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Abstract

Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the 

developing sympathetic nervous system, remained undefined. The discovery of gain-of-function 

mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma 

led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable 

therapeutic target. Inactivating mutations in a master regulator of neural crest development, 

PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance 

susceptibility alleles likely exist, but together these heritable mutations account for less than 10% 

of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort 

identified common and rare polymorphisms highly associated with the disease. Ongoing 

resequencing efforts aim to further define the genetic landscape of neuroblastoma.
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Introduction

Neuroblastoma is the most common solid extracranial malignancy of childhood, accounting 

for about 7% of all cancers in children under the age of 15.[1] It is the most common cancer 

in the first year of life, with a median age of diagnosis of 17 months.[1,2] It is a cancer of 

the developing sympathetic nervous system, arising in the adrenal medulla or paraspinal 

ganglia.[3] Approximately 65% of these tumors present in the abdomen, along with the 

neck, pelvis and chest.[4] Clinical course can vary widely, with infants often having 

spontaneous regression of the tumor without chemotherapy,[5–8] while older children 
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generally have a poor prognosis despite highly intensive chemotherapy, radiation therapy, 

and immunotherapy.[4] Demonstrating the phenotypic heterogeneity of neuroblastoma, low-

risk patients have a greater than 95% survival probability whereas high-risk patients have a 

40–50% probability of long-term survival. [9,10] It has been known for some time that 

MYCN amplification in tumors portends a poor prognosis,[11–13] and thus is used as a 

biomarker for treatment stratification. Recently, there has been significant effort made to 

better classify subgroups of patients based on age, and tumor spread, genomics and 

differentiation.[14–18] The International Neuroblastoma Risk Group (INRG) classification 

has led to 16 statistically distinct risk groups based on clinical and molecular features which 

has made prognosis more accurate for patients and helps guide physicians on treatment 

regimens.[15]

Significant progress has been made recently in the understanding of the heritability of 

neuroblastoma through linkage scans of families with the disease and genome-wide 

association studies (GWAS) of sporadic cases (Table 1). The primary advantages of GWAS 

over previous methods are that no assumptions about candidate genes are necessary, 

variations can be localized precisely, and no testing in families or family members is 

required.[19] From a clinical standpoint, it is clear that improvement must continue to be 

made in defining novel therapeutic approaches to neuroblastoma as it continues to account 

for 12% of childhood cancer mortality,[10] with advancement especially crucial in high-risk 

patients.[20] One starting point to develop optimal treatments is to understand the 

underlying genetic alterations that initiate tumorigenesis. We review here the current 

understanding of the genetic susceptibility of neuroblastoma.

Familial Neuroblastoma

About 1–2% of neuroblastoma is inherited in an autosomal dominant fashion within 

families.[21–24] As with many cancer predisposition syndromes, patients often have 

multiple primary tumor sites and an earlier age of onset. The disease is typically highly 

penetrant, but there is variability and unaffected obligate carriers are often observed.

[21,22,25] Neuroblastoma families often show significant clinical variability in severity of 

disease, with low- and high-risk cases observed in the same pedigrees.[26–30] While rare, 

these families provide a unique opportunity to learn about genetic drivers of neuroblastoma.

The first gene found to predispose to neuroblastoma was identified in families affected with 

neuroblastoma along with Hirschsprung disease and/or congenital central hypoventilation 

syndrome (also known as “Ondine’s Curse”). These disorders of neural crest-derived cells 

are known as neurocristopathies and are occasionally seen coincident with neuroblastoma.

[31–35] Amiel and colleagues identified loss of function mutations in the paired-like 

homeobox 2B (PHOX2B) gene in the majority of patients with congenital central 

hypoventilation syndrome after sequencing this candidate gene.[36,37] This gene was of 

interest because the PHOX2B transcription factor is essential during development of the 

autonomic nervous system. Germline mutations in PHOX2B were subsequently found in a 

small proportion (~10%) of pedigrees with familial neuroblastoma, making this the first 

bone fide neuroblastoma predisposition gene.[38,39] As expected, the families with 

PHOX2B mutations also had variable penetrance of each of the component 
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neurocristopathies, with non-polyalanine repeat expansion mutations (NPARM) typically 

lead to the most severe phenotype. [40,41]

In order to identify additional hereditary predisposition genes in the familial neuroblastoma 

cases, a genome-wide linkage scan at 6,000 single nucleotide polymorphisms (SNPs) was 

undertaken in 20 neuroblastoma families.[25] A linkage signal was found and narrowed 

down to chromosome bands 2p23–p24, which contained 104 genes including MYCN. This 

known neuroblastoma oncogene was resequenced in all probands, but no mutation was 

found. The anaplastic lymphoma kinase (ALK) is also in this region and had been 

previously identified as a potential oncogene in this malignancy[42,43] as well as in other 

cancers through active translocations and point mutations.[44–51] When ALK was 

resequenced, three distinct mutations were found in this gene in eight discrete families.[25] 

Subsequent studies have confirmed that about 80% of families with neuroblastoma harbor 

mutations in ALK. Mutations in ALK were also found to be somatically acquired in about 

10% of all cases of neuroblastoma.[25,52–54] ALK is a receptor tyrosine kinase, and all of 

these were activating mutations in the tyrosine kinase domain that caused constitutive 

phosphorylation and were predicted to be oncogenic drivers.[25] While Knudson and 

Strong’s prediction of a “two-hit” model has held true for most hereditary cancers,[21] these 

susceptibility genes are usually tumor suppressor genes. In contrast, ALK was the first 

oncogene mutation shown to cause a familial pediatric cancer. The Mosse lab has 

subsequently biochemically characterized each of the germline and somatic mutations, and 

there is a correlation between penetrance and mutation type. [55,56] For example, the 

R1275Q mutation leads to near complete penetrance in families and was shown to be one of 

the most activating mutations tolerated in the germline, whereas the G1128A is more weakly 

activating and is correlated with an approximate 25% likelihood of developing 

neuroblastoma. Interestingly, the two most highly activating hotspot mutations acquired 

somatically (F1174* and F1245*) were each observed in the germline once, but in the 

setting of neuroblastoma with severe neurocognitive defects and brain stem abnormalities, 

further emphasizing the genotype-phenotype relationship as well as the critical role plays in 

normal neurodevelopment.[57] Genetic testing for both ALK and PHOX2B are currently 

available for identifiying genetic susceptibility and informing decisions about screening 

other family members (http://www.ncbi.nlm.nih.gov/sites/GeneTests/).

ALK was quickly identified as a potential pharmacologic target in neuroblastoma when 

knockdown of ALK resulted in growth inhibition in all neuroblastoma cell lines with ALK 
mutations and some with wild-type ALK.[25] Further testing with an ALK small molecule 

inhibitor, crizotinib, showed profound sensitivity in vitro and in vivo to the drug in a panel of 

neuroblastoma cell lines and xenografts, respectively, with certain mutations and ALK 
amplification.[56,58–60] Based on these data, only 18 months after ALK was discovered as 

a neuroblastoma oncogene, the Children’s Oncology Group initiated a Phase I/II clinical 

trial testing crizotinib in patients with relapsed pediatric solid tumors and anaplastic large 

cell lymphoma (ALCL) (www.clinicaltrials.gov, Identifier: NCT00939770). Toxicity has 

remained low, and seven patients with ALCL and two patients with neuroblastoma have had 

complete responses as the trial continues.[61] This is a hallmark example of how identifying 

genetic susceptibility can be quickly advanced for clinical benefit.
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However, there are some families that do not show mutations in ALK or PHOX2B, thus the 

search for additional familial neuroblastoma gene continues. Whole exome analysis of one 

family with two affected cousins and two healthy members showed a mutation in GALNT14 
predicted to be functionally damaging, but continued efforts are necessary to further define 

this familial variant.[113] In parallel, germline mutations in TP53, SDHB, PTPN11, APC, 

and NF1 have been reported to occur rarely in neuroblastoma patients (Figure 1).[62–68,69] 

Neuroblastoma has also been reported to arise in complex congenital malformation 

syndromes, such as the subtelomeric 1p36.3 or 11q23 deletions.[70,71] The heritability of 

neuroblastoma remains only partially understood, yet continued investigation is expected to 

reveal new insights into familial neuroblastoma predisposition, including gene-gene and 

gene-environment interactions.

Genetic susceptibility to sporadic neuroblastoma

In familial neuroblastoma, there are rare mutations that lead to a high probability of disease. 

For the 99% of cases that occur sporadically, a common variant hypothesis proposes that 

common germline variations influence the probability of disease occurrence, each with a low 

relative risk, but presumably acting in concert. A large GWAS consisting of 720 

neuroblastoma cases and 2,128 controls was undertaken in neuroblastoma as an unbiased 

method for discovering these polymorphisms (Figure 2).[89] This original GWAS has been 

expanded and replicated as additional patient samples have been accrued, leading to the 

identification of DNA alleles significantly associated with high-risk and low-risk 

neuroblastoma predisposition, including CASC15, BARD1, LMO1, LIN28B, HACE1, 
DUSP12, DDX4, IL31RA, HSD17B12, NEFL, TP53, AND NBPF23 (Table 1).[72, 74, 75, 

79, 81, 88, 89, 102–104, 107] The discovery of these susceptibility loci demonstrates the 

utility of interrogating GWAS signals for clues into the underlying biology driving 

neuroblastoma genesis.

Results from the initial GWAS identified three SNPs at chromosome 6p22 within a newly 

identified long noncoding RNA (lncRNA) annotated as CASC15.[72] Homozygosity for the 

risk alleles was significantly associated with metastatic disease, amplification of MYCN 
oncogene in the tumors, and patient relapse. Recently, decreased expression of the truncated 

isoform CASC15-S was associated with more advanced disease. [73] Another lncRNA, 

NBAT-1 (CASC14), was shown to be located at the 6p22 susceptibility locus as well, and 

functional studies have shown that loss of NBAT-1 promotes proliferation and invasion. [74] 

Subsequently, a GWAS restricted to high-risk neuroblastoma identified the BRCA-

associated ring domain-1 gene (BARD1) at chromosome 2q35 was identified as a 

susceptibility locus.[75] Six SNPs were discovered in three different N-terminal introns of 

this gene. BARD1, along with its binding partner, breast cancer 1, early onset (BRCA1), had 

been previously implicated in breast and other cancers, but genetic variants in BARD1 had 

not been shown to lead to cancer susceptibility, even in breast cancer.[76–78] Continuing 

efforts in BARD1 have found that an isoform, BARD1β, which lacks the RING domain 

necessary for BRCA1 binding, is preferentially expressed in neuroblastoma cell lines that 

are homozygous for the risk alleles.[79] Consistent with oncogenic behavior, knockdown of 

this isoform inhibits cell growth, while overexpression leads to increased proliferation. 

Additionally, BARD1β was found to stabilize the Aurora family of kinases in neuroblastoma 
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cell lines, suggesting a possible mechanism of action and potential therapeutic strategy as 

Aurora kinase inhibitors are in clinical development for cancer.[79,80]

This GWAS was expanded (2,251 neuroblastoma cases and 6,097 controls) and the gene 

LMO1 was shown to be significantly associated with high-risk neuroblastoma, which had 

previously been implicated in human cancer, but not neuroblastoma. Four SNPs that were 

significantly associated with neuroblastoma at chromosome 11p15.4 were within the LIM 

domain only 1 (LMO1) gene.[81] This gene, along with LMO2, LMO3 and LMO4, encodes 

a cysteine-rich transcriptional cofactor that is preferentially expressed in the nervous system.

[82] This family of genes has been found to be critically involved in leukemia (reviewed in 

ref. [83]) and breast cancers,[84–86] while LMO3 has been shown to be oncogenic in 

neuroblastoma through its interaction with a neuronal-restricted transcription factor.[87] 

These common variations in LMO1 were found to be associated with high-risk disease and 

decreased survival.[81] Neuroblastoma tumors with LMO1 risk alleles were found to have 

increased expression of LMO1, and depletion of LMO1 in cell lines decreased growth while 

forced over-expression increased growth.[81] This is consistent with a gain-of-function role 

in tumor progression. Recent investigation showed that the causal SNP resides in a super 

enhancer element within the first intron, with the G>A transversion ablating a canonical 

GATA transcription factor binding site. [88] Investigators showed that the A allele was 

“protective”, as there was no GATA binding, and not cis-mediated LMO1 transcription, 

providing one of the first clear mechanistic insights into a genetic association.

By further expanding this GWAS to 2,817 neuroblastoma cases and 7,473 controls, two new 

association signals emerged at 6q16 in two different genes, HACE1 and LIN28B.[89] 

HACE1 encodes an E3 ubiquitin ligase and has been identified as a tumor suppressor gene 

silenced in Wilms’ tumors, colorectal cancer, and gastric carcinoma.[90–92] It has also been 

shown to suppress cell growth in human cancer cells, including a neuroblastoma cell line, by 

inhibiting cell cycle progression during stress.[93] LIN28B, a known oncogene, encodes an 

RNA-binding protein that is developmentally regulated and blocks the expression of the 

let-7 family of microRNAs.[94] High expression of LIN28B and correlated low levels of 

let-7 have been observed in many human cancers.[95,96] LIN28B and let-7 are involved in 

stem cell differentiation, as overexpressing the former or inhibiting the latter leads to the 

reprogramming of human and mouse fibroblasts into pluripotent stem cells.[97,98] In the 

GWAS, LIN28B was expressed at significantly higher levels in neuroblastoma cell lines 

homozygous for the risk allele, and this correlated with lower levels of let-7 and growth 

inhibition following knockdown of LIN28B.[89] In tumor samples, HACE1 expression was 

significantly lower and LIN28B significantly higher in high-risk neuroblastomas and were 

correlated similarly with worse overall survival. Mechanistic studies have shown that 

LIN28B promotes increased expression of the oncogenic protein RAN, which both converge 

on Aurora Kinase A.[99] Increased activity was shown to drive tumorigenesis, providing 

further evidence that targeting Aurora kinases may provide a benefit to neuroblastoma 

patients.[100,101]

In an integrated proteomic-GWAS approach, Capasso identified three SNPs significantly 

associated with neuroblastoma in the NEFL gene, encoding the light chain neurofilament 

protein in which mutations are known in disorders of the peripheral nervous system.[102] 
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Overexpression of NEFL in cells with a protective allele caused cells to adopt a more 

differentiated phenotype and to have reduced proliferative capacity. The authors suggested 

that decreased expression of NEFL alters the differentiation state of sympathetic neurons 

and may predispose neuroblastoma.[102]

After enriching the GWAS for patients with low-risk neuroblastoma, SNPs in four genes, 

DUSP12, DDX4, IL31RA and HSD17B12, were discovered to be significantly associated 

with this phenotypic subset.[103] These genes are different than those found in high-risk 

neuroblastoma, suggesting these subtypes are likely genetically distinct and emphasizing the 

importance of robust phenotypic information in GWAS efforts. These data further support 

the notion that widely divergent neuroblastoma phenotypes are genetically predetermined.

A genome wide SNP scan for copy number variation (CNV) identified a novel CNV at 

1q21.1 that is associated with neuroblastoma, and they were able to confirm deletions in this 

region by quantitative PCR and FISH.[104] A new neuroblastoma breakpoint family gene, 

NBPF23, was identified at this location by a transcript that was similar to other genes in the 

family. This transcript is most commonly expressed in fetal brain and sympathetic nervous 

system tissues, and in neuroblastoma, its expression was correlated with this CNV. NBPF1 
was identified originally at the translocation breakpoint in the germline of a child with 

neuroblastoma,[68] and research continues to elucidate the role of this family of genes in 

disease development.

The prevalence of GWAS-associated genes has been further interrogated among different 

ethnic groups. A follow up study to the previously described BARD1 GWAS was carried out 

in African American children with neuroblastoma looking at SNPs in the gene regions 

identified by the GWAS in Caucasians.[106] Two of the six SNPs found in BARD1 were 

also significantly associated with neuroblastoma in the African-American cohort, validating 

the original GWAS. Due to different patterns of linkage disequilibrium in the two ethnicities, 

this effort narrowed the potential location of the causal variant. Another study in patients of 

African descent identified an allele in a new gene, sperm associated antigen 16 (SPAG16), 
associated with high-risk neuroblastoma in patients of both African and European ancestry 

showing the potential of discovering new associations by studying specific ethnic groups.

[107]

In the Oldridge manuscript noted above defining a mechanistic basis for the LMO1 

association, the protective T-allele was noted to be common in people of European ancestry, 

but is largely absent in African and African-American populations, which retain the G-allele.

[102] This may provide a partial explanation for the more aggressive forms of 

neuroblastoma observed in African-American patients. Altogether, these results indicate that 

ethnic background may play a role in genetic predisposition and that therapeutic approaches 

may require requisite tailoring.

Collectively, these GWAS-discovered genes account for only a small portion of 

neuroblastoma heritability, which remains poorly understood. It is likely that further 

expansion of GWAS efforts will continue to uncover more susceptibility genes that will 

confer risk in an additive manner. No epistasis was found when the most significant SNPs 
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from 2q35, 6p22, 11p15.4 and 1q21.1 CNV were studied together;[81] however, specific 

clusters of combinations of these SNPs were significantly associated with neuroblastoma.

[105] Mechanistic insights are being discovered, but the underlying basis for most statistical 

associations remain unknown. Neuroblastoma GWASs were expected to discover genes that 

affect development of the sympathetic nervous system, showing that common variants can 

lead to missteps in development and therefore malignancies. Investigators are pursuing 

ongoing studies to model GWAS variants and heritability in zebrafish and induced 

pluripotent stem cell models to understand the biological consequences in neuroblastoma 

and investigate potential therapeutic interventions.

Rare Variants

There are currently two main groups of germline DNA variations that predispose to 

neuroblastoma: very rare genetic mutations leading to Mendelian inheritance of familial 

neuroblastoma with a high penetrance, and common variations that only increase risk of 

disease in small increments. These discoveries thus far have only explained a small 

proportion of the heritability of neuroblastoma. While further expansion of the GWAS will 

continue to uncover more common variants and genes important in the development of 

neuroblastoma, we suggest that these discoveries lie on a spectrum with the middle ground 

only beginning to be realized (Figure 1). These are rare germline variations or mutations 

with a lower penetrance than familial disease but with a larger effect on predisposition than 

the common SNPs. Owing to their rarity and the relatively small number of patients with 

neuroblastoma, it has been difficult to identify these rare variants. Recently, two rare 

germline variants in TP53 were found to be robustly associated with neuroblastoma using 

the 1000 Genomes Project[108] and an advanced imputation process elucidating 

associations with SNPs not directly assayed on the limited arrays.[109] Likewise, germline 

sequencing has identified putative damaging mutations in ALK, CHEK2, PINK1, BARD1 
and APC1 in small percentages of patients with neuroblastoma.[69,110]. As sequencing 

technology improves and costs decrease, discoveries of additional rare variants are on the 

horizon to define and characterize further the heritability of neuroblastoma. The influence of 

germline mosaicism and epistatic interaction of de novo or inherited mutations with GWAS-

defined polymorphisms remains undefined.

Summary and Future Directions

Significant progress has been made in the last six years in describing the genetic landscape 

of neuroblastoma and continuing studies will aim to further identify Mendelian 

susceptibility genes. This is already influencing clinical care as genetic testing is available, 

and there are noninvasive screening methods to surveil for disease in young children. 

Current recommendations suggest that children with a known damaging germline mutation 

in ALK or PHOX2B based on familial pedigrees should undergo surveillance with every 3-

month ultrasonography and urinary catecholamines until a minimum of age 5, if not beyond.

[111] The main impact of GWAS studies to date is in identifying genes critical to 

neuroblastoma progression and maintenance, thus uncovering potential oncogenic 

vulnerabilities. With the discovery of ALK as an example, it is important that translational 

approaches related to these genes be prioritized, as additional targeted therapies for patients 
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with neuroblastoma are essential to improving survival. Future work to extend the discovery 

of germline polymorphisms to those that influence response to therapy and impact co-

morbidities such as hearing loss also has the potential to improve patient survival and quality 

of life. The ultimate goal of genomic studies in neuroblastoma is to inform precision 

medicine with genetic evaluations to tailor clinical treatments and extend survival.[113] As 

additional patient samples are accrued over time, future GWAS endeavors will be required to 

continue the discovery of additional susceptibility alleles. Extensive further investigation, 

both computationally and in designing better models for these rare genetically defined 

subsets, will be required to translate these genomic discoveries into actionable targets for 

diagnosis and treatment.
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Figure 1. 
Graphical representation of genetic predisposition to neuroblastoma. Known familial and 

sporadic predisposition genes have been compiled into one summary figure across multiple 

studies. The familial mutations are shown in the top left of the graph representing a very rare 

allele frequency and high effect size. GWAS-discovered variations are in the bottom right 

corner representing a higher allele frequency with a lower effect size. Continued sequencing 

efforts are likely to uncover additional rare susceptibility variants along this spectrum, of 

which dozens are predicted to be discovered to explain the heritability of neuroblastoma.

Tolbert et al. Page 16

Curr Opin Genet Dev. Author manuscript; available in PMC 2018 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Manhattan plot of high-risk neuroblastoma GWAS results across multiple studies. Level of 

significance (−log10 transformed p values) for each SNP along the genome in chromosomal 

order is plotted, and the corresponding genes are labeled. Red line: genome-wide 

significance threshold based on Bonferroni adjustment. Adapted from Diskin, et al. 2012.
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