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ABSTRACT

Tumours contain multiple different cell populations, including cells derived from the bone marrow as well as cancer-

associated fibroblasts and various stromal populations including the vasculature. The microenvironment of the tumour

cells plays a significant role in the response of the tumour to radiation treatment. Low levels of oxygen (hypoxia)

caused by the poorly organized vasculature in tumours have long been known to affect radiation response; however,

other aspects of the microenvironment may also play important roles. This article reviews some of the old literature

concerning tumour response to irradiation and relates this to current concepts about the role of the tumour

microenvironment in tumour response to radiation treatment. Included in the discussion are the role of cancer stem

cells, radiation damage to the vasculature and the potential for radiation to enhance immune activity against tumour

cells. Radiation treatment can cause a significant influx of bone marrow-derived cell populations into both normal

tissues and tumours. Potential roles of such cells may include enhancing vascular recovery as well as modulating

immune reactivity.

INTRODUCTION
The response of tumours to radiation treatment is multi-
factorial and depends on features of the tumour micro-
environment as well as the intrinsic sensitivity of the
tumour cells themselves. Tumours contain multiple dif-
ferent cell populations derived from the host as well as
the tumour cells. These cells include populations derived
from the bone marrow (e.g. lymphocytes, macrophages/
monocytes, granulocytes and dendritic cells), as well as
cancer-associated fibroblasts and various stromal pop-
ulations including the cells and stromal components
comprising the vasculature (for an overview of the po-
tential role of the various cell populations in the tumour
microenvironment and how they may interact with radi-
ation, see Figure 1).1 Furthermore, it is now well estab-
lished that owing to their genetic instability, the tumour
cells themselves may consist of multiple clonal populations
that reflect the evolution of the tumour and the ability of
different genetic or epigenetic alterations to promote
growth within the tumour mass. However, only a fraction
of the tumour cells (the stem cells) may have long-term
proliferative potential and the ability to regenerate the tu-
mour. The microenvironment of the tumour cells plays
a significant role in the tumour response to radiation
treatment. Low levels of oxygen (hypoxia) caused by the
poorly organized vasculature in tumours have long been
known to affect radiation response.2,3 However, other

aspects of the microenvironment also appear to play im-
portant roles. There are increasing numbers of reports
implicating the potential role of radiation in enhancing
immune activity against tumour cells.4,5 There is also
renewed interest in the potential role of radiation damage
to the vasculature, in particular, its ability to recover fol-
lowing radiation treatment, so that it can support tumour
regrowth. Blocking such recovery has been reported to
increase the response of tumours to radiation treatment.6

Radiation treatment can cause a significant influx of bone
marrow-derived cell (BMDC) populations into both nor-
mal tissues and tumours.7 Potential roles of such cells may
include enhancing vascular recovery as well as modulating
immune reactivity or possibly enhancing metastasis.8,9

High levels of neutrophils in the circulation and the tu-
mour have also been associated with poor treatment out-
come in cancers following irradiation.10–12 In this article, I
will review some of the old literature concerning tumour
response to radiation treatment and relate this to current
concepts about the role of the microenvironment in tu-
mour response to radiation treatment.

RETROSPECTIVE
Prior to the development of in vivo–in vitro clonogenic
assays for mammalian cells growing in culture, studies of
the response of tumours to irradiation were largely con-
ducted using growth delay or tumour cure assays in
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rodents.13,14 Many of these studies were conducted using
transplantable tumours given single radiation doses or a few
dose fractions. These studies generally established that fairly
large doses of irradiation were required to cure such tumours,
unless the tumour was grown in an animal that was not “im-
mune-compatible” or the tumour was chemically induced, in which
case, much lower doses could be curable indicating the potential
role of the immune system.15,16 These studies demonstrated that
animals in which “immune-incompatible” tumours were
grown and had been cured were largely resistant to a secondary
transplant of that tumour, whereas this was not the case for
tumours grown and cured in animals that were immune-
compatible with the tumour involved (usually tumours which
had arisen spontaneously in the inbred animal strain used for
transplantation). These findings led to the view that chemically
induced tumours were not very relevant models for assessing
tumour response to radiation treatment and that such studies

were better conducted with spontaneously arising tumours grown
or transplanted into immune-compatible inbred hosts, which
were generally found to show very limited evidence of immune
reactivity.17,18

RADIATION RESPONSE OF TUMOUR CELLS
Following the development of in vivo–in vitro clonogenic assays
and the development of cell lines derived directly from tumours,
response of tumours focused on the radiosensitivity of the tu-
mour cell population. Malignant cell populations in culture were
found to have quite consistently shaped survival curves with
a shoulder followed by a decline that could be reasonably well
fitted by an exponential, although various different models have
been proposed to fit such curves.19–22 The current model of
choice is the linear-quadratic model [S5 exp2 (aD1bD2)],
and the survival data shown in Figure 2(b) are fitted with this
model. In general terms, the alpha parameter defines the slope of

Figure 1. Multiple cell populations in the tumour microenvironment can be affected by that environment and by irradiation.

Reproduced from Barker et al1 with permission from Nature Publishing Group.
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the initial part of the curve and the beta parameter defines the
curvature of the curve. A derivation from this model has been
widely used to compare response of tumours and normal tissues
to different fractionated treatments, over a range of doses, based
on estimates of the alpha/beta ratio.23

It should be noted that survival following radiation treatment is
specifically defined in terms of the retention of proliferative ca-
pacity of the cells (i.e. as the ability of an individual cell to re-
generate a colony of a certain size—usually 501 cells) and does not
relate to whether the cell actually dies and is lost from the pop-
ulation as a whole. This was consistent with observations that
although some cells would undergo apoptosis following radiation
treatment (depending to some extent on tissue type), many cells
would often attempt cell division a few times before ultimately
dying (of mitotic catastrophe) and being lost from the culture (or
tumour) or undergoing senescence and ceasing proliferation. Thus,
it was argued that the rate of regression of tumours following
irradiation treatment largely reflected the underlying proliferative
rate (fraction of cells in the proliferative cycle or the labelling
index) of the tumour cell population. This in turn led to the view
that the rate of regression of the tumour did not necessarily reflect
the actual level of loss of cell survival due to the treatment and that,
in tumour-regrowth assays, it was necessary to allow the tumour to
regrow to larger than treatment size in order to determine the true
response to the treatment in the context of surviving cells.24

It was established that the shoulder of the survival curve
reflected the ability of the cells to repair radiation damage25 and
the observed differences in survival curves for cells in different
phases of the cell cycle were also largely thought to relate to
different abilities of the cells in these various phases to repair
radiation damage.26 Subsequent studies have also indicated that
at doses ,0.5 Gy, some cell populations may have a “hypersen-
sitivity” to irradiation, which is thought to relate to reduced
repair capacity following these low doses, and that, at slightly

higher doses (.1Gy), there is enhanced repair of this damage
and that this may be related to cell cycle status.27,28

Repair of radiation damage associated with the shoulder of the
survival curve has been modelled with various combinations of
exponential functions but appears to be reasonably well fitted
using a biexponential with rapid repair having an approximate
half-time of about 0.3–0.5 h and slower repair with an approx-
imate half-time of 4–5 h.29 However, similar to the extent of
repair, these half-times can be variable for different cells with
values ranging by about a factor of 2 around these values and the
longer repair times may be more relevant to late responding
normal tissues than most tumours.30 An important consequence
of repair is that the efficacy of radiation treatment depends on
the dose rate, particularly when this is below a value of about
0.5–1Gymin21 with treatment generally becoming less effective
below this value. This is true for both tumour cells and normal
tissues and the extent of the effect depends on the repair capacity
of the relevant cell populations. Thus, for cells with low repair
capacity, such as bone-marrow-derived populations or tumours
such as neuroblastoma, the effect is small, whereas for tissues or
tumours whose cells have high repair capacity such the lung and
gastrointestinal tract, it can be a large effect.31 Although the
instantaneous dose rate is important, for treatments using
multiple beam protocols (such as intensity-modulated radiation
therapy), the effective dose rate per treatment session also
needs to be considered, and modelling suggests that treatments
which exceed about 15–30min may have reduced treatment
efficacy.29,32,33

Studies of the radiation sensitivity of human tumour cell lines
derived from different tumour types demonstrated that there
were significant differences in the sensitivity of cells from dif-
ferent tumours (Figure 2). These effects were observed in re-
lation to both the slopes and, particularly, the size of the
shoulders of the survival curves for different cell lines, although

Figure 2. (a, b) Cell survival curves for various different human tumour cell lines treated with a single dose of radiation. (b) Data are

fitted with the linear-quadratic model of cell survival. Br, breast; Bl, bladder; C, cervix; M, melanoma; N, neuroblastoma; P, pancreas;

T, teratoma. Modified from Steel148 and Steel et al149 with permission from Elsevier.
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in no case was it observed that cells were absolutely resistant to
radiation. The analysis of the survival curves of cells from dif-
ferent types of tumours led to the view that differences in the
shoulder region of the survival curve (i.e. at a dose of 2Gy)
reflected the in vivo radioresponse of the different types of
tumours in patients, given “standard” fractionated radiation
treatment (i.e. ;2Gy fractions), but that this was not generally
true for the slope of the survival curve (Table 1).34,35 This
concept was followed up by a number of different groups, no-
tably West et al,36,37 who adapted in vitro assays to assess the
radiation sensitivity of tumour cells derived directly from bi-
opsies of cervical cancers in females due to undergo radiation
treatment. The results of these studies indicated that the survival
following a dose of 2Gy correlated with the treatment outcome
of the patients from whose tumour the cells were derived, in-
dicating the importance of radiation sensitivity of the tumour
cells for tumour response to irradiation (Figure 3). Subsequent
studies reported similar effects for head and neck cancers, but
other studies did not show significant effects.38 Owing to the
difficulty of performing the technique, the time necessary to
obtain the result and the fact that for a significant fraction of
patient’s tumours no data could be obtained, this approach to
personalizing treatment based on the individual radiosensitivity
of cancer cells in individual patients was not pursued further.
However, the data are important both in the context of the
studies of cancer stem cells (CSCs) (see Cancer Stem Cells
section) and in relation to the increasing use of high dose
treatment strategies [stereotactic body radiotherapy (SBRT)] for
which response in the shoulder region of the survival curve is of
limited relevance.

More recent approaches have involved using genetic analysis of
multiple cell lines in attempts to identify genetic signatures
which predict radiation sensitivity above and beyond the known
effects of mutations in the ataxia telangiectasia mutated
(Atm) and other DNA repair genes.39,40 This approach has
defined a variety of genes that may be involved in radiosensi-
tivity of different tumour cell populations, but there are various
limitations to such studies, notably the use of high throughput
analyses of radiation response of the cells, which limits the

ability of the studies to examine genetic factors separately af-
fecting the low-dose vs the high-dose region of the survival
curve. Other concerns with such studies can relate to the po-
tential selection bias associated with the growth of cells in vitro
(if cell lines are used in the study) or the potential role of het-
erogeneity and multiple clones within tumours (if biopsies are
used in the study). Studies to identify genetic factors affecting
normal tissue response to irradiation are also under way based
on analyses of patients who have experienced serious side effects
of radiation treatment,41,42 and these studies may also be in-
formative concerning genetic factors affecting radiation response
of specific tumour cell populations. To date such analyses have
not translated into significant attempts to personalize radiation
therapy in the clinic.

ROLE OF HYPOXIA
The further development of in vivo/in vitro assays to allow
malignant cells taken directly from tumours to be grown in
culture allowed studies of the radiosensitivity of malignant cells
irradiated in situ in the tumour growing in a host animal. These
studies confirmed earlier data from in vivo growth delay or tu-
mour cure assays that tumours contained a fraction of viable
cells at low oxygen levels (hypoxic) that were more resistant to
irradiation than well-oxygenated cell populations (Figure 4).43,44

These observations were a clear demonstration of the role of the
microenvironment of the tumour cells on their response to ir-
radiation, since it was established that resistance was directly due
to the lack of oxygen during radiation treatment. Detailed
studies demonstrated that the effect was largely due to direct
interaction of oxygen with radiation-induced radicals on the
DNA-preventing rapid chemical repair of the radical by anti-
oxidant molecules such as sulphydryls (2SH0).45 The level of
oxygen required for an observed decrease in radiation response
was less than about 10mmHg, but full resistance was not ob-
served until oxygen levels were below approximately 0.5mmHg.
Studies indicated that the levels of free sulfhydryls (e.g. gluta-
thione, cysteine etc.) in the cells can modify this range; a factor
that may be different for cells in tumours vs those growing in
culture.46,47 An important aspect of hypoxia in tumours was the
finding that it was quite dynamic and that during the course of

Table 1. Values of the surviving fraction at 2Gy for human tumour cell lines

Tumour cell type Number of lines Mean survival at 2 Gy (range)

1.

Lymphoma
Neuroblastoma
Myeloma
Small-cell lung cancer
Medulloblastoma

14 0.20 (0.08–0.37)

2.

Breast cancer
Squamous-cell cancer
Pancreatic cancer
Colorectal cancer
Non-small-cell lung cancer

12 0.43 (0.14–0.75)

3.

Melanoma
Osteosarcoma
Glioblastoma
Hypernephroma

25 0.52 (0.20–0.86)

Tumours are grouped 1–3 in approximate order of their likelihood of tumour control by radiation. Modified from Deacon et al.34
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fractionated radiation treatment, hypoxic cells that had sur-
vived one fraction could become “reoxygenated” and hence
become more sensitive to a subsequent fraction. This was
a widely observed phenomenon in both transplanted and
spontaneously arising tumours.48–50 It was subsequently shown
that tumours usually contain regions subject to fluctuating
blood flow,51,52 leading to the concept that tumour cells may be
exposed to either chronic or acute (cycling) hypoxic environ-
ments and that observed reoxygenation could be partially
explained by such cycling hypoxia. Chronic hypoxia is largely
thought to occur as a result of oxygen diffusion limitations, but
potentially, it may also result from the presence of unusually
long vessels or slow blood flow when the oxygen capacity of the
blood may be exhausted along the length of the vessel.53,54

Follow-up on the effect of hypoxia on tumour growth and re-
sponse to treatment has continued to the present day as more
and more knowledge has been accumulated about the effects of
different levels of hypoxia on cellular metabolic function, and it
is increasingly clear that other aspects of the effects of hypoxia
may also play an important role in the response of tumours to
treatment.55 Relevant to radiation response are observations that
the extent of repair of radiation damage in hypoxic cells depends
on the length of their exposure to hypoxia both before and after
irradiation, such that chronically hypoxic cells may have a lesser
degree of resistance to radiation (due to reduced repair capacity)
than acutely (cycling) hypoxic cells.56 Early studies had also
suggested such an effect using tumour cure assays.57 Further-
more, cells may have limited ability to maintain viability long
term under chronic hypoxia, depending on such factors as their
ability to induce mechanisms of survival under low-energy
conditions, such as autophagy.58 Thus, some chronically hypoxic
cells may not be able to induce tumour regrowth even if they
could survive the initial radiation treatment. The possibility that
hypoxic cells may die in vivo following doses of radiation but be
able to survive if reoxygenated was proposed quite early but was
quite variable in different studies.59–61 Recent studies have
suggested that this may be an important factor in the response of
tumours to SBRT.62 These observations are consistent with the
concept that acutely hypoxic cells and/or the larger number of
cells that are partially resistant to irradiation due to being at
intermediate oxygen levels in tumours may in fact represent

a more important population of cells relevant to tumour control
effected by standard fractionated radiation therapy rather than
the most hypoxic cell populations.63

However, despite the overwhelming data that many tumours
contain hypoxic cells and the findings that levels of hypoxia in
various tumour types are predictive of treatment outcome,
approaches to addressing this issue in radiation therapy treat-
ment of patients have had only limited success. Initial studies
using hyperbaric oxygen breathing or drugs which could spe-
cifically radiosensitize hypoxic cells showed some positive
effects, and a meta-analysis of many of these early trials did show
a significant gain overall.64 However, a number of clinical studies
testing the potential benefit of drugs that were directly cytotoxic
to hypoxic cells have met with limited success when combined
with radiation.65 Partly, this may be due to the process of
reoxygenation (and cycling hypoxia) occurring between treat-
ment fractions, since pre-clinical studies did generally demon-
strate that the degree of sensitization achieved with the
radiosensitizer misonidazole declined to small values in the
range of fraction sizes (1.5–2.5Gy) generally used in radiation
therapy (Figure 5).66 However, another factor is likely to be the
heterogeneity in the levels of hypoxia in different tumours. None
of the studies of hypoxic radiosensitizers or hypoxic cytotoxins
have involved measurements of levels of hypoxia in the tumours
of all the patients included in the studies, thus it was impossible
to identify if the patients with the most hypoxic tumours did in
fact benefit from the drug treatment. This is particularly relevant
since small subpopulations in these studies, in whose tumours’
hypoxia was measured, did demonstrate benefit in the most
hypoxic tumours,67 and a derived genetic signature associated
with hypoxia-induced genes did show a correlation of the most
hypoxic tumours with benefit from combination of a radio-
sensitizing drug (nimorazole) with radiation treatment.68 The
combination of robust techniques for imaging hypoxia prior to
and during treatment with some form of genetic analysis would
be consistent with current moves towards more personalized
therapy. The supplementation of such genetic signatures with
genes associated with the ability of cells to survive hypoxic stress
or those that are associated with the environment of an hypoxic
stem cell niche could potentially be beneficial but will need to be
tested in future studies.69

Figure 3. (a) Surviving fraction at 2Gy (SF2 value) for primary cells derived from 88 different cervical cancers and (b) Kaplan–Meier

plot of local control for those cancers given radiation treatment based on the SF2 value being above or below the median value

(0.4). Reproduced from West et al36 with permission from Nature Publishing Group.
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CANCER STEM CELLS
Recent studies have highlighted the potential importance of stem
cell populations in tumours—CSCs.70,71 Such cells (CSCs) are
argued to be ultimately responsible for maintaining tumour
growth and for recurrence following therapy. They thus repre-
sent the critical population for predicting treatment outcome,
and their number and radiosensitivity are important for tumour
control by radiation therapy. The numbers of CSCs in tumours
have been reported to vary widely, and it has been demonstrated
in animal models that the number of (putative) stem cells cor-
relates with the single radiation dose required for tumour con-
trol (Figure 6).72,73 Similar results have been reported for
experimental studies in animal models using fractionated radi-
ation treatment74 and the expression of the stem-cell-related
marker CD44 has been reported to correlate with local control
in early laryngeal cancers treated with radiation.75 Interestingly,
in the studies of West et al76 discussed above, the plating effi-
ciency (PE) of the cells from cervical cancers was not found to
be as good a predictor of patient outcome as the SF2 value

determined in vitro. However, in vitro assays may not reflect well
the long-term potential for proliferation required of CSCs. In
studies of cells derived from spontaneous mouse mammary
tumours, there was a correlation of PE in vitro with the number
of cells required to be injected to successfully achieve 50%
transplant of the tumours (TD50 value), which is regarded as
the gold standard for assessing CSCs, but the in vitro PE was
greater than a factor of 10 higher than the in vivo TD50 value
(Figure 7).72 This is consistent with the data for murine bone
marrow, for which there are cells that can form colonies in vitro
as well as cells that can be classified as intermediate-term and
long-term stem cells in vivo.77,78

There are several data sets which support a higher radio-
resistance of CSCs than their progenitor cells in tumours.73,79 In
extensive experiments, an increase of the ex vivo fraction of
CD1331 cells, confirmed as CSC by transplantation assays, was
observed after in vivo irradiation of glioma xenografts, and
CD1331 cells were found to be more radiation resistant in vitro
(Figure 7).80 There was preferential activation of DNA damage
checkpoints in CD1331 vs CD1332 cells. Another resistance
mechanism may be related to higher levels of antioxidant mol-
ecules to deal with reactive oxygen species (ROS), a critical
mediator of radiation damage in cells.81 Compared with pro-
genitor cells, breast CSCs have been shown in vitro to contain
a lower level of ROS with higher expression of genes involved in
ROS scavenging. Moreover, the initially higher post-irradiation
clonogenic cell survival of breast CSC can be altered by phar-
macological modulation of the ROS levels. However, a higher
intrinsic radioresistance of CSC cannot be regarded as a general
phenomenon, since heterogeneity seems to exist between in-
dividual tumours of the same histology.82 A link between hyp-
oxia and putative stem cells has also been shown by an increase
in the fraction of CD1331 cells in brain tumour cells exposed to
hypoxia in vitro,83,84 and the preferential expression of hypoxia
induced factor (HIF)-2a- and HIF-regulated genes in glioma
stem cells.85 Specific microenvironmental factors such as cell–
cell interactions and genetically regulated cellular signals may
also be important determinants for stem cell maintenance and

Figure 5. The sensitizer enhancement ratio obtained when

different animal tumours were treated with fractionated

radiation doses in the presence or absence of misonidazole is

plotted as a function of the dose per fraction. The different

symbols represent data from different experiments. The

broken line is drawn to represent the trend of the data.

Modified from Hill66 with permission from Elsevier.

Figure 4. Tumour cell response to irradiation when cells are

removed from the tumour for analysis of clonogenic capacity

immediately after irradiation. The figure demonstrates: (1) the

effect of making the tumour hypoxic immediately before

irradiation (anoxic), (2) the effect of different levels of haemo-

globin in the blood of mice on the fraction of hypoxic cells in

tumours in air-breathing animals. Survival curve for fully oxic cells

is shown for comparison. Reproduced from Hill et al44 with

permission from British Institute of Radiology. Do, slope of the

survival curve; SE, standard error.
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survival. Different kinds of “niches” have been described that
contain a higher fraction of CSCs or maintain the stem-like
phenotype of tumour cells, including a hypoxic niche.86,87 A
hypoxic niche for CSCs would be expected to affect their relative
radiosensitivity, but if the level of hypoxia is consistent with
increased levels of HIF-1a and HIF-2a (approximately ,10–
20 mmHg) rather than the levels required for full hypoxia-
induced radioresistance (,1–5 mmHg),88 it may only cause
a small increase in radioresistance. However, as noted above,
oxygen sensitization relates to a competition between oxygen
and free sulfhydryls to interact with the radiation-induced
radical sites on damaged DNA,47 thus higher levels of SH-

containing antioxidant molecules such as glutathione or
cysteine in CSCs might enhance the protection associated
with intermediate levels of hypoxia.

Another aspect of the issue of radiation sensitivity of CSCs is the
finding that allowing tumour cells to grow in three-dimensional
cultures or “spheroids” can enhance the fraction of them which
express the phenotype of stem cells.89,90 This is of interest in the
context that such growth has also been noted to modify the
radiation sensitivity of cells (independent of oxygen effects).
Early work by Durand and Sutherland91 found that cells from
spheroids had an increased shoulder on their radiation survival

Figure 6. Relationship between tumour “stem-like” cells and tumour control for a group of first passage mouse mammary tumours

in C3H mice. (a) The relationship between the single radiation dose given under hypoxic conditions required to cure 50% of the

tumours (TCD50 value) and the number of cells required to be injected to generate growth of tumours in 50% of injection sites (TD50

value). The slope of the line is consistent with the radiation sensitivity of hypoxic cells. (b) The relationship between the in vitro

plating efficiency and the TD50 value for the same group of tumours. Modified from Hill and Milas72 with permission from Elsevier.

Figure 7. Reduced radiation sensitivity of stem cells. (a) Plating of CD1331 (stem cells) or CD1332 (progenitor cells) glioblastoma cells

irradiated or not with 5Gy and treated or not with debromohymenialdisine (DBH), a CHK1/2 inhibitor. The CD1331 cells show higher

plating after 5Gy than the CD1332 cells. (b) Alkaline comet assays of CD1331 or CD1332 cells from one of the cell lines at various times

after irradiation (IR) with 3Gy. (c) The quantification of the number of cells retaining comet tails (i.e. those that have not completed

DNA repair) at various times after irradiation. Reproduced from Bao et al80 with permission from Nature Publishing Group.
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curve and that this reflected increased repair capacity. This was
demonstrated to decay away over a period of about 24 h when
the cells were separated into single cells.92 A similar effect was ob-
served in vivo with cells growing as small colonies in the lung after
they were removed and assayed for radiosensitivity as a single-cell
suspension (Figure 8).93 More recently, increased radiation resistance
has been reported for cells growing in three-dimensional culture or
on various extracellular matrix substrates. This resistance has been
related to the changed expression of certain cell surface molecules
such as integrins and focal adhesion genes, which are involved in
cell–cell and cell–matrix interactions.94–97 An important difference
here may be the usual absence of serum in the medium used for
stem cell studies in spheroids, but it is unclear whether the change in
radiation sensitivity associated with growth in spheroids is directly
related to the “stemness” of the cells or is a parallel phenomenon.

A further concern with studies of CSCs is the increasing evi-
dence for plasticity of the CSC phenotype and the concept that
early progenitor cells may be able to regain stem cell properties,
thereby increasing the effective number of CSCs in the tu-
mour.98 Particularly important in the context of radiation
treatment is that back differentiation of progenitor cells into
stem cells may be induced by radiation, although the extent of
this phenomenon is currently uncertain.99–102 However, com-
parisons of the radiation dose required to cure xenografted tu-
mour cell lines in immune-deprived mice using single doses vs
fractionated treatments have given a reasonably good correla-
tion, suggesting that this effect may be limited.74 Further studies
are needed in this area, particularly with tumours directly from
patients and early patient-derived xenograft (PDX) models.
Studies of murine bone marrow stem cells have demonstrated
stem cell populations with intermediate-term or long-term
ability to repopulate the marrow,78 but little is known about
whether such populations may exist in tumours. The potential

role of genetic heterogeneity and genetic instability also needs to
be considered, since this could relate to selection of radiation-
resistant cell populations following treatment.

RADIATION-INDUCED DAMAGE
TO VASCULATURE
The potential role of radiation damage to vasculature in relation
to tumour response was presaged by early studies examining
what was called the “tumour bed effect”. The essence of these
observations was that transplanting a tumour into a site in an
animal that had been previously irradiated resulted in a re-
quirement for larger numbers of cells for transplantation and
slower growth of the subsequent tumour than was observed
when the same type and number of tumour cells were trans-
planted into a non-irradiated site.103 These observations were
also consistent with early reports that tumours regrowing after
large doses of irradiation had an initial phase of slower growth
before increasing14 or that regrowing tumours following radia-
tion treatments often grow more slowly than untreated tumours.
This latter observation led to recommendations that such a dif-
ference in growth rate could be built into analysis of growth
delay studies by calculating the delay in terms of the number of
tumour growth doublings rather than the absolute delay time.
Importantly, these effects were largely observed following quite
large doses of irradiation (10–20Gy1) and limited tumour-bed
effects were observed following lower doses. These observations
suggest that vascular damage could impact the ability of tumours
to regrow after irradiation and are consistent with the more
recent data on the effect of radiation-induced apoptosis in en-
dothelial cells on tumour response.104 Doses in excess of about
8–10Gy are needed to induce this effect.105

The concept that damage to tumour vasculature affects tumour
response was tested in a study that examined the single doses of

Figure 8. Increased shoulder on the survival curve for cells growing in contact in vivo. (a) The effect of holding cells obtained from an

intramuscular tumour (KHT sarcoma) in vitro for 2 or 24h before irradiation. The data points are from analyses of cells from individual

groups of tumours. (b) Results for irradiation of the cells as small colonies growing in the lung compared with a survival curve for

irradiation of the same cells growing in vitro. The tails on these curves show the development of hypoxia in these small lung colonies. The

individual points represent analysis of different groups of lungs. Reproduced from Hill et al93 with permission from Radiation Research.
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radiation required to control a series of transplantable tumours
growing in either nude or severe combined immunodeficiency
(SCID) mice.106 Since the scid mutation makes the cells of SCID
mice more radiation sensitive, it was argued that the vasculature
of tumours growing in these mice should be more sensitive than
those growing in nude mice and, consequently, that tumours
growing in SCID mice should require a lower dose for cure than
those growing in nude mice. This was not found to be the case,
thus it was concluded that damage to vasculature did not play
a significant role in tumour response to irradiation. Similar
results have also been reported recently for cure of a rodent
tumour model in which endothelial cells were sensitized by
a mutation in the Atm gene (which affects DNA repair).107

However, in this study, it was found that radiation-induced
growth delay was enhanced in the tumours with the more sen-
sitive endothelial cells, suggesting that increased damage to vas-
culature could affect the ability of the tumour to regrow over
time, although not the dose required for cure. Various possible
mechanisms of vascular repair that could occur over time include
the presence of circulating endothelial precursor cells, observa-
tions that certain tumour cells can transdifferentiate into endo-
thelial cells and the findings that there is an influx of BMDC
populations into irradiated tissue that can potentially help to
support the vasculature during recovery.7 Studies using a window-
chamber model have delineated the effects of large doses of
radiation on depleting vascular function, particularly the micro-
vasculature, in tumours and demonstrated the recovery of func-
tion a number of days later.108–110

Following the work of Folkman111 on the essential role of an-
giogenesis in tumour growth, there has been the development of
agents that target vasculature, both in terms of blocking an-
giogenesis and by direct disruption of tumour vasculature.112 A
number of antiangiogenic agents are approved for clinical ap-
plication,113 and some of these agents have been combined with
radiation treatment. To date, these studies have shown quite
limited benefits,114 and it is hypothesized that this may be due to
multiple angiogenesis pathways and/or differential ways in which
tumour vasculature may recover following radiation treatment,
primarily by angiogenesis or vasculogenesis. A major difference
between these two pathways is new vessels sprouting from
existing vessels (angiogenesis) vs the influx of cells from other
parts of the body or bone marrow, which can build or rebuild
vessels (vasculogenesis).115 Various vascular disrupting agents
are also in clinical development,116 and pre-clinical studies have
suggested that these agents have potential to be combined with
radiation, but apart from anecdotal observations in early stage
trials, it is unclear if these will prove to be any more beneficial
than antiangiogenic agents.

Recently, blocking vasculogenesis has been postulated to be
important for exploiting the damaging effects of radiation on the
vasculature.6 This has arisen partly from the view that angio-
genesis is largely an in-field phenomenon, and consequently,
since it should be impaired by the radiation treatment, it is likely
vasculogenesis that is responsible for vascular repair following
radiation treatment (Figure 9). This is consistent with the influx
of BMDC that occurs in irradiated tissues and the various
findings suggesting that BMDC may play a role in alleviating

vascular damage. Such cells have been observed to associate with
the outside of vessels in irradiated tissues in a manner similar to
pericytes, and it is been hypothesized that this helps to maintain
the structure of the vessels.7 In fact it has been recently reported
that mesenchymal stem cells from the bone marrow can dif-
ferentiate and act as progentors of pericytes (PPCs) in irradiated
tumours.117 Together with the presence of endothelial precursor
cells (EPCs) in the circulation (whether these cells derive from
the marrow is controversial), this influx of cells may help to
stabilize and repair irradiated vessels. The influx of cells from the
marrow has been demonstrated to be related to the production
of various chemokines including C-X-C motif chemokine 12
[CXCL12; also known as stromal cell derived factor 1 (SDF-1)]
and blocking the interaction of this chemokine with its receptors
C-X-C chemokine receptor type 4 (CXCR4) or C-X-C receptor
type 7 (CXCR7) has been reported to enhance tumour (glio-
blastoma) response to irradiation.6 We have obtained similar
results using ME180 cervical cancer xenografts growing ortho-
topically in mice, where it was found that blocking the in-
teraction of CXCR4 with CXCL12 using AMD3100 (Plerixafor)
increased the growth delay induced in the tumours by radiation
plus cisplatinum treatment (Figure 10). Plerixafor is a clinically
available drug that helps to mobilize bone marrow stem cells
into the circulation. Similar increases in tumour radiation re-
sponse have also been obtained by blocking HIF-1/2a expres-
sion, which is one factor that can cause the upregulation of
CXCL12 levels in irradiated tumours.118

OTHER AREAS OF CURRENT INTEREST
One area that is exciting particular current interest is the com-
bination of radiation therapy with immunotherapy. Attempts to
enhance the immune reactivity of tumours have been in-
vestigated for many years in experimental models,119 at least in
part due to the occasional observations of abscopal effects of
radiation in the clinic.120 This work also built initially on studies
with chemically induced tumours, which showed evidence of an
ability of the immune system to act against such tumours. Our
improved understanding of the evolution of the interaction of

Figure 9. Model for repair of vascular damage following

irradiation. Inactivation of angiogenesis by a large dose of

irradiation causes the tumour vasculature to rely on vasculo-

genesis for repair prior to tumour regrowth. Modified from

Brown6 with permission from British Institute of Radiology.
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the immune system with malignant cell populations with the
concept of “immunoediting” in three phases—elimination,
equilibrium and escape—during tumour development and
growth has led to a variety of different approaches, including
inhibition of T-regulatory cell activity, cytokine-based en-
hancement of T-cell activity, myeloid cell activators, checkpoint
blockade and various therapeutic vaccines.5,121,122 It is proposed
that increased exposure of immune effector cells to tumour
antigens due to the death of tumour cells following radiation
treatment has the potential to enhance immune reactivity. A
number of pre-clinical studies have reported improved response
of radiation-treated tumours and in some cases of metastatic
lesions not given radiation treatment.16 The recent success of the
use of immune checkpoint blockade in certain human cancers
has raised hopes that such an approach may be further enhanced
by radiation therapy and a number of clinical trials are under
way to investigate various aspects of this idea.122,123 In the
context of radiation treatment, studies of abscopal effects suggest
that the size of the radiation dose may be important for such
effects and that standard fractionation schedules (2Gy) may be
less effective than larger doses per fraction (6–8Gy) and that
these may be superior to bigger single doses (20Gy). The early
data also suggest that giving checkpoint inhibitors concurrently
with radiation is more effective than giving them after the end of
the radiation treatment, but further studies are needed to en-
hance our understanding in these areas.124,125 A separate but
related issue is the induction of bystander effects in which ir-
radiated cells may produce molecules that can induce damage in
closely located cells that are not directly irradiated.126 The role of
such effects in standard radiation therapy is currently unclear,
but they may play a role in radionuclide therapy.127

Another area of current interest is the use of SBRT treatments
involving one or a few large fractions. Such treatments have
largely been made possible by the improved ability to target
radiation treatment and have met with significant success par-
ticularly in treatment of small lung cancer lesions.128,129 The
success of such treatments is at least partially due to the fact that

much larger effective doses (based on linear-quadratic model-
ling) can be delivered than was previously possible, without
causing serious normal tissue side effects, and it is unclear if
other factors play a significantly different role than for standard
fractionation.130 One possible factor of importance may be the
role of hypoxia since pre-clinical studies have suggested that the
extent of reoxygenation is related to the degree of fractionation
as noted above. Whether SBRT schedules may be more appro-
priate for combination with hypoxia cell sensitizers or hypoxic
cytotoxins remains to be determined. As noted above, any such
studies will need to consider the level of hypoxia in the tumours
and select suitable patients based on measurements of this level.

FUTURE STUDIES
The recent decision by the National Cancer Institute/National
Institutes of Health to retire the NCI60 panel of cell lines, long
used to test new drugs, has highlighted concerns that drug
testing using long-term cell lines has limited predictability for
efficacy of such drugs in clinical application.131–133 These articles
have argued that evaluating new targets using established cell
lines is limited by the often poor correlation between re-
sponsiveness observed in cell lines vs that elicited in the patient.
It is argued that PDXs generated from fresh tumour specimens
are likely to recapitulate better the diversity of cancers and are
more reflective of the histopathology and properties of the
original tumour. There is also increasing evidence that PDXs can
recapitulate treatment responses of individual parental
tumours.134,135 Although these concerns were focused on drug
response, rather than radiation response, it is very likely that
they are relevant to studies of radiation effects in tumours.136

This may be particularly so in modern radio(chemo)therapy
with the widespread use of drugs in combination with radiation.
These issues may also be a concern for studies trying to identify
genetic changes in which large numbers of cancer cell lines are
examined for correlations between genetic or epigenetic ab-
normalities associated with radiation response.40 The findings of
such studies will need careful follow-up in appropriate models
before they can be used for personalizing radiation treatment
strategies. Recent studies in primary tumours have, however,
identified genomic instability as a driver of disease aggressive-
ness and treatment failure in both surgical and radiation treat-
ment of prostate cancer.137–139 Furthermore, it appears that
patient-specific measurements of tumour hypoxia and genomic
instability provide complementary information about clinical
outcome, with hypoxia being more or less important in some
genomic subgroups than in others,138 emphasizing the role of
the tumour microenvironment.

A further issue concerning suitable tumours for study relates to
the site of transplantation of the tumours. Subcutaneous or
intramuscular transplantation of tumours on a body extremity
has long been the preferred site for experimental radiation
studies in rodents due to simplicity and easy of access for
treatment without excessive normal tissue exposure; however, it
may not be the optimum site. Increasingly, orthotopic trans-
plantation is preferred since tumours growing subcutaneously
have clearly different properties such as reduced metastases,
increased encapsulation and, in many cases, increased levels of
necrosis as they grow, suggesting differences in vascular

Figure 10. Tumour response curves for an orthotopic cervix Ca

xenograft (ME180) treated with fractionated irradiation

(1532Gy given over 3 weeks) 1 cisplatinum (4mgkg21 given

at the beginning of every week) (Rad1Cis) or Rad1Cis 1

AMD 3100 (Plerixafor) given throughout the course of

treatment by infusion pump.
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function.140 Modern small animal irradiators, which provide
small defined focused beams and an ability to target the tumour
from different angles have reduced concerns about normal tissue
exposure and have largely obviated the need to use subcutaneous
transplantation sites.141–144 These current technologies are
allowing investigation of treatment strategies not previously
possible in small animals. They provide opportunities to test
different approaches with the attending possible differences in
the critical parameters affecting tumour treatment response,
particularly those related with the microenvironment. These
technologies also make it easier to address one downside to
using PDX model, i.e. the need to use immune-deprived ani-
mals, which limits the study of any immune interactions with
the radiation treatment. The availability of many genetically
modified mouse models of different cancers or other sponta-
neously arising rodent tumours can help to address this concern,
since they can be more easily treated in the site of origin, either
as the primary tumour or following orthotopic transplantation
in the same context as PDX models.136,145,146

In summary, the emerging evidence of the multiple factors that
may affect radiation response impacts the ability to select suit-
able tumours for personalized changes in radiation therapy
treatment. Such selection needs to encompass the microenvi-
ronmental factors associated with tumour growth and response
to treatment, as well as specific aspects of the radiation sensi-
tivity of the tumour (stem) cells, related to aetiological, genomic

and epigenomic factors. The increasing long-term survival of
patients with cancer has prompted greater concern about the
side effects of radiation/chemotherapy treatments raising the
issue of any associated changes on normal tissue response, since
these are a critical component of the therapeutic ratio. Such
issues may be partially addressed by improvements in the ac-
curacy of precision radiotherapy and particularly the use of
particle therapy (currently protons or carbon ions), which has
the potential to reduce the volume of normal tissue exposed as
well as exploiting the higher relative biological effectiveness as-
sociated with these radiations.147 However, parallel studies of
critical normal tissue responses will remain necessary as new
drugs are introduced in combination with radiation treatment as
part of personalized therapy.
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