

HHS Public Access

Author manuscript

Biochemistry. Author manuscript; available in PMC 2018 June 20.

Published in final edited form as:

Biochemistry. 2017 June 20; 56(24): 3158. doi:10.1021/acs.biochem.7b00502.

Correction to Biochemical and Spectroscopic Characterization of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme from Pseudomonas syringae pv. phaseolicola PK2

Salette Martinez and Robert P. Hausinger

An error in protein concentration determination resulted in specific activity, k_{cat} , k_{cat} / K_{m} , and extinction coefficient values that were 4-fold too large.

Page 5993. The specific activity should read 548 \pm 30 units/mg, which is comparable to the previously reported value of 660 units/mg. The $k_{\rm cat}$ values for 2OG, L-Arg (measuring ethylene), and L-Arg (measuring P5C) in Table 1 and the text should read 31 \pm 3, 32 \pm 1, and 0.73 \pm 0.08 min⁻¹, respectively. The corresponding $k_{\rm cat}/K_{\rm m}$ values should read 0.55, 0.87, and 0.015 μ M⁻¹ min⁻¹, respectively.

Pages 5994 and 5995. The kcat and $k_{\rm cat}/K_{\rm m}$ values for 2OA in Table 2 and the text should read $0.063 \pm 0.005~{\rm min^{-1}}$ and $0.002~{\rm \mu M^{-1}}~{\rm min^{-1}}$, respectively, and those for L-Arg should be $0.068 \pm 0.003~{\rm min^{-1}}$ and $0.001~{\rm \mu M^{-1}}~{\rm min^{-1}}$, respectively. The extinction coefficient at 515 nm for EFE/Fe(II)/2OG should read ~28 M⁻¹ cm⁻¹, and that for EFE/Fe(II)/2OG/L-Arg should read ~79 M⁻¹ cm⁻¹.

Page 5996. The extinction coefficient at 515 nm for EFE/Fe(II)/2OA should read \sim 26 M⁻¹ cm⁻¹, and that for EFE/Fe(II)/2OA/L-Arg should read \sim 39 M⁻¹ cm⁻¹. In Figures S2–S4 of the Supporting Information, the y-axes should be multiplied by 0.25.

These changes do not affect the conclusions of the paper regarding the dual-circuit mechanism of the ethylene-forming enzyme.