investigated reconstruction 

approaches in ROIs within the Teflon, LDPE, and PMMA rods. The angle of the vector 

represents the material composition, while the magnitude of the vector is related to the 

density. Figure 8 plots the estimated material decomposition vectors along an arc segment of 

the unit circle in the PMMA / aluminum space for the cOSSCIR reconstruction compared to 

ground truth. Visualizing the material decomposition vectors along the unit circle enables 

evaluating material decomposition accuracy independent of material density. The ground-

truth vector for muscle is also presented to visualize how the error in decomposition angle 

for the proposed method compares to the difference in angle due to material composition.

Monoenergetic images reconstructed using the cOSSCIR algorithm (with optimized 

spectral-response scaling constraint) and the two-step algorithm (with scaled spectra) are 

displayed in Fig. 9 for a range of energy levels. The percent error and normalized standard 

deviation for the monoenergetic images are plotted in Fig. 10.
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B. Tissue specimen results

Fig. 11 displays PMMA and aluminum basis images of the tissue specimen reconstructed by 

the proposed cOSSCIR method, cOSSCIR with only a TV constraint (no spectral-response 

scaling) and the two-step approach that assumed empirically estimated spectra with and 

without spectral-response scaling. Images representing the 45 keV image are also displayed 

for each reconstruction approach. The cOSSCIR images have reduced ring artifacts, with 

spectral-response scaling correction further reducing the ring artifacts. In Fig. 11, the fine 

structure in the soft tissue and bone regions are visualized in the aluminum images, in which 

adipose tissue has negative image pixel value. The negative image pixel values in the 

aluminum image are required to represent the linear attenuation coefficient function of 

adipose tissue because adipose tissue is outside the effective atomic number and density 

range spanned by the basis materials.

The TV constraint parameters control the tradeoff between denoising and retaining of fine 

structure. It is possible that fine anatomical structure can be lost as the TV constraint 

parameters decrease. Figure 12 displays regions of interest within the 45-keV monoenergetic 

image from cOSSCIR and the two-step method with adjusted spectra, to enable qualitative 

comparison of the visualization of fine structure. Fine structures of soft tissue surrounded by 

adipose tissue are depicted in the cOSSCIR images reconstructed using the optimized TV 

parameter settings. Fig. 13 displays the monoenergetic images at a range of energies 

resulting from the cOSSCIR and two-step approaches. Higher tissue contrast is visible at the 

lower energies. The cOSSCIR method resulted in less noise and artifacts at the low energies 

compared to the two-step approach.

IX. Discussion

This study investigated the proposed spectral CT basis map estimation method through 

simulations and experiments. The simulation study, which modeled nonideal detector 

spectral response, demonstrated that the cOSSCIR optimization accurately reconstructed the 

basis maps when noise and effective spectra amplitude were the only sources of 

inconsistency between the forward and inverse models and when the ideal constraint values 

were employed. In simulations, the validation procedure determined the basis map TV and 

spectral-response scaling constraint parameters to within 7% of the true values. We do point 

out, however, that this particular simulation benefits from employing a test phantom where 

the basis material maps have a high degree of sparsity in the gradient-magnitude; this 

property makes the TV constraints extremely effective. Furthermore, it is known that there 

are many unmodeled physical processes in the presented simulations, particularly those that 

are associated with photon-counting detection. Simultaneous estimation of spectral-response 

scaling factors and basis material maps for spectral CT is an inverse problem that had not 

previously been studied, and the accurate results obtained by this simulation are 

encouraging.

The experimental study demonstrated reasonable decomposition results, with 0.5% error in 

the PMMA basis image and 4% error in the aluminum image for the LDPE region and 8% 

and 31% error in the Teflon region of the PMMA and aluminum basis images respectively, 

compared to −24% and 126% error when ideal spectra were assumed in the forward model. 
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The lower error for LDPE compared to Teflon is likely because LDPE is more similar to the 

PMMA used for calibration. The cOSSCIR algorithm estimated the material decomposition 

angle to within 1.3 degree error, where, for reference, the difference in angle between 

PMMA and muscle tissue is 2.1 degrees. The error in the 65-keV monoenergetic image 

estimated with the proposed cOSSCIR approach was 1% for the LDPE region and 13% for 

the Teflon region. For comparison, a previous study using the same detector demonstrated 

0.3% to 8% error in a Teflon region of the 70-keV mononergetic image using a two-step 

method with a neural network estimator and 1% to 16% error using a two-step method with 

empirical linearized MLE for decomposition [30].

The cOSSCIR and two-step approaches demonstrated similar quantitative decomposition 

results and similar error when using the same estimated spectra, suggesting that the 

quantitative accuracy depends primarily on the forward model as opposed to the inversion 

approach. The empirical spectral models used in this work reduced the decomposition error. 

However the relatively high residual error in the experimental results compared to the low 

error in the simulations results, suggests that the empirically estimated spectra did not 

sufficiently account for the physical effects within the detector. The forward model 

described in Eq. 2 does not include object scatter, which is another source of potential error 

in the decomposition results. Within the cOSSCIR framework, the forward model described 

in Eq. 2 can be modified in the future to more accurately model the acquisition physics, for 

example with detector-specific models [18], [19]. Additional sources of residual error may 

be uncertainties in the material properties of the calibration and test materials, as well as 

drift in the detector energy-window thresholds between calibration and CT acquisition.

The cOSSCIR optimization approach reduced the variation of the image pixel values within 

the reconstructed images compared to the two-step approach, where variation was due to 

both noise and ring artifacts. The spectral-response scaling term further reduced the 

normalized standard deviation in most cases. It would be preferable to address the source of 

ring artifacts directly, by designing detectors with improved uniformity and stability across 

detector pixels. While these efforts are underway, the proposed spectral-response scaling 

may be beneficial for reducing the residual ring artifacts that occur when performing 

material decomposition from projection data.

The investigated two-step approach used filtered back-projection for reconstruction, while 

the presented cOSSCIR implementation included TV constraints, which are known to reduce 

variation. Two-step reconstruction approaches with TV or other statistical-based 

regularization have been shown to reduce noise when reconstructing basis map images from 

decomposed sinograms [6], [8], [31].

The cOSSCIR approach presented in this paper is a general spectral CT optimization 

framework that specifies a data discrepancy function while allowing for convex constraints 

on the basis map images. In the specific implementation presented in this study, TPL was 

used as the data discrepancy, with TV constraints applied to the basis maps. The cOSSCIR 

approach, combined with the MOCCA algorithm, support the use of different data 

discrepancy and convex constraint functions in future implementations, including 

regularization that is not based on TV.

Schmidt et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Regarding computational time of the cOSSCIR algorithm, we find it useful to report the 

number of iterations and the number of projection and back-projection operations per 

iteration, as these operations are the most time-consuming within the iterative loop. The 

actual execution time depends on implementation and computational platform. Within a 

validation run, we fixed the number of iterations for MOCCA to 2000. Only 90% of the data 

(the ”training” data) are processed for image reconstruction. Within each loop, there are 3 

projection and 3 back-projection operations. (There is an additional projection using the 

remaining 10% of the data, but this operation is negligible in comparison.) The COBYLA 

algorithm for optimizing the constraint parameters needed less than 100 iterations, where 

each iteration involves one call to MOCCA. After validation, we ran MOCCA on the final 

parameter settings for 5000 iterations using 100% of the data. We ran more iterations in the 

single run case in order to verify no significant change in going from 2000 to 5000 

iterations. We emphasize that we have not attempted to improve efficiency of the full 

validation procedure. In future work, we will investigate, for example, the use of validation 

with inexact solution, where MOCCA is employed in a first pass with only 100 to 200 

iterations.

These results are encouraging that validation may provide a useful means for constraint 

parameter determination. We note that some inaccuracy of the validation methodology can 

result from the numerical solver, in this case COBYLA, combined with inexact solution 

from cOSSCIR. Also, it is unknown whether the constraint values derived through the 

validation procedure represent the optimal choice in terms of visualization or quantitative 

estimation tasks.

X. Conclusion

Basis material map images were successfully reconstructed using the presented empirical 

spectral modeling and cOSSCIR reconstruction methods. The cOSSCIR optimization 

enabled modeling nonlinear polyenergetic X-ray transmission while enforcing convex 

constraints on the reconstructed basis material maps. The joint estimation of spectral-

response scaling coefficients with the basis material maps, made possible by the cOSSCIR 

optimization framework, was found to reduce ring artifacts. The estimated effective spectra 

reduced decomposition error in the experimental study, although residual quantitative errors 

suggest the need for improved modeling of detector effects. The presented validation 

procedure demonstrated feasibility for automated determination of algorithm constraint 

parameters.
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Fig. 1. 
(left) Ideal discrete spectra and (right) realistic spectra estimated from the experimental 

photon-counting CT system for energy windows with thresholds at 25 keV, 40 keV, and 60 

keV.
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Fig. 2. 
(left) Simulated rod phantom that modeled the physical phantom used in the experiments. 

(right) Spectrum scaling coefficients (aWP) modeled in the simulations. The coefficient 

values were based on those estimated in the experimental study.
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Fig. 3. 
(a) Rod phantom for quantifying material decomposition performance. The phantom 

diameter was 6.35-cm with 1-cm diameter rod inserts. (b) Step wedge phantom for spectral 

calibration consisting of PMMA (0–4 slabs of 2.54-cm thickness) and aluminum (0–4 slabs 

of 0.635-cm thickness).
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Fig. 4. 
Simulation results. PMMA and aluminum ground truth basis maps for the voxelized 

phantom (Phantom) as well as basis maps reconstructed from simulated data using the ideal 

constraints applied to the basis maps (TVUntransformed) and the transformed basis maps 

(TVTransformed). Also displayed are basis maps reconstructed using constraints obtained 

through the presented validation procedure (Validation). The basis maps are unitless and are 

displayed at windows of [−0.1, 1.5] for the PMMA images and [−0.1, 0.2] for the aluminum 

images.
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Fig. 5. 
Simulation results. Absolute difference between the TV values of the estimated maps and 

the true TV values plotted against iteration number for simulated data reconstructed with the 

TV constraint applied to transformed basis map images (i.e., μ preconditioning [16]) and 

with the TV constraint applied to the untransformed basis maps during reconstruction.
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Fig. 6. 
Experimental results. PMMA and aluminum basis images reconstructed by the proposed 

method (labeled as “cOSSCIR”), cOSSCIR algorithm with only a TV constraint (i.e., no 

spectral-response scaling, labeled as “cOSSCIR TV only”) and the two-step approach that 

assumed empirically estimated spectra (labeled as “Two-step”), estimated spectra with 

scaling correction (labeled as “Two-step adjusted”), and ideal spectra (labeled as “Two-step 

ideal spectra”). Images representing the 45 keV image are also displayed for each 

reconstruction approach. A ground-truth phantom image is also displayed. The display 

windows are [−0.1, 1.5] for the PMMA images, [−0.1, 0.2] for the aluminum images, and [0, 

0.6] for the 45-keV image. The basis map values are unitless while the 45 keV images are in 

units of cm−1.
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Fig. 7. 
Experimental results. (left) Percent error and (right) normalized standard deviation of image 

pixels within the (top) Teflon and (bottom) LDPE region of the aluminum and PMMA basis 

images.
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Fig. 8. 
Unit vectors representing PMMA, LDPE, and Teflon materials in the PMMA and aluminum 

space as estimated by cOSSCIR compared to the ground truth values. The dashed line 

represents the plotted arc segment of the unit circle. The ground-truth vector for muscle 

tissue is also plotted to visualize the separation between vectors due to changes in material 

composition.
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Fig. 9. 
Experimental results. Images of the rod phantom representing linear X-ray attenuation 

coefficients at 25, 35, 45, 65, 85 keV reconstructed by the cOSSCIR algorithm (with 

spectral-response scaling) and the two-step algorithm (with the scaled spectra). The display 

window is [0, 0.8] for all images, with the image values in units of cm−1.
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Fig. 10. 
Experimental results. (left) Percent error and (right) normalized standard deviation of image 

pixels in the (top) Teflon and (bottom) LDPE phantom regions for reconstructed 

monoenergetic images at 25, 35, 45, 65, 85 keV.
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Fig. 11. 
Experimental results. PMMA and aluminum basis images of the tissue specimen 

reconstructed by the proposed cOSSCIR method, cOSSCIR with only a TV constraint (no 

spectral-response scaling) and the two-step approach that assumed empirically estimated 

spectra with and without scaling correction. Images representing the 45 keV image are also 

displayed for each reconstruction approach. The display windows are [−0.1, 0.1] for the 

PMMA images, [−0.3, 0.3] for the aluminum images, and [0, 0.4] for the 45-keV image. The 

basis map values are unitless while the 45 keV images are in units of cm−1.
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Fig. 12. 
(a) 45 keV image reconstructed by cOSSCIR depicting the two ROIs that are compared in 

the following subfigures. Soft tissue ROIs reconstructed by (b) cOSSCIR and (c) two-step 

method with adjusted spectra are displayed at window [0.1, 0.28]. Bone ROIs reconstructed 

by (d) cOSSCIR and (e) two-step method are displayed at window [0.1, 0.55].
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Fig. 13. 
Experimental results. Images of the tissue specimen phantom representing linear X-ray 

attenuation coefficients at 25, 35, 45, 65, 85 keV reconstructed by the cOSSCIR method 

(with spectral-response scaling) and the two-step algorithm (with the scaled spectra). The 

display window, listed for each energy level, was selected to span the range of values 

between air and the mid bone intensity. The image values are in units of cm−1.
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TABLE I

Comparison of the angle of the material decomposition vector in the PMMA and aluminum space, as 

estimated in ROIs within the basis material maps. The ground-truth angle is also presented, with all angles in 

units of degrees.

Ground truth cOSSCIR Two-step adjusted spectra Two-step ideal spectra

LDPE −2.6 −2.4 −2.5 −2.8

PMMA 0 −1.3 −1.3 −2.3

Teflon 5.2 3.9 4.0 −1.1
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TABLE II

Comparison of the magnitude of the material decomposition vector in the PMMA and aluminum space, as 

estimated in ROIs within the basis material maps. The ground-truth vector magnitude is also presented.

Ground truth cOSSCIR Two-step adjusted spectra Two-step ideal spectra

LDPE 0.9 0.9 0.8 0.9

PMMA 1.0 1.0 1.0 1.1

Teflon 1.4 1.3 1.3 1.8
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