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Abstract

Hyperperfusion detected on arterial spin labeling (ASL) images acquired after acute stroke onset 

has been shown to correlate with development of subsequent intracerebral hemorrhage. We present 

in this study a quantitative hyperperfusion detection model that can provide an objective decision 

support for the interpretation of ASL cerebral blood flow (CBF) maps and rapidly delineate 

hyperperfusion regions. The detection problem is solved using Deep Learning such that the model 

relates ASL image patches to the corresponding label (normal or hyperperfused). Our method 

takes into account the regional intensity values of contralateral hemisphere during the labeling of a 

pixel. Each input vector is associated to a label corresponding to the presence of hyperperfusion 

that was manually established by a clinical researcher in Neurology. When compared to the 

manually established hyperperfusion, the predicted maps reached an accuracy of 97.45 ± 2.49% 

after crossvalidation. Pattern recognition based on deep learning can provide an accurate and 

objective measure of hyperperfusion on ASL CBF images and could therefore improve the 

detection of hemorrhagic transformation in acute stroke patients.

I. Introduction

Acute ischemic stroke occurs when a blood vessel to the brain becomes obstructed. It is 

recognized as a complex heterogeneous process that remains only partially understood. 

Researchers have attempted to shed light on its complex pathophysiology with various 

techniques such as molecular biology, genomics, and imaging. Currently, magnetic 

resonance imaging (MRI) plays a major role in the diagnosis of acute ischemic stroke [21] 

as it can provide location of the clot, extent of lesions, and maps of tissue at risk that is still 

viable. Yet, despite the wealth of information extracted from MRI, the information is mostly 

used qualitatively by visual review. In this paper, we present a tool to automatically delineate 

likelihood maps of hyperperfusion which is associated to subsequent hemorrhagic 

transformation (HT); a major risk and a potentially life-threatening complication in patients 

who receive reperfusion therapy.

Although they have been proven efficient, current treatments of stroke using mechanical 

clot-retrieval are associated with complications [5]: hemorrhagic transformation (HT), 

arterial dissection, in situ thrombosis, emboli, vasospasm, perforation, and reperfusion 

injury. HT is the most common complication and can be life-threatening. It is associated 

with changes in bloodbrain barrier (BBB) permeability and loss of cerebral blood flow 
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(CBF) autoregulation, both of which can be observed through post-treatment 

hyperperfusion. Imaging studies based on PET and MRI suggest that hyperperfused tissue 

may experience metabolic failures and tend to develop infarction [28]. However, the 

automatic detection of hyperperfusion is beyond current methods as threshold based 

methods on CBF maps are greatly affected by noise.

Beyond hyperperfusion, other markers have provided insights regarding potential risks for 

HT. For example, it has been shown that the DWI/PWI volume is linked to an increased risk 

of HT after endovascular therapy [6]. Other studies have found a variety of imaging features 

correlated with an increased risk of HT, such as: leukoaraiosis [14], prior cerebral 

microbleeds visualized with T2*-weighted MRI sequences [8], early parenchymal 

enhancement [9], and early colony stimulating factor hyperintensity [10]. In addition, 

specific permeability parameters [1], [27], [25], [2], [18] derived from perfusion-weighted 

images (PWI) have been shown to provide distinctive markers to identify patients with an 

increased risk of HT.

In recent decades, improvements in computer hardware and interest in big data have led to 

advancements in machine learning. One sub-field of machine learning that holds immense 

promise for biomedical imaging applications is Deep learning. It is now well established as 

an effective method of pattern recognition and has been applied to a wide variety of 

problems, including handwritten character recognition [12], face detection [15], anatomical 

classification [17] and speech recognition [11]. These systems could provide valuable inputs 

to physicians in terms of computer-aided diagnosis, image segmentation, image annotation, 

image registration, and multimodal image analysis.

This paper introduces a machine learning model for the automatic detection of 

hyperperfusion on ASL CBF maps. A key property of the model is to use the matched 

contralateral ASL CBF to predict the likelihood of hyperperfusion at a target location. This 

is similar to the methodology used by stroke neurologists for visual examination of ASL 

CBF maps. In addition, the model attempts to capture the regional distribution that 

characterize truly hyperperfused ASL CBF using a convolutional neural network.

II. Methods

A. Dataset

1) Patient Selection—MRI data was collected from patients identified with symptoms of 

ischemic stroke and admitted at the University of California-Los Angeles Medical Center 

from May 2010 to September 2013. The use of these data was approved by the local 

Institutional Review Board (IRB) and was introduced in a previous study [28]. Inclusion 

criteria were as follows: (1) acute ischemic lesions occurred within the middle cerebral 

artery (MCA) distribution on diffusion-weighted imaging (DWI); (2) baseline MRI was 

performed within 24 hours of symptom onset; (3) ASL imaging was acquired along with 

routine clinical MRI, and (4) the absence of previous intracranial hemorrhage, brain surgery, 

or large territorial lesion.

Vincent et al. Page 2

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) Imaging Protocols—Details about imaging protocols can be found in the original 

paper [28]. In summary, all patients underwent MRI on Siemens 1.5 T Avanto or 3.0 T TIM 

Trio systems (Erlangen, Germany), using 12 channel head coils. Arterial spin labeling was 

performed at various time points after stroke onset as part of a routine clinical MRI protocol 

including DWI, GRE, FLAIR, and perfusion imaging. A 3D GREASE pseudo-continuous 

ASL pulse sequence was applied with the following parameters: repetition time (TR)/echo 

time (TE)/label time/ postlabel delay (PLD), 4,000/22/1,500/2,000 ms; field of view, 22 cm; 

matrix size, 64 × 64, 26 × 5 mm slices; GRAPPA factor of 2, 4/8 partial k-space along slice 

direction with zero-filling for image reconstruction, 30 pairs of label and control images 

with a scan time of 4 minutes.

B. Pre-processing

1) Cerebral Blood Flow—Data feature extraction from ASL was performed with 

Interactive Data Language (IDL, Boulder, CO, USA) software programs developed at 

UCLA. Motion correction was performed on ASL images of each PLD. Pairwise subtraction 

between label and control images was performed followed by averaging to generate the 

mean difference image. Quantitative CBF maps were calculated based on a previously 

published model [26].

2) Atlasing and Manual Annotation—Cerebral blood flow maps, GRE, and FLAIR 

images were corregistered with DWI for each time point in each subject using SPM8. All 

coregistered imaging modalities were projected into the Montreal Neurological Institute 

template using SPM8 and were displayed on the same axial slices for ratings.

A free-form region of interest (ROI) was hand drawn on multislice CBF maps to delineate 

hyperperfusion areas by two experienced readers independently. Hyperperfusion was defined 

as patchy areas with visually perceivable increased CBF on ASL maps either within or 

around the corresponding lesion observed on DWI images when compared with the 

homologous contralateral hemisphere. After the annotation process, each voxel of the 

groundtruth is labeled to 1 if it is hyperperfused and 0 if it is normal.

3) Patch Sampling—For training, we exploit a set of ASL CBF images F at onset, and 

their corresponding label images L. The dataset {X, Y} used to train and to evaluate the 

predictive model is created by extracting local patches [19], [22], [20] of fixed size w × l 
among input images with their corresponding label. Each patch p ∈ ℝs is described by its 

raw voxel values, yielding an input vector of s = w × l numerical attributes. Our method 

extracts a large number of patches at random positions from training images. In practice, 

given a sampled location {i, j, k}, we extract a patch pF in the ASL CBF image at F(i, j, k), a 

corresponding patch in the mirrored, contralateral hemisphere p′F in the ASL CBF, and a 

corresponding label in the label map at L(i, j, k).

For efficient retrieval of similar cuboids across patients [4], [13], it is desirable to obtain 

patches that are invariant to rotations. Rotation invariance is also useful when considering 

patches that present partially high CBF patterns but at different directions. If no rotational 

normalization is performed, the patches would have a different appearance and the model 

would require additional training examples. For these reasons, the patches are normalized 
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with respect to the direction θ of the image gradient using a rotation performed with a 

bilinear interpolation,

(1)

where  are the Gaussian derivatives in X and Y directions, computed from the ASL 

CBF image F,

(2)

where σ is a 2D isotropic Gaussian filter with standard deviation σ = 3 in our experiments. 

The two patches are merged into a single, multi-modal patch as follows x = {cF′ + (cF′ − 

cM′)}. Each multi-modal patch x is then labeled with the intensity y of the central voxel in 

the corresponding label image y = L(i, j, k). The data set consists of the set of patches x ∈ X 
and their corresponding outputs y ∈ Y that represent the corresponding label of 

hyperperfusion.

C. Predictive Model

Deep learning is very promising field that uses machine learning algorithms to model 

abstractions in large data sets. It holds great promise for the automation of complex data 

processing [4]. Deep learning is especially applicable to predictive tasks that use 2-

dimensional images [3]. Since our goal is to extract data from CBF images that we have 

generated, we believe deep learning can provide an automated solution to detecting 

hyperperfusion. Researchers agree that deep learning is a top contender for pattern 

recognition [23].

To apply deep learning to stroke diagnosis, we use a set of CBF images and associated voxel 

label (hyperperfusion or no hyperperfusion) to train a network. After running a variable 

number of training ”epochs”, the network’s parameters are trained so that the network can 

produce predictive values when it is given newly acquired data. Each epoch consists of 

a ”feed forward” step that involves feeding inputs, followed by a ”back-propagation” step 

that involves adjusting the network’s filter parameters. No prior knowledge of the features 

has been incorporated in the model. The training occurs when the initial filter parameters are 

adjusted through back-propagation as the network processes labeled inputs. To test the 

accuracy of the trained network, we provide independent CBF data, and compare the 

outcomes to the values manually assigned by experts.

Our overall goal with the neural network is to use the predicted values from each patch to 

construct a full prediction image. We can use our knowledge of the patch sampling process 

to associate the CNN’s outputs with coordinates, and construct a full image. Then the entire 

image can be interpreted by a clinician, or used for further data-driven analysis. To quantify 

the error in our predictions, we use an area under the ROC curve (AUROC) approach.
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The model is a convolutional neural network (CNN) with six total layers. Our CNN (Figure 

2) was implemented using the DeepLearnToolbox [16] in Matlab. A Fast Fourier Transform-

based convolution function was used for faster computation on our particular data-set. 

Instead of treating the CBF values for the two hemispheres are two input layers to the same 

networks, we took the difference between the CBF from each image and the CBF in the 

contralateral hemisphere.

The network has an input layer, two convolutional layers, two sampling layers, and an output 

layer. The input layer can accept varying patch sizes, and the output layer will always 

produce one binary output per input patch. The convolutional layers outputted 5 maps and 

12 maps respectively, but the kernel size was varied to account for different patch sizes. We 

worked with a variety of input sizes while developing the model, but experimented primarily 

on 13×13 and 23×23 sized input patches.

Each kernel of the convolutional layer is a filter with varying weights. These filter 

parameters are initially very small, and change as part of the training process. The units of a 

convolutional layer’s filter are often called ”neurons”. Through the convolution operation, 

these layers allow the network to learn features. Ideally, after the network has learned a 

feature, the kernel weights will be set such that when a new, independent data set is received 

that has the same features as the training set, the network’s parameters will produce the 

appropriate output. In our case, this was the connection between CBF values and 

hyperperfusion of a voxel.

The sampling layers perform a ”max-pooling” operation after each convolutional layer; the 

purpose of this to reduce computational size and prevent overfitting. No learning takes place 

in the sampling layers, but they are important to make the CNN usable for time-sensitive 

applications. The final output layer actually consists of a 2D map of output probabilities. We 

can convert these output probabilities into a binary mask that represents presence of 

hyperperfusion.

The main hyper-parameters we had to vary were the number of epochs (iterations of training 

without resetting the CNN), the size of the kernels, and the amount of output maps of each 

layer. These hyper-parameters must be adjusted for different data sets, and currently there 

aren’t standardized or codified recommendations for selecting these hyper-parameters in the 

Deep learning community. Hyper-parameter selection was performed using a manual 

approach: we compared accuracy, quality of predictive images, and computational time. 

Selecting parameters that create long computational times can make it difficult to reproduce 

results and lower the practical value of the CNN.

D. Experiments

All of our Deep learning experiments described used patches extracted from 2D CBF 

images. Our experiment was meant to examine how the predictions of our Deep learning 

network compared with the manual annotations. We wanted to quantify how accurate a Deep 

learning approach is, and how viable the predictive abilities are for future research and 

clinical applications.
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For our experiment, we used a inputs with a patch size of 13×13. Samples from 65 patients 

were used for training and testing. These were split into two groups, so that each group 

could be tested with a CNN trained by the other group (2-fold validation). Each of these test 

patients had an existing ”ground truth” image that were produced by Neurology experts. We 

directly compared the predictive output to the ground truth images, in addition to using the 

area under ROC curve as a quantitative measure of success.

We also compared the predictive results we obtained from the CNN with predictive results 

obtained by simply thresholding the CBF values. We created a binary image by thresholding 

at 75 percent of the maximum CBF, and used this binary image to try to predict 

hyperperfusion. There was no Deep learning involved in this secondary comparison 

prediction. The purpose of this was to verify that it was Deep learning that produced 

accurate predictive results, and not simply the trends in CBF.

III. Results

Among a total of 361 ASL scans were collected from 221 AIS patients (age = 72 ± 17 years; 

45% males) from May 2010 to September 2013, excluding 5 ASL scans rated as 

nondiagnostic, Hyperperfusion was detected in 76 patients.

We produced predictive images from those scans that display tissue hyperperfusion 

predictions based on the probabilities determined by the CNN (a subset of 18 of them is 

shown in Figure 3). By comparing these images with manually annotated images, we 

obtained a comparison of accuracy using area under ROC curve. Through visual inspection, 

we can quantitatively analyze the accuracy of the images; this is relevant to the way imaging 

is used quantitatively in clinical practice. In addition, we can qualitatively assess the results; 

this approach is relevant to data-driven medical solutions. The AUROC for our CNN gave an 

accuracy of 97.45±2.49%. The AUROC for a simple model that converted CBF to a binary 

image by thresholding at 75 percent of the max CBF was 59.62 ± 10.70%.

IV. Discussion

There are many advantages to Deep learning, and specifically convolutional neural 

networks. They are relatively fast to develop and use computationally efficient techniques. In 

particular, having kernel sizes that are smaller than the input layer gives CNNs a unique 

advantage compared to similar Deep learning approaches [3] that don’t have smaller kernel 

sizes. The networks are modular, easy to implement in a variety of coding languages, and 

can be customized to do learning on a variety of input types (for example, different 

parameters obtained from stroke imaging). The main downside is the lack of standardized 

hyper-parameter selection [24]. This can make it difficult to apply neural networks to new 

problems without manual manipulation. In the future, a more systematic approach to hyper-

parameter selection could improve results. In addition, we could improve the amount of 

training data, as this is a consistent way to improve neural network performance [24]. 

Another promising improvement would be the use of 3D patches. There is already evidence 

of the effectiveness of 3D patches for CNNs that use spatial and temporal information [7]. In 

future experiments, it could be advantageous to use a larger training set; in this experiment, 
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we were limited by the availability of quality data sets. Additionally, to properly test the 

validity of the CNN, we could not include any patient we were testing in the training set. 

One major improvement for future studies would be to have additional experts produce 

manual annotations that were used as ground truth. All ground truth was based on manual 

annotations from two experts; it is possible that the manual annotations could be closer to an 

actual ground truth if we averaged results from many experts.

V. Conclusion

Overall, while convolutional neural networks can be challenging to design optimally, they 

have powerful predictive abilities and can be implemented quickly using existing toolboxes 

and frameworks. We conclude that the use of a 6 layer convolutional neural network was 

computationally adequate to make detect brain tissue hyperperfusion based on cerebral 

blood flow. Our results imply that a computationally simple CNN has great potential as a 

very accurate method to improve stroke diagnosis. This has potential to aid decision making 

in a clinical setting and provide clinicians with a powerful tool.
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Fig. 1. 
Illustration of a pair of patches extracted at mirrored locations on an ASL CBF images and 

used by the CNN model to predict likelihood of hyperperfusion.
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Fig. 2. 
Illustration of the convolutional neural network we used. It shows the relationships between 

layers of the network. The gray rectangle in the input region represents the main sampling 

patch, while the white rectangle represents the contralateral patch.
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Fig. 3. 
Illustration of the source ASL CBF images, the corresponding manual annotation used as 

groundtruth (red contour), and the likelihood map produced by the CNN.

Vincent et al. Page 11

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	I. Introduction
	II. Methods
	A. Dataset
	1) Patient Selection
	2) Imaging Protocols

	B. Pre-processing
	1) Cerebral Blood Flow
	2) Atlasing and Manual Annotation
	3) Patch Sampling

	C. Predictive Model
	D. Experiments

	III. Results
	IV. Discussion
	V. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3

