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Abstract

Cost-effective yet efficient designs are critical to the success of biomarker evaluation research. 

Two-phase sampling designs, under which expensive markers are only measured on a subsample 

of cases and non-cases within a prospective cohort, are useful in novel biomarker studies for 

preserving study samples and minimizing cost of biomarker assaying. Statistical methods for 

quantifying the predictiveness of biomarkers under two-phase studies have been proposed (Cai and 

Zheng, 2012; Liu, Cai and Zheng, 2012). These methods are based on a class of inverse 

probability weighted (IPW) estimators where weights are ‘true’ sampling weights that simply 

reflect the sampling strategy of the study. While simple to implement, existing IPW estimators are 

limited by lack of practicality and efficiency. In this manuscript, we investigate a variety of two-

phase design options and provide statistical approaches aimed at improving the efficiency of 

simple IPW estimators by incorporating auxiliary information available for the entire cohort. We 

consider accuracy summary estimators that accommodate auxiliary information in the context of 

evaluating the incremental values of novel biomarkers over existing prediction tools. In addition, 

we evaluate the relative efficiency of a variety of sampling and estimation options under two-phase 

studies, shedding light on issues pertaining to both the design and analysis of biomarker validation 

studies. We apply our methods to the evaluation of a novel biomarker for liver cancer risk 

conducted with a two-phase nested case control design (Lok et al., 2010).
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1. Introduction

Novel biomarkers have the potential to improve risk prediction for diseases such as cancer. 

Due to the cost associated with biomarker measurement, the improvement in the predictive 

performance of a model enriched with novel biomarkers over a model with only clinical risk 

factors, throughout referred to as the incremental value (IncV) of the novel biomarkers, 

needs to be rigorously assessed before incorporating the enriched risk model into routine 

clinical practice. A major barrier to validating prediction models is that measuring novel 

markers from a large prospective cohort study may be too expensive, especially if the event 

rate is low. Two subcohort sampling designs, the case cohort (CCH) (Prentice, 1986) and 

nested case control (NCC) (Thomas, 1977), are often employed as cost-effective alternatives 

to the standard full-cohort design, and have been recently adopted for risk marker evaluation 

studies (Lok et al., 2010; Wang et al., 2011).

These designs, while cost effective, can be challenging due to the outcome-dependent 

missingness on the marker information. Statistical methods have been developed to 

incorporate such missingness in estimating relative and absolute risk parameters (Self et al., 

1988; Borgan, Goldstein and Langholz, 1995; Langholz and Borgan, 1997). However, 

evaluation of the clinical utility of risk markers adds another level of complexity, requiring 

additional estimation of distribution of risks in the population and its summary indices. 

Appropriate statistical methods for risk model evaluation under two-phase studies and 

guidance to efficiently conduct the design are still lacking. Novel statistical tools that can be 

used for estimating the predictive performance of a single biomarker have also been 

developed for both CCH and NCC studies (Cai and Zheng, 2012; Liu, Cai and Zheng, 

2012). In these approaches, simple inverse probability-weighted (IPW) estimators were 

considered, with weights as the reciprocals of true selection probabilities calculated based on 

the observed data and study design.

While such IPW estimators are simple to implement, limitations exist. First, in many 

practical situations, two-phase sampling plans can be quite complicated, due to practical 

considerations such as the need to reuse samples previously assayed for other studies or 

missing measurements due to inadequate samples. Retrieving ‘true’ sampling weights can 

therefore be considerably difficult in practice. In addition, these simple IPW estimators tend 

to be quite inefficient because they discard information from individuals without biomarker 

information. When auxiliary variables related to both outcome and incomplete marker 

measurement are available from the entire cohort, incorporating such information in 

estimation may lead to improvement in efficiency (Breslow et al., 2009a,b; Saegusa and 

Wellner, 2013). In this manuscript we propose novel estimators of prediction performance 

measures for two-phase studies, aiming to improve efficiency and practicality over existing 

estimators. Our estimators are based on the idea of augmentation, previously considered for 

estimating relative risk parameters under case-cohort studies. The augmented estimators 

adopt the IPW principal but use nonparametrically estimated weights based on auxiliary 

information.

Our second goal is to address study design issues, particularly regarding the impact of 

matching on estimation efficiency when the goal is to evaluate the IncV of novel biomarkers. 
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In settings where routine markers or other auxiliary information exist, matching controls to 

cases on baseline predictors is usually considered. Matching is frequently adopted as a way 

to improve efficiency, particularly for the estimation of relative risk parameters (Breslow et 

al., 1980). However, little is known regarding whether matching improves efficiency for the 

estimation of prediction performance and IncV measures. In addition, it has been previously 

noted that using augmented weights can lead to the efficiency gain of hazard ratio 

parameters for the fully observed covariates in a Cox regression model, but not so much for 

the partially observed biomarkers (Qi, Wang and Prentice, 2005). The extent of efficiency 

gain due to augmentation for the estimation of prediction performance or IncV parameters 

has not yet been studied. In this paper, we perform extensive numerical studies to provide 

insight on the connection between the augmented estimators under minimally matched 

sampling designs and the simple IPW estimators under matched/stratified designs. We 

evaluate the relative efficiency of a variety of sampling and estimation options to identify 

strategies that are both efficient and practical.

2. Model Specification and General Estimation under Two-phase Studies

2.1. Notation

Suppose the full cohort has N individuals from the targeted population followed 

prospectively. Due to censoring, the underlying full cohort data consist of N i.i.d copies of 

the vector, , where Xi = min(Ti, Ci), δi = I(Ti 

≤ Ci), Ti and Ci denote failure time and censoring time respectively, and subscript i indexes 

the subjects in the cohort. Here,  is the vector of all potential risk 

predictors, Yoldi includes a set of routine markers available for all, Ynewi represents novel 

risk markers only ascertained at the second phase for a selected subset of individuals, and Zi 

represents auxiliary variables including matching and stratification variables available for 

the entire cohort. While  is available for the entire cohort, Ynewi is only 

available if Vi = 1, where Vi is a binary variable indicating whether subject i is selected to 

the phase II subcohort. The two-phase sampling only depends on Xi, δi and Zi, with the true 

sampling probability  known by design. We also 

assume that the risk  follows a semi-parametric transformation 

model (Cheng, Wei and Ying, 1995, 1997; Zeng and Lin, 2006)

(2.1)

where H(t) is an increasing function and  is a cumulative distributional function. When 

, the model corresponds to the proportional hazards model (Cox, 

1972).
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2.2. A General Inverse Probability Weighted Framework for Two-phase Studies

To incorporate outcome dependent missingness in Ynew, estimation of IPW procedures is 

based on subjects with Vi = 1 and reweight the ith observation by ωi = Vi/πi. Consider a 

generic IPW statistic , where E(Ri) = 0. An obvious choice for πi is the 

true sampling probability , which leads to a class of True Weights based 

IPW (TIPW) statistics . The form of  can be obtained explicitly 

for both stratified CCH (sCCH) (Gray, 2009; Liu, Cai and Zheng, 2012) and NCC 

(Samuelsen, 1997; Cai and Zheng, 2012) designs. See Appendix A of the supplementary 

article (Zheng et al., 2017) for details.

When  is not directly available from the study and/or to improve efficiency over the simple 

TIPW estimators, we focus on AIPW estimators that leverage information on auxiliary 

variables W by non-parametrically estimating πi given Wi. The AIPW approach replaces 

with an augmented weight , where  is an estimate of  using Wi. The 

key to the efficiency gain from the AIPW approach is to choose W and the estimator 

such that  and W is highly correlated with Ri. For example, one may consider 

 for mNCC design, and  for sCCH 

to enable both consistent estimation of the sampling weights and efficiency improvement by 

leveraging full cohort information on Yoldi.

When Wi is discrete, a natural choice for  is the empirical proportion based on the 

observed data: However, Wi often involves continuous variables. 

For example, for NCC designs, the sampling is dependent on X; thus, W needs to include X 
to ensure the consistency of the AIPW estimators. To incorporate continuous W, one may 

consider the Nadaraya-Watson estimator,

(2.2)

where Kh(·) = K(·/h)/h, K is a symmetric kernel density function, and h > 0 is the bandwidth. 

Selection of appropriate h can follow the recommendations in Wang and Wang (2001) and 

Qi, Wang and Prentice (2005). Since the IPW estimators could be biased if  does not 

consistently estimate , such a widely applicable nonparametric estimator, 

applicable to a wide range of practical situations, is appealing.

Asymptotic Behavior of AIPW Estimators—Making inference under a two-phase 

design with weight is generally difficult because the sampling scheme leads to weak 

correlation between the Vi’s, which is not ignorable even in large samples. Derivations for 

the asymptotic properties of the AIPW estimators accounting for such correlations are given 
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in the Appendix B of the supplementary article (Zheng et al., 2017). For ease of 

presentation, we focus on a setting where all cases are selected and controls are sampled 

according to the CCH or NCC design without additional matching. We also show in the 

Appendix B that the variance reduction,  is always great 

than or equal to 0, and thereby justifies the efficiency gain by AIPW estimators over the 

TIPW estimators.

3. Accuracy and Incremental Value Evaluation

3.1. Parameters of Interest

For any subvector of Y, Y*, and the associated risk model for , Y* 

affects Dt only through the risk score . Thus, we quantify the predictiveness of Y* 

based on the predictiveness of . One main goal here is to quantify the prediction 

performance of a risk score  for predicting Dt = I(T ≤ t), for various choices of . 

An array of measures can be considered for such evaluations. Key summary indices for 

characterizing the accuracy of  in classifying Dt include

where p is a risk threshold that can potentially be used to form different clinical decisions.

The pair of summaries  and  specifies the cumulative distribution of risks 

among t-year cases with Dt = 1 and non-cases with Dt = 0, respectively, and is a building 

block for other measures. For example, taking Dt as a binary outcome for a fixed t, the 

proportion of t-year cases followed (Pfeiffer and Gail, 2011) can be expressed as 

, where . Its inverse function 

 is the fraction of the general population at the highest risk that needs 

to be followed to ensure that a fraction p of the t-year cases will be captured.

When no specific risk thresholds are of key interest, one may consider summary measures to 

complement the display of case and control risk distributions. For example,

is a time-dependent version of the area under the ROC curve (AUC), which provides a 

measure of separation between the distributions of  among t-year cases and non-

cases. Another frequently used prediction performance measure is the difference in mean 

risks (DMR) between cases and non-cases at time t, which is related to the Integrated 
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Discrimination Improvement (IDI) statistic for comparing risk models (Pencina et al., 2008), 

.

To quantify the IncV in risk prediction based on a generic prediction summary index 

denoted by , one may consider , where  is evaluated for the 

updated model  constructed with  as predictors, and  is the 

corresponding value for the risk model  developed using only 

Yold.

3.2. Estimation and Inference of Accuracy Summaries and IncV

We now investigate the AIPW estimation procedures for the evaluation of IncV under the 

semi-parametric transformation model as specified in (2·1). Specifically following the 

approaches taken in Murphy, Rossini and Van der Vaart (1997) and Zeng and Lin (2006), the 

model parameters  can be obtained by maximizing a weighted 

semiparametric likelihood:

where  and λ1(x) = dΛ1(x)/dx, ΔH(x) = H(x) − 

H(x−). With  as estimators for ß, we can calculate , 

where .

To estimate the pair of key predictive performance summaries,  and , for a 

generic risk function , we first note that under model (2.1),

We assume that (2.1) holds but allow the risk function  to be derived from a 

potentially mis-specified submodel. This along with the AIPW principle motivates us to 

estimate  and  respectively as

(3.3)
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(3.4)

where  is the estimated risk function derived under the submodel for 

. Subsequently, we may construct augmented estimators for other 

risk parameters. For example, we estimate  as , 

and  as , where . An 

estimator for  is , with  and 

, and an estimator for  is .

For IncV evaluations, we compare the prediction performance of the  to that of 

 obtained by fitting (2.1) with Yold only. When the full cohort data are available for 

Yold, the estimation of model parameters associated with P(Dt = 1 | Yold) can be obtained 

using the standard procedures as in Zeng and Lin (2006) without weighting.

For a generic prediction accuracy parameter  representing either TPRt(p), FPRt(p), 

PCFt(v), PNFt(p), AUCt or DMRt, let , ,  and  denote the true and 

estimated accuracy for  and , respectively. The IncV with respect to , 

, can be calculated as .

To construct confidence intervals for the accuracy and IncV parameters, in the 

supplementary article Appendix C (Zheng et al., 2017), we provide the asymptotic variances 

of  for the CCH and NCC design based on the asymptotic linear expansion of  and 

.

4. Simulations

We conducted simulations to examine the finite sample performances of our proposed 

procedures under both two-phase designs and the impact of different sampling and analysis 

strategies on efficiency. With a cohort of size N = 5000, we first generated Yold and Ynew 

from a zero-mean bivariate normal distribution with unit variances and correlation 0.8. The 

event time T was generated by conditioning on Yold and 

, with , where 

β1 = log(3), β2 = log(2) and α0 was chosen to be (i) 0.1 for studying CCH designs, 

representing a moderate event rate scenario; and (ii) 0.01 for NCC designs, representing a 

rare case scenario. The censoring time C was taken to be the minimum of 2 and W, where W 
followed a gamma distribution, with a shape parameter of 2.5 and a rate parameter of 2. The 

event rate was about 20% under the setting for studying CCH designs, and 4% under the 
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setting for studying NCC designs. These two full cohort data generating mechanisms were 

used for all simulation settings, and a variety of sampling strategies were implemented to 

assemble the phase II data. For each sampling design and parameter of interest, we obtained 

two IPW estimators: one with true sampling weights, and one with the weights estimated by 

nonparametrically estimating P(Vi = 1 | W) as in Equation (2.2).

4.1. Finite Sample Performance of the Proposed Estimators

We first assessed the validity of our proposed inference procedures in finite samples. For 

simplicity, no additional matching variables were used for sampling. For the CCH design, 

we randomly sampled n1 = 105 cases from {i : δi = 1} and n0 = 3n1 controls from {i : δi = 

0}. For the NCC design, we included all individuals with δ = 1 as cases, and for each case, 

we randomly selected 3 controls from the risk set of the case. To estimate the sampling 

weights for augmentation, we let W = (δ, Yold)⊤ for CCH and W = (δ, X, Yold)⊤ for NCC.

Based on the results of 5000 simulated datasets as shown in supplementary article Table 1 

(Zheng et al., 2017), we found that all point estimates had negligible bias. The asymptotic 

based standard error estimators approximated the empirical standard errors well with 

empirical coverage levels of the 95% confidence intervals close to the nominal level for all 

parameters except NPV under the NCC design. This was not surprising because, in this case, 

the true NPV levels were extremely close to 1, which made finite sample standard error and 

interval estimation generally difficult as in any binomial proportion estimation setting 

(Brown, Cai and Dasgupta, 2002). We also varied the values of bandwidth in the 

nonparametric kernels to evaluate the robustness of the proposed estimators. Varying 

bandwidths had little impact on estimates of accuracy summaries in the simulated settings as 

shown in supplementary article Table 2 (Zheng et al., 2017). Reducing cohort size to 1000 

for CCH and 2000 for NCC showed efficiency improvement of AIPW estimators over TIPW 

estimators, with slightly increasing in bias. See supplementary article (Zheng et al., 2017) 

Table 3(a) and (b) for details.

4.2. Relative Efficiency of Different Sampling and Analytical Options

We conducted simulation studies to examine the effect of matching or stratification by a 

discrete variable Z on the efficiency of estimating various accuracy summaries. We let 

, where yq is the 100qth percentile of Yold and {q1, q2} are chosen as 

(i) {0.5, 0.75} for the CCH design and (ii) {0.33, 0.66} for the NCC design. We compared 

the efficiency of AIPW and TIPW estimators obtained with data generated from different 

sampling designs, with and without matching on Z.

CCH Design—Irrespective of sampling strategy, a total of 150 cases with δ = 1 and 450 

controls with δ = 0 were included in the phase II subcohort. Three commonly adopted 

sampling strategies were considered:

• Setting A (random): randomly sampled 150 cases and 450 controls without 

considering Z.
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• Setting B (frequency matched): randomly sampled 150 cases, then sampled 

controls such that the distribution of Z among the selected controls was the same 

as that of the cases.

• Setting C (balanced design): sampled 50 cases and 150 controls from each 

stratum defined by the level of Z, which design led to oversampling categories 

with lower prevalence.

Under the CCH design, for any given parameter of interest  that is estimated via the TIPW 

approach as , it is possible to calculate the optimal sampling fractions to minimize the 

variance of  (Borgan et al., 2000). Suppose  and the 

target is to sample n1 cases and n0 controls. Then the optimal sampling fractions that 

minimize the variance of  are  and  for the cases and controls with Z = l, 
respectively, where

 and . Note that in practice, an estimate 

of  may only be available to assist in study design if preliminary data are available. In 

addition, such optimal sampling fractions tend to vary by specific measure – the sampling 

fractions optimal for one measure may not be optimal for the other. Thus, it is not possible to 

design a study to achieve optimal efficiency simultaneously for all measures. To mimic the 

most likely scenario in practice, we calculated optimal fractions for βnew and used them as 

the basis for sampling. The IPW estimators with true weights obtained under such a design 

(using sampling fraction optimal for βnew), denoted by TIPWopt, were then used as the 

benchmark for comparing the efficiency of various standard designs and gauging the effect 

of augmentation.

Figure 1(a) shows the efficiencies of the TIPW and AIPW estimators obtained under various 

sampling strategies, relative to the TIPWopt estimators. When true weights were used, the 

frequency matched design had similar efficiency as the optimal design and outperformed the 

random and balanced designs for a majority of the parameters investigated. However, for the 

accuracy parameters at various risk threshold levels, the efficiency of the frequency 

matching was much lower than the optimal design and was comparable to or sometimes 

worse than the random and balanced designs. On the other hand, the AIPW estimators were 

substantially more efficient than their corresponding TIPW estimators, except for β2. 

Interestingly, the AIPW estimators under random sampling had efficiency comparable to or 

higher than those obtained from TIPWopt for all parameters of interest. When comparing the 

AIPW estimators obtained across the three designs, the balanced design generally performed 

the worst. Although the frequency matched design achieves a slightly higher efficiency for a 

few parameters than the random design, the random design appeared to be much more robust 

with regard to efficiency of AIPW estimators across different parameters. The results here 

suggested that, in practice, considering a simple random sampling scheme at the design 
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stage and then utilizing auxiliary information in the analysis step has the advantage in both 

practical simplicity and statistical efficiency.

NCC design—For the NCC design, all cases were included and 3 controls were sampled 

from the risk sets of the cases according to the follow two strategies:

• Setting D (random): randomly sampled from the risk set of the case;

• Setting E (matched): randomly sampled from the case’s risk set and matched on 

the value of Z of the case.

Since no simple optimal sampling strategies can be implemented for the NCC design, we 

used the TIPW estimator under random sampling as the benchmark for comparison and 

present in Figure 1(b) the efficiencies of the TIPW and AIPW estimators obtained under 

these two designs relative to the benchmark estimator. The matched design led to the most 

efficient relative risk estimators for β1 and β2, however the efficiency gain did not directly 

translate to the estimation of performance summary parameters, and it may in fact lead to 

poorer efficiency compared to a simple random sampling design. Indeed, for a majority of 

summary performance parameters considered, Setting D, using a simple random sampling 

design with the proposed AIPW estimators, appeared to be the most efficient. The results 

further suggested the benefit of employing a simple random design followed by the AIPW 

estimation procedure. Stratifying/matching based on Yold, while leading to improved 

efficiency for the regression parameters, could drastically sacrifice the efficiency for various 

accuracy parameters. On the other hand, the AIPW estimator with random sampling always 

resulted in efficiency improvement. Numerical results are presented in the supplementary 

article (Zheng et al., 2017) Table 4(a) and (b).

5. Example

Patients with hepatocellular carcinoma (HCC) often have poor prognosis due to late 

diagnosis. Since cirrhosis of any cause and chronic infection with hepatitis B virus (HBV) or 

hepatitis C virus (HCV) are the most common risk factors for HCC, surveillance of high-risk 

populations may detect tumors at an early stage when curative interventions can be 

implemented. Alpha fetoprotein (AFP) is the most widely used biomarker for HCC 

surveillance; however, its sensitivity and specificity in detecting early HCC are low. More 

reliable biomarkers for HCC surveillance and early detection are sought in order to improve 

the outcome of the disease.

The Hepatitis C Antiviral Long-Term Treatment against Cirrhosis (HALT-C) Trial included 

1050 patients with chronic hepatitis C and bridging fibrosis or cirrhosis who failed to 

achieve a sustained virologic response (SVR) to combination therapy of pegylated interferon 

and ribavirin. Patients were randomized to low-dose pegylated interferon or no treatment 

and examined every 3 months for a total duration of 3.5 years. Blood samples were collected 

at each visit for subsequent research testing, including assays for HCC biomarkers. 

Ultrasound examinations were repeated 6 months after enrollment and again every 12 

months. Patients with an elevated or rising AFP and those with new lesions detected by 

ultrasound were evaluated further by CT or MRI.
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One goal of the HALT-C Trial was to identify and validate markers for HCC surveillance. 

As part of the trial, an NCC study was employed to assess and compare the accuracy of AFP 

and a novel serum biomarker, des-gamma-carboxy prothrombin (DCP), in predicting the risk 

of HCC. The NCC sub-cohort included all 39 HCC cases diagnosed during the follow-up. 

For each case, 2 controls without HCC, matched for treatment assignment and presence of 

cirrhosis on baseline biopsy, were selected from the risk set of the case. This resulted in a 

total of 77 controls in the NCC subcohort. The biomarkers were evaluated at multiple 

follow-up visits, and the results on the repeated markers were reported in Lok et al. (2010), 

where conditional logistic regression models were used to compare characteristics of HCC 

cases, and matched controls and unconditional logistic regression were used to evaluate the 

accuracy performance of the biomarkers.

To illustrate our proposed methods, only baseline measurements were considered for risk 

modeling. Logarithm transformed values were considered for both AFP and DCP, denoted 

by logAFP and logDCP, respectively. Due to low liver cancer incidence, methods that could 

improve efficiency would be helpful. For comparison, we obtained parameter estimates 

using both the TIPW and AIPW approaches, where for the AIPW approach, we let W = (X, 

δ, log AFP)⊤ for augmentation. To build a risk model with both logAFP and logDCP, we 

considered fitting a Cox proportional hazards model. We obtained log hazard ratio (logHR) 

parameter estimates with the conditional logistic regression, TIPW, and AIPW methods. The 

conditional logistic regression method yielded a logHR estimate of 0.54 with a standard 

error (SE) of 0.27 for logAFP and 1.54 with a SE of 0.51 for logDCP, suggesting that DCP 

may serve as an independent risk factor for HCC beyond AFP. The logHR was estimated as 

0.61 (SE: 0.22) for logAFP and 2.04 (SE: 0.33) for logDCP based on TIPW, and 0.82 (SE: 

0.18) for logAFP and 1.95 (SE: 0.32) for logDCP based on AIPW. These results indicated 

that that the AIPW method provided more efficient estimates of the logHR parameters when 

compared to TIPW and conditional logistic regression methods.

We subsequently evaluated the 2-year predictive performance by combining logDCP and 

logAFP using the measures described in Section 3.1. The results for evaluating the full 

model with both logAFP and logDCP included are presented in the first two columns of 

Table 1. Across the measures we considered, point estimates from the two approaches in 

general were quite close; however, the AIPW estimators had substantially smaller standard 

errors than that of the TIPW estimators for most of the parameters. Combing AFP and DCP 

led to a good predictive model for predicting the 2-year risk of HCC, with AUC estimated as 

0.81 (95%CI: [0.68,0.94]) based on TIPW, and 0.82 (95%CI: [0.75, 0.90]) based on AIPW. 

If the top 20% of the population based on the estimated risks is considered of high risks, 

then the proportion of individuals who will be diagnosed with HCC within two years, 

captured by the prediction rule, is 64% (95% CI: [38%, 89%]) based on the TIPW estimate, 

and 68% (95% CI: [53%, 81%]) based on the AIPW estimate.

To further evaluate whether adding DCP to the model substantially improves accuracy when 

compared to the model with AFP alone, we also fit a model with AFP alone and calculated 

the IncV of DCP with respect to various accuracy parameters as shown in Table 1. The ROC 

curves and risk distribution for both models are shown Figure 2. As seen in the figures, the 

enriched model always had higher TPF and higher PCF, but smaller PNF across different 
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risk thresholds p. Formal tests of such observed incremental values for selected p can be 

based on the results presented in the last two columns in Table 1. For example, 

was estimated as 12.9% with 95% CI (7.0%, 18.7%) based on AIPW, indicating that adding 

DCP improved in prediction accuracy beyond AFP. In addition, there was also significant 

improvement with respect to PCF and PNF, with  estimated as 21.4% (95% CI: 

[10.4%, 32.3%]) and  estimated as 18.3% (95% CI: [5.1%, 31.4%]), based on 

AIPW. The TIPW approach, while generating similar point estimates, did not produce 

statistically significant IncV estimates for all parameters considered (Table 1). This example 

demonstrates the advantage of the proposed AIPW method for estimating accuracy 

summaries and IncV parameters, particularly when there are limited samples with available 

biomarker measurements.

6. Discussion

Large cohort biomarker studies of rare diseases such as cancer require thoughtful planning, 

from selection of study subjects and measurement of key variables and auxiliary information 

to analytical strategies. Study design becomes even more demanding in biomarker research, 

when measurements are based on stored tissue or blood specimens. It is important in this 

setting to use research resources wisely to achieve optimal efficiency of the study. There is a 

paucity of appropriate statistical methods for biomarker assessment and guidance on design 

and analysis strategies to maximize efficiency. Practical and efficient statistical tools can 

enable clinical investigators to conduct more cost-effective studies and more efficiently 

allocate research resources.

This manuscript contributes to such an endeavor in two ways. First, we provide a general 

framework for more efficiently estimating prediction accuracy and IncV parameters via an 

AIPW approach under two-phase CCH or NCC designs. Our simulation studies and 

application of Halt-C biomarker validation studies indicate that the use of nonparametric 

weights to capture design selection is valid and yields significant efficiency gain. 

Furthermore, the proposed approach also provides a practical solution in study settings 

where the true design-based sampling probabilities are impractical to ascertain. In addition, 

previous work on biomarker evaluation with two-phase studies (Cai and Zheng, 2012; Liu, 

Cai and Zheng, 2012) only considered evaluating the performance of a single marker. We 

extend the scope of work to the evaluation of multivariate risk models and IncV of novel 

biomarkers under two-phase designs. Such extensions are non-trivial due to the complex 

structure induced by both the correlation among different risk markers and the sampling 

design.

Second, using extensive numerical studies, we demonstrated that stratification sampling for 

CCH studies or matching for NCC studies can be inefficient in many accuracy summaries 

when not done optimally. In the absence of preliminary data, it is often unclear what 

variables for matching, or what sampling fractions should be considered for stratification. A 

poor choice in matching variables may lead to loss in efficiency and unnecessary 

complications in analysis. Furthermore, the sampling fractions optimal for one parameter 

may not be optimal for another, and thus, no sampling strategies would be uniformly optimal 
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across all parameters. Therefore, using a simple sampling scheme at the design stage and 

then improving estimation efficiency using the proposed augmented estimators in analysis 

would be a useful alternative to considering matched designs.

We have focused on the estimation of accuracy summaries with a semi-parametric approach 

to illustrate the AIPW approach. Alternatively, one may consider calculating the accuracy 

summaries with a nonparametric approach as was previously considered (Cai and Zheng, 

2011), without relying on the assumption of Model 2.1. The estimating and inference 

procedures with AIPW described can be easily adopted to that setting. Our proposed 

estimators for evaluating the IncV of a new prediction model improves efficiency of the 

existing IPW-based estimators; however, they do not achieve full efficiency as compared 

with a full likelihood-based approach (Zeng and Lin, 2014). Future exploration of the 

additional gain when applying non-parametric likelihood-based procedures is warranted, 

even at the cost of increased computational burden. Finally, the validity of the class of IPW 

estimators is based on the assumption that selection is dependent on variables observable 

from the full cohort. Caution should be taken when the availability of biomarker 

measurement might be dependent on unmeasured variables.
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Fig 1. 
Relative efficiency (RE) of various predictive performance summaries by different designs. 

Figure (a): results for CCH designs. Setting A: simple random sampling; Setting B: matched 

design and Setting C: balanced design. TIPW (top panel) and AIPW (bottom pane) 

estimators for each setting are considered, using TIPWopt as benchmark for efficiency. 

Figure (b) results for NCC designs. Setting D: simple random sample; Setting E: matched 

design. TIPW estimator under setting D is the benchmark for efficiency.
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Fig 2. 
Comparing performance of two prediction models: model with AFP along (solid lines) and 

model with both AFP and DCP (dashed lines). (a) ROC curves for predicting 2-year risk of 

HCC with baseline biomarker measurements. (b): risk distribution curves for individuals 

who diagnosed with HCC in 2 years.
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