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Abstract

Event discovery aims to discover a temporal segment of interest, such as human behavior, actions 

or activities. Most approaches to event discovery within or between time series use supervised 

learning. This becomes problematic when some relevant event labels are unknown, are difficult to 

detect, or not all possible combinations of events have been anticipated. To overcome these 

problems, this paper explores Common Event Discovery (CED), a new problem that aims to 

discover common events of variable-length segments in an unsupervised manner. A potential 

solution to CED is searching over all possible pairs of segments, which would incur a prohibitive 

quartic cost. In this paper, we propose an efficient branch-and-bound (B&B) framework that 

avoids exhaustive search while guaranteeing a globally optimal solution. To this end, we derive 

novel bounding functions for various commonality measures and provide extensions to multiple 

commonality discovery and accelerated search. The B&B framework takes as input any 

multidimensional signal that can be quantified into histograms. A generalization of the framework 

can be readily applied to discover events at the same or different times (synchrony and event 

commonality, respectively). We consider extensions to video search and supervised event 

detection. The effectiveness of the B&B framework is evaluated in motion capture of deliberate 

behavior and in video of spontaneous facial behavior in diverse interpersonal contexts: interviews, 

small groups of young adults, and parent-infant face-to-face interaction.

1 Introduction

Event detection is a central topic in computer vision. Most approaches to event detection use 

one or another form of supervised learning. Labeled video from experts or naive annotators 

is used as training data, classifiers are trained, and then used to detect individual occurrences 

or pre-defined combinations of occurrences in new video. While supervised learning has 

well-known advantages for event detection, limitations might be noted. One, because 

accuracy scales with increases in the number of subjects for whom annotated video is 

available, sufficient numbers of training subjects are essential [12, 25]. With too few training 

subjects, supervised learning is under-powered. Two, unless an annotation scheme is 

comprehensive, important events may go unlabeled, unlearned, and ultimately undetected. 
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Three and perhaps most important, discovery of similar or matching events is limited to 

combinations of actions that have been specified in advance. Unanticipated events go 

unnoticed. To enable the discovery of novel recurring or matching events or patterns, 

unsupervised discovery is a promising option.

To detect recurring combinations of actions without pre-learned labels, this paper addresses 

Common Event Discovery (CED), a relatively unexplored problem that discovers common 

temporal events in variable-length segments in an unsupervised manner. The goal of CED is 

to detect pairs of segments that retain maximum visual commonality. CED is fully 

unsupervised, so no prior knowledge about events is required. We need not know what the 

common events are, how many there are, or when they may begin and end. Fig. 1 illustrates 

the concept of CED for video. In an exhaustive search of variable-length video segments, 

kissing and handshake event matches are discovered between videos.

A naive approach to CED would be to use a sliding window. That is, to exhaustively search 

all possible pairs of temporal segments and select pairs that have the highest similarities. 

Because the complexity of sliding window methods is quartic with the length of video, i.e., 
(m2n2) for two videos of lengths m and n, this cost would be computationally prohibitive in 

practice. Even in relatively short videos of 200 and 300 frames, there would be in excess of 

three billion possible matches to evaluate at different lengths and locations.

To meet the computational challenge, we propose to extend the Branch-and-Bound (B&B) 

method for CED. For supervised learning, B&B has proven an efficient technique to detect 

image patches [35] and video volumes [77]. Because previous bounding functions of B&B 

are designed for supervised detection or classification, which require pre-trained models, 

previous B&B methods could not be directly applied to CED. For this reason, we derive 

novel bounding functions for various commonality measures, including ℓ1/ℓ2 distance, 

intersection kernel, χ2 distance, cosine similarity, symmeterized cross entropy, and 

symmeterized KL-divergence.

For evaluation, we apply the proposed B&B to application of discovering events at the same 

or different times (synchrony and event commonality, respectively), and variable-length 

segment-based event detection. We conduct the experiments on three datasets of increasing 

complexity: Posed motion capture and unposed, spontaneous video of mothers and their 

infants and of young adults in small groups. We report distance and similarity metrics and 

compare discovery with expert annotations. Our main contributions are:

1. A new CED problem: Common Event Discovery (CED) in video is a relatively 

unexplored problem in computer vision. Results indicate that CED achieves 

moderate convergence with supervised approaches, and is able to identify novel 

patterns both within and between time series.

2. A novel, unsupervised B&B framework: With its novel bounding functions, 

the proposed B&B framework is computationally efficient and entirely general. 

It takes any signals that can be quantified into histograms and with minor 

modifications adapts readily to diverse applications. We consider four: common 
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event discovery, synchronous event discovery, video search, and supervised 

segment-based event detection.

A preliminary version of this work appeared as [13, 14]. In this paper, we integrate these two 

approaches with video search and supervised segment-based event detection, and provide a 

principal way of deriving bounding functions in the new, unsupervised framework. We also 

present new experiments on supervised event detection with comparisons to alternative 

methods. The rest of this paper is organized as follows. Sec. 2 discusses related work. Sec. 3 

presents the proposed B&B framework for common event discovery. Sec. 4 applies the 

framework to tasks of varying complexity. Sec. 5 extends the B&B framework to discovery 

among more than two videos and considers acceleration using warm-start strategy and 

parallelism. Sec. 6 provides evaluation on unsupervised and supervised tasks with 

unsynchronous and synchronous videos. Sec. 7 concludes the paper with future work.

2 Related Work

This paper is closely related to event detection methods, and unsupervised discovery in 

images and videos. Below we review each in turn.

2.1 Event detection

CED closely relates to event detection. Below we categorize prior art into supervised and 

unsupervised approaches, and discuss each in turn.

Supervised event detection: Supervised event detection is well-developed in computer 

vision. Events can be defined as temporal segments that involve either a single pattern of 

interest or an interaction between multiple patterns. For single-pattern event detection, 

popular examples include facial expression recognition [19,38,42,59,69], surveillance 

system [22], activity recognition [20, 23, 32, 56, 74, 75], and sign language recognition [15]. 

These approaches aim to detect a temporal pattern that associates with a pre-defined human 

behavior, action, or activity.

Events may also be defined as the co-occurrence of discrete actions or activities. For 

instance, Brand et al. [8] treated each arm as a process, and proposed to recognize gestures 

by modeling motion trajectories between multiple processes using coupled hidden Markov 

models (CHMMs). Following up, Oliver and Pentland [53] proposed a CHMM-based 

system, with pedestrian trajectories, to detect and recognize interactions between people, 

such as following another person, altering one’s path to encounter another, etc. Hongeng and 

Nevatia [30] proposed a hierarchical trajectory representation along with a temporal logic 

network to address complex interactions such as a “stealing” scenario. More recently, Liu et 
al. [39] proposed to recognize group behavior in AAL environment (nursing homes), 

considering a switch control module that alternates between two HMM-based methods built 

on motion and poses of individuals. Messinger et al. [45] focused on specific annotated 

social signals, i.e., smiling and gaze, and characterized the transition between behavior states 

by a maximum likelihood approach. Interested readers are referred to [10] for a review. 

These techniques, however, require adequate labeled training data, which can be time-

consuming to collect and not always available.
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Unsupervised event detection: The closest to our study is unsupervised approaches that 

require no annotations. For instance, Zheng et al. [78] presented a coordinated motion model 

to detect motion synchrony in a group of individuals such as fish schools and bird flocks. 

Zhou et al. [79] proposed aligned cluster analysis that extended spectral clustering to cluster 

time series, and applied the technique to discover facial events in unsupervised manner. On 

the other hand, time series motifs, defined as the closest pair of subsequences in one time 

series stream, can be discovered with a tractable exact algorithm [48], or an approximated 

algorithm that is capable of tackling never-ending streams [6]. Some attempts at measuring 

interactional synchrony include using face tracking and expressions [76], and rater-coding 

and pixel changes between adjacent frames [62]. Nayak et al. [52] presented iterated 

conditional modes to find most recurrent sign in all occurrences of sign language sentences.

Common events refer to two or more actions that are similar either in form or in timing. The 

meaning of similarity depends upon the choice of features, similarity metrics, and the 

threshold to accept similarity. While cluster analysis or mode finding could be considered a 

potential method, it is not well-suited for common event discovery for some reasons. First, 

cluster analysis and mode finding methods are designed for discovering the instances or 

values that appear most often; yet, common events could appear rarely. Second, cluster 

analysis and mode finding methods consider all instances to obtain statistical “groups” or 

“modes”; common events are a sparse subset of instances with high similarity. Finally, 

cluster analysis and mode finding methods for time series require temporal segmentation as 

a pro-processing procedure; common event discovery has no such requirement.

2.2 Unsupervised discovery

For static images, unsupervised discovery of re-occurring patterns has proven informative, 

driven by wide applications in co-segmentation [11, 40, 49], grammar learning [81], 

irregularity detection [7] and automatic tagging [61] have been driving forces. Discovery of 

common patterns in videos is a relatively unexplored problem. See Wang et al. [71] for a 

survey.

For video, to our best knowledge, this study is the first to discover common events in an 

unsupervised manner. Our work is inspired by recent success on using B&B for efficient 

search. Lampert et al. [35] proposed Efficient Subwindow Search (ESS) to find the optimal 

subimage that maximizes the Support Vector Machine score of a pre-trained classifier. Hoai 

et al. [29] combine SVM with dynamic programming for efficient temporal segmentation. 

Yuan et al. [77] generalized Lampert’s 4-D search to the 6-D Spatio-Temporal Branch-and-

Bound (STBB) search by incorporating time, to search for spatiotemporal volumes. 

However, unlike CED, these approaches are supervised and require a training stage.

Recently, there have been interests on temporal clustering algorithms for unsupervised 

discovery of human actions. Wang et al. [72] used deformable template matching of shape 

and context in static images to discover action classes. Si et al. [65] learned an event 

grammar by clustering event co-occurrence into a dictionary of atomic actions. Zhou et al. 
[80] combined spectral clustering and dynamic time warping to cluster time series, and 

applied it to learn taxonomies of facial expressions. Turaga et al. [68] used extensions of 

switching linear dynamical systems for clustering human actions in video sequences. 
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However, if we cluster two sequences that each has only one segment in common, previous 

clustering methods would likely need many clusters to find the common segments. In our 

case, CED focuses only on common segments and avoids clustering all video segments, 

which is computationally expensive and prone to local minimum.

Another unsupervised technique related to CED is motif detection [47, 48]. Time series 

motif algorithms find repeated patterns within a single sequence. Minnen et al. [47] 

discovered motifs as high-density regions in the space of all subsequences. Mueen and 

Keogh [48] further improved the motif discovery problem using an online technique, 

maintaining the exact motifs in real-time performance. Nevertheless, these work detects 

motifs within only one sequence, but CED considers two (or more) sequences. Moreover, it 

is unclear how these technique can be robust to noise.

Finally, CED is also related to the longest common subsequence (LCS) [27, 43, 54]. The 

LCS problem consists on finding the longest subsequence that is common to a set of 

sequences (often just two) [54,73]. Closer to our work is the algorithm for discovering 

longest consecutive common subsequence (LCCS) [73], which finds the longest contiguous 

part of original sequences (e.g., videos). However, different from CED, these approaches 

have a major limitation in that they find only identical subsequences, and hence are sensitive 

to noisy signals in realistic videos.

3 A Branch-and-Bound Framework for Common Event Discovery (CED)

This section describes our representation of time series, a formulation of CED, the proposed 

B&B framework, and the newly derived bounding functions that fit into the B&B 

framework.

3.1 Representation of time series

Bag of Temporal Words (BoTW) model [66, 77] has been shown effective in many video 

analysis problems, such as action recognition [9,28,36,41,58]. This section modifies the 

BoTW model to describe the static and dynamic information of a time series. Suppose a 

time series S can be described as a set of feature vectors {xj} for each frame j (see 

notation1). For instance, a feature vector can be facial shape in face videos or joint angles in 

motion capture videos. Given such features, we extract two types of information: 

observation info from a single frame, and interaction info from two consecutive frames. 

Denote  as a temporal segment between the b-th and the e-th frames, we 

consider a segment-level feature mapping:

(1)

1Bold capital letters denote a matrix X, bold lower-case letters a column vector x. xi represents the ith column of the matrix X. xij 
denotes the scalar in the ith row and jth column of the matrix X. All non-bold letters represent scalars.
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The observation info ϕobs(xj) describes the “pseudo” probability of xj belonging to a latent 

state, and the interaction info ϕint(xj) describes transition probability of states between two 

consecutive frames. To obtain ϕobs(xj), we performed k-means to find K centroids 

as the hidden states. Then, we computed ϕobs(xj) ∈ [0, 1]K with the k-th element computed 

as exp(−γ||xj − ck||2) and γ chosen as an inverse of the median distance of all samples to the 

centroids. An interaction info ϕint(xj) ∈ [0, 1]K2 is computed as:

(2)

where ⊗ denotes a Kronecker product of two observation vectors. As a result, each temporal 

segment is represented as an ℓ2-normalized feature vector of dimension (K2+K).

Because this representation accepts almost arbitrary features, any signal, even with negative 

values, that can be quantified into histograms can be directly applied. One notable benefit of 

the histogram representation is that it allows for fast recursive computation using the concept 

of integral image [70]. That is, the segment-level representation for S[b, e] can be computed 

as φS[b,e] = φS[1,e] − φS[1,b−1], which only costs (1) per evaluation. Based on the time series 

representation, we develop our approach below.

3.2 Problem formulation

To establish notion, we begin with two time series S1 and S2 with m and n frames 

respectively. The goal of common event discovery (CED) is to find two temporal segments 

with intervals [b1, e1] ⊆ [1, m] and [b2, e2] ⊆ [1, n] such that their visual commonality is 

maximally preserved. We formulate CED:

(3)

where f(·, ·) is a commonality measure between two time series representations, and ℓ 
controls the minimal length for each temporal segment to avoid a trivial solution. More 

details about f(·, ·) are discussed in Sec. 3.4. Problem (3) is non-convex and non-

differentiable, and thus standard convex optimization methods can not be directly applied. A 

naive solution is an exhaustive search over all possible locations for {b1, e1, b2, e2}. 

However, it leads to an algorithm with computational complexity (m2n2), which is 

prohibitive for regular videos with hundreds or thousands of frames. To address this issue, 

we introduce a branch-and-bound (B&B) framework to efficiently and globally solve (3).

Note that, although ℓ controls the minimal length of discovered temporal segments, the 

optimal solution can be of length greater than ℓ. For instance, consider two 1-D time series 

S1 = [1, 2, 2, 1] and S2 = [1, 1, 3]. Suppose we measure f(·, ·) by ℓ1 distance, where smaller 

values indicate higher commonality. Let the minimal length ℓ = 3, and represent their 3-bin 

histograms as φS1[1,4] = [2, 2, 0], φS1[1,3] = [1, 2, 0] and φS2 = [2, 0, 1]. Showing the distance 

fℓ1(φS1[1,4], φS2) = 3 < 4 = fℓ1 (φS1[1,3], φS2), we prove by contradiction.
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3.3 Optimization by Branch and Bound (B&B)

With a proper bounding function, B&B has been shown empirically more efficient than 

straight enumeration. B&B can eliminate regions that provably do not contain an optimal 

solution. This can be witnessed in many computer vision problems, e.g., object detection 

[35,37], video search [77], pose estimation [67] and optimal landmark detection [2]. Inspired 

by previous success, this section describes the proposed B&B framework that globally 

solves (3).

Problem interpretation: As depicted in Fig. 1, we interpret Problem (3) as searching a 

rectangle in the 2-D space formed by two time series. A rectangle r ≐ [b1, e1, b2, e2] in the 

search space indicates one candidate solution corresponding to S1[b1, e1] and S2[b2, e2]. To 

allow a more efficient representation for searching, we parameterize each step as searching 

over sets of candidate solutions. That is, we search over intervals instead of individual value 

for each parameter. Each parameter interval corresponds to a rectangle set R ≐ B1 × E1 × B2 

× E2 in the search space, where  and  indicate tuples of 

parameters ranging from frame lo to frame hi. Given the rectangle set R, we denote the 

longest and the shortest possible segments as Si+ and Si− respectively. We denote |R| as the 

number of rectangles in R. Fig. 2(a) shows an illustration of the notation.

The B&B framework: With the problem interpreted above, we describe here the proposed 

B&B framework. Algorithm 1 summarizes the procedure. To maintain the search process, 

we employ a priority queue denoted as Q. Each state in Q contains a rectangle set R, its 

upper bound u(R) and lower bound l(R). Each iteration starts by selecting a rectangle set R 

from the top state, which is defined as the state containing the minimal upper bound for f(·, 
·). Given this structure, the algorithm repeats a branch step and a bound step until R contains 

a unique entry.

In the branch step, each rectangle set R is split by its largest interval into two disjoint 

subsets. For example, suppose E2 is the largest interval, then R → R′ ∪ R″ where 

 and . In the bound step, we calculate the bounds 

for each rectangle set, and then update new rectangle sets and their bounds into Q. The 

computed bounds tell the worst possible values in f(·, ·), and therefore enable the algorithm 

to efficiently discard unlikely rectangle sets where their bounds are worse than the current 

best. The algorithm terminates when R contains a unique entry, i.e., |R|=1. Fig. 2(b)–(d) 

show an example of CED for discovering commonality between two 1-D time series. 

Despite that in the worst case the complexity of B&B can be still (m2n2), we will 

experimentally show that in general B&B is much more efficient than naive approaches.

3.4 Construction of bounding functions

One crucial aspect of the proposed B&B framework is the novel bounding functions for 

measuring commonality between two time series. The commonality measures can 

interchangeably be formed in terms of distance or similarity functions. Below we describe 

the conditions of bounding functions, and then construct the bounds.
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Conditions of bounding functions: Recall that R represents a rectangle set and r ≐ [bi, ei, 
bj, ej] represents a rectangle corresponding to two subsequences Si[bi, ei] and Sj[bj, ej]. 

Without loss of generality, we denote f(r) = f(φSi[bi,ei], φSj [bj,ej]) as the commonality measure 

between Si[bi, ei] and Sj[bj, ej]. To harness the B&B framework, we need to find an upper 

bound u(R) and a lower bound l(R) that bounds the values of f over a set of rectangles. A 

proper bounding function has to satisfy the conditions:

a.
, Bounding conditions

b.
,

c. u(R) = f(r) = l(R), if r is the only element in R.

Conditions a) and b) ensure that u(R) and l(R) appropriately bound all candidate solutions in 

R from above and from below, whereas c) guarantees the algorithm to converge to the 

optimal solution. With both lower and upper bounds, one can further prune the priority 

queue for speeding the search, i.e., eliminate rectangle sets R′ that satisfy l(R′) > u(R) [3].

Bound histogram bins: Let Si denote the i-th time series and can be represented as an 

unnormalized histogram hi or a normalized histogram ĥi using the representation in Sec. 

3.1. Denote  and  as the k-th bin of hi and ĥi, respectively. The normalized histogram is 

defined as , where .  is the Euclidean norm of 

histogram of Si. Considering histograms of Si+ and Si−, we can bound their k-th histogram 

bin:

(4)

Given a rectangle r=[b1, e1, b2, e2] and denote  and . For normalized 
histograms, we use the fact that |Si−| ≤ |Si[bi, ei]| ≤ |Si+|. Then we can rewrite (4) for 

bounding the normalized bins:

(5)

Below we use Eq. (5) to construct bounds for various commonality measures with 

normalized histograms, whereas those with unnormalized histograms can be likewise 

obtained.

Bound commonality measures: Given two time series Si and Sj represented as normalized 

histograms ĥi and ĥj respectively, we provide bounding functions for various commonality 

measures: ℓ1/ℓ2 distance, histogram intersection, χ2 distance, cosine similarity, symmetrized 

KL divergence, and symmetrized cross entropy. These measures have been widely applied to 

many tasks such as object recognition [21, 35] and action recognition [9,28,36,41,58].
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1) ℓ1/ℓ2 distance: Applying the min/max operators on (4), we get

(6)

Reordering the inequalities, we obtain the upper bound uk and lower bound lk for the k-th 

histogram bin:

(7)

Summing over all histogram bins, we obtain the bounds of the ℓ1 distance for two 

unnormalized histograms hi, hj:

(8)

For normalized histograms ĥi, ĥj, we obtain their bounds following same operations of (6) 

and (7):

(9)

where

(10)

Deriving bounds for ℓ2-distance can be written as:

(11)

where (·)+ = max(0, ·) is a non-negative operator.

2) Histogram intersection: Given two normalized histograms, we define their intersection 

distance by the Hilbert space representation [63]:
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(12)

Following (5) and (6), we obtain its lower bound and upper bound:

(13)

3) χ2 distance: The χ2 distance has been proven to be effective to measure distance between 

histograms. The χ2 distance is defined as:

(14)

Incorporating the ℓ1-bounds l̂k and ûk in (10) and the inequalities in (5), we obtain the lower 

bound and upper bound for fχ2 as:

(15)

(16)

4) Cosine similarity: Treating two normalized histograms ĥi and ĥj as two vectors in the 

inner product space, we can measure the similarity as their included cosine angle:

(17)

Using (4) and the fact that ||Si−||≤||Si[bi, ei]||≤||Si+||, we obtain the bounds:
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(18)

5) Symmetrized KL divergence: By definition, the normalized histograms ĥi and ĥj are non-

negative and sum to one, and thus can be interpreted as two discrete probability 

distributions. Their similarity can be measured using the symmetrized KL divergence:

(19)

where DKL(ĥi||ĥj) is the KL divergence of ĥj from ĥi. From (5) and that 

, we have . Then, we 

obtain the bounds for (19):

(20)

6) Symmetrized cross entropy: The symmetrized cross entropy [50] measures the average 

number of bins needed to identify an event by treating each other as the true distribution. 

Similar to KL divergence that treats ĥi and ĥj as two discrete probability distributions, the 

entropy function is written as:

(21)

Recall (5) and that , we obtain the bounds:

(22)

Above we have reported derivations for six commonly used measures. However, choice of 

one or another is influenced by a variety of factors, such as the nature of the data, problem, 

preferences of individual investigators, etc. In experiments, we picked ℓ1, χ2, and KL-

divergence because due to their popularity in computer vision applications. For instance, ℓ1-

distance is popular in retrieval problems (e.g., [27, 57]), χ2-distance in object recognition 
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(e.g., [21,35]), and KL-divergence in measuring similarity between distributions (e.g., 
Gaussian mixtures for image segmentation [26]).

Algorithm 2

Synchrony Discovery (SD)

4 Searching Scenarios

With the B&B framework and various bounds derived in the previous section, this section 

discusses unsupervised and supervised searching scenarios that can be readily applied. Fig. 3 

illustrates the searching scenarios in terms of different applications. The first application, 

common event discovery (CED), as has been discussed in Sec. 3, has the most general form 

and the broadest search space. Below we discuss others in turn.

4.1 Synchrony discovery (SD)

Social interaction plays an important and natural role in human behavior. This section 

presents that a slight modification of CED can result in a solution to discover interpersonal 
synchrony, which is referred as to two or more persons preforming common actions in 

overlapping video frames or segments. Fig. 3(b) illustrates the idea. Specifically, synchrony 

discovery searches for commonalities (or matched states) among two synchronized videos 

S1 and S2 with n frames each. Rewriting (3), we formulate SD as:SD

(23)

where f(·, ·) is the commonality measure, and T is a temporal offset that allows SD to 

discover commonalities within a T -frame temporal window, e.g., in mother-infant 

interaction, the infant could start smiling after the mother leads the smile for a few seconds. 

A naive solution has complexity (n4).
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Algorithm: For an event to be considered as a synchrony, they have to occur within a 

temporal neighborhood between two videos. For this reason, we only need to search within 

neighboring regions in the temporal search space. Unlike CED or ESS [35] that exhaustively 

prunes the search space to a unique solution, we constrain the space before the search 

begins. In specific, we slightly modify Algorithm 1 to solve SD. Let L = T + ℓ be the largest 

possible period to search, we initialize a priority queue Q with rectangle sets 

 and 

their associated bounds (see details in Sec. 3.4). These rectangle sets lie sparsely along the 

diagonal in the 2-D search space, and thus prune a large portion before the search. Once all 

rectangle sets are settled, the CED algorithm can be employed to find the exact optimum. 

Algorithm 2 summarizes the SD algorithm.

Fig. 4 shows a synthetic example of 1-D time series with two synchronies, denoted as red 

dots and green triangle, where one is a random permutation of another. SD discovered 3 

dyads with the convergence curve in (b), and histograms of each dyad in (c)~(e). Note that 

the interaction feature distinguishes the temporal consistency for the first and second 

discovery, maintaining a much smaller distance than the third discovery.

4.2 Video search (VS)

The CED algorithm can be also useful for efficient searching for a time series with similar 

content. That is, given a query time series, search for common temporal segments in a longer 

video in an efficient manner. Fig. 3(c) illustrates the idea. More formally, let Q be the query 

time series with length ℓ, we find in the target time series S by modifying (3) as:VS

(24)

The problem now becomes searching along one axis of the search space, but it is still non-

convex and non-differentiable. Nevertheless, Algorithm 1 can be directly applied to find the 

optimal solution by fixing the beginning and ending frame of the query time series. Note that 

we do not claim that VS is state-of-the-art method for video search, but just illustrate the 

versatility of the B&B framework. We refer interested readers to [31] for a more 

comprehensive survey.

4.3 Segment-based event detection (ED)

Efficiently detecting variable-length events in time series arises in a wide spectrum of 

applications, ranging from diseases, financial decline, speech recognition to video security. 

While event detection has been studied extensively in the literature, little attention has been 

paid to efficient inference from a pre-trained classifier. Fig. 3(d) illustrates the idea. Here we 

demonstrate event detection using an SVM decision function, which has been shown 

effective in many event detection tasks [29, 36, 58, 64].

Given the BoTW representation discussed in Sec. 3.1, we represent time series by their 

histograms. These histograms are used to train an SVM classifier to tell whether a new time 
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series contains an event of interest. To perform inference, temporal segmentation [36,58,64] 

or dynamic programming (DP) [29] is required. However, temporal segmentation for many 

real-world videos may not be trivial, and DP is computationally expensive to run it in large 

scale, especially when a time series is too long and relatively small portion of frames contain 

an interested event. Instead, we modify (3) for efficient inference of event detection:ED

(25)

where w is a pre-trained linear classifier with each element , and fw(·) = Σi αi〈·, 
hi〉 is the commonality measure based on the classifier. αi is the weight vector learned 

during SVM training.

Algorithm: The ED problem in (25) becomes supervised detection rather than unsupervised 

as mentioned in previous sections. The proposed bounds in Sec. 3.4 are thus inapplicable. 

Due to the summation property of BoTW in (1), we decompose the commonality measure 

into per-frame positive and negative contributions: 

 Denote the longest and the shortest possible 

searching segments as S+ and S− respectively, with slight abuse of notation, we reach the 

bounds:

(26)

where R = [b, e] corresponds to time series S, instead of previous definition over two time 

series. With the derived bounds, the CED algorithm can be directly applied for efficient 

inference of an event of interest.

4.4 Comparisons with related work

The proposed CED bear similarities and differences with several related work. Below we 

discuss in terms of problem definition and technical details.

Problem definition: Although CED achieves discovery via “matching” between 

subsequences, it has fundamental differences from standard matching problems. For 

instance, CED allows many-to-many mapping (e.g., Sec. 6.1.2), while standard matching 

algorithms assume one-to-one or one-to-many mapping. Moreover, a matching problem 

(e.g., graph matching or linear assignment) typically measures sample-wise similarity or 

distance to determine correspondence between one another, e.g., a feature vector on a node 

in a graph. CED uses bag-of-words representation that aggregates multiple samples (i.e., 
frames) into one vector, making the application of standard matching methods non-trivial.
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CED is also different from time warping (e.g., dynamic time warping [33]) and temporal 

clustering (e.g., aligned cluster analysis [79]). Time warping aims to find the optimal match 

between two given sequences that allow for stretched and compressed sections of the 

sequences. Given this goal, time warping assumes the beginning and the ending frames of 

the sequences to be fixed, and performs matching on entire sequence. Similarly, temporal 

clustering considers entire sequence in its objective, and hence is likely to include irrelevant 

temporal segments in one cluster. On the contrary, CED does not assume fixed beginning 

and ending frames, instead directly targeting at subsequence-subsequence matching, and 

thus enables a large portion of irrelevant information to be ignored.

Technical details: Technically, the proposed B&B framework is closely related to Efficient 

Subwindow Search (ESS) [35] and Spatio-Temporal B&B (STBB) [77]. However, they have 

at least three differences. (1) Learning framework: ESS and STBB are supervised techniques 

that seek for a confident region according to a pre-trained classifier. CED is unsupervised, 

and thus requires no prior knowledge. (2) Bounding functions: We design new bounding 

functions for the unsupervised CED problem. Moreover, ESS and STBB consider only 

upper bounds, while CED can incorporate both upper and lower bounds. (3) Search space: 

ESS and STBB search over spatial coordinates of an image or a spatiotemporal volume in a 

video, while CED focuses on temporal positions over time series.

For segment-based event detection (ED), we acknowledge its similarity with the version of 

STBB that omits spatial volume. Both address efficient search in a one-dimension time 

series, and differ in the following ways. (1) Objective: ED searches for segments with 

maximal, positive segment-based decision values. STBB uses a Kadane’s algorithm for 

frame-based max subvector search, which potentially lead to inferior detection performance 

because the max sum is usually found in an overly-large segment (as can be seen in Sec. 

6.3). (2) Searching strategy: ED prunes the search space to avoid evaluating segments where 

an AU is unlikely to occur; STBB evaluates every frame. (3) Inputs: ED can take the 

minimal length and normalized histograms as input, yet it is unclear for STBB to 

accommodate such input because of the linear nature of the Kadane’s algorithm.

5 Extensions to the B&B framework

Given the aforementioned CED algorithm and variants, this section describes extensions to 

discovery among multiple time series and discover multiple commonalities. Due to the 

special diagonal nature of SD, we also introduce its acceleration using warm start and 

parallelism. Fig. 5 illustrates these extensions.

Discovery among multiple time series: We have described above how the B&B framework 

can discover temporal commonalities within a pair of time series. Here we show that the 

framework can be directly extended to capture commonality among multiple time series. 

Specifically, we formulate the discovery among N sequences  by rewriting (3) as
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(27)

where F(·) is a similarity measure for a set of sequences and defined as the sum of pairwise 

similarities:

(28)

Given a rectangle set R and a time series pair (Si, Sj), we rewrite their pairwise bounds in 

Sec. 3.4 as  and . The bounds for F(·, ·) can be defined as:

(29)

Given this bound, Algos. 1 and 2 can be directly applied to discover commonalities among 

multiple time series.

Discover multiple commonalities: Multiple commonalities occur frequently in real videos, 

while the B&B framework only outputs one commonality at a time. Here, we introduce a 

strategy that prunes the search space to accelerate multiple commonality discovery. 

Specifically, we repeat the searching algorithm by passing the priority queue Q from the 

previous search to the next, and continue the process until a desired number of solutions is 

reached, or the returned commonality measure f(·, ·) is less than some threshold. The 

threshold can be also used for excluding undesired discoveries for the scenario where two 

sequences have no events in common. That is, if the first discovery does not pass a pre-

defined threshold, the algorithm returns empty because the subsequent discoveries perform 

no better than the first one. Fig. 5(a) illustrates an example of the pruning rule when E1 

overlaps with a previously discovered solution r. Because we want to exclude the same 

solution for the next discovery, the search region is updated by avoiding overlapping with 

previous solution. For axes of both S1 and S2, all R overlapped with r is updated using the 

same rule, or discarded if the updated R is empty, i.e., |R| = 0. The updated rectangle sets, 

along with their bounds, are then pushed back to Q before the next search.

This pruning strategy is simple yet very effective. Previously derived bounds remain valid 

because each updated set is a subset of R. In practice, it dramatically reduces |Q| for 

searching the next commonality. For example, in synchrony discovery of Fig. 4, |Q| is 

reduced 19% for the second search, and 25% for the third SD. Note that this pruning strategy 

differs from conventional detection tasks, e.g., [35, 77], which remove the whole spatial or 

temporal region for the next search. In CED, temporal segments can be many-to-many 
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matching, i.e., S1[b1, e1] can match multiple segments in S2 and vice versa. Thus, removing 

any segments from either time series would cause missing matches. This strategy allows us 

to maintain many-to-many matching.

SD with Warm start: Due to the B&B nature, SD exhibits poor worst-case behavior, 

leading to a complexity as high as an exhaustive search [51]. On the other hand, B&B can 

quickly identify the exact solution when a local neighborhood contains a clear optimum 

[35]. Given this motivation, we explore a “warm start” strategy that estimates an initial 

solution with high quality, and then initializes SD around the solution. Estimating an initial 

solution costs only few percentage of total iterations, and thus can effectively prune branches 

in the main SD algorithm. Fig. 5(b) illustrates the idea. Specifically, we run sliding window 

sampled with stepsize=10, sort the visited windows according their distances, and then 

determine a warm start region around the windows within the top one percentile. Then SD is 

performed only within an expanded neighborhood around the warm start region.

SD with Parallelism: The use of parallelism to speed up B&B algorithms has emerged as a 

way for large problems [24]. Based on the block-diagonal structure in the SD search space, 

this section describes an parallelized approach to scale up SD for longer time series. In 

specific, we divide SD into subproblems, and perform the SD algorithm solve each in 

parallel. Because each subproblem is smaller than the original one, the number of required 

iterations can be potentially reduced. As illustrated in Fig. 5(c), the original search space is 

divided into overlapping regions, where each can be solved using independent jobs on a 

cluster. The results are obtained as the top k rectangles collected from each subproblem. Due 

to the diagonal nature of SD in the search space, the final result is guaranteed to be a global 

solution. The proposed structure enables static overload distribution, leading to an easily 

programmable and efficient algorithm.

6 Experiments

In this section, we evaluated the effectiveness and efficiency of the proposed B&B 

framework under three applications: Common event discovery (Sec. 6.1), synchrony 

discovery (Sec. 6.2), and variable-length segment-based event detection (Sec. 6.3). As 

mentioned in Sec. 4, each application relates to a particular searching scenario of the B&B 

framework.

6.1 Common event discovery (CED)

In the first experiment, we evaluated CED on discovering common facial events, and 

discovering multiple common human actions. Table 1 shows the distribution of event lengths 

in respective experiments. The mixture of long and short events indicates a more realistic 

scenario of handling events with slow and fast motions. Specifically, for RU-FACS, we 

computed the distribution of AU12 events among the 4,950 sequence pairs. For mocap, the 

distribution was computed on a total of 25 actions from 45 sequence pairs (details below).

6.1.1 Discovering common facial events—This experiment evaluates the CED 

algorithm to find similar facial events in the RU-FACS dataset [5]. The RU-FACS dataset 

consists of digitized video of 34 young adults. They were recorded during an interview of 
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approximately 2 minutes duration in which they lied or told the truth in response to 

interviewer’s questions. Pose orientation was mostly frontal with moderate out-of-plane 

head motions. We selected the annotation of Action Unit (AU) 12 (i.e., mouth corner puller) 

from 15 subjects that had the most AU occurrence. We collected 100 video segments 

containing one AU 12 and other AUs, resulting in 4,950 pairs of video clips from different 

subjects. For each video, we represented features as the distances between the height of lips 

and teeth, angles for the mouth corners and SIFT descriptors in the points tracked with 

Active Appearance Models (AAM) [44] (see Fig. 7(a) for an illustration).

Accuracy evaluation: Because the CED problem is relatively new in computer vision, to 

our knowledge there is no baseline we could directly compare to. Instead, we compared 

against the state-of-the-art sequence matching approach: Longest common consecutive 

subsequence matching (LCCS) [73]. Observe that when the per-frame feature was quantized 

into a temporal word, the unsupervised CED problem can be naturally interpreted as an 

LCCS. Following LCCS that uses a 0–1 distance, we chose ℓ1-distance for CED. Note that 

the segment-based BoTW representation is not helpful for LCCS [73], because LCCS 

computes matches only at frame-level. The minimal length ℓ was fixed as the smaller length 

of ground truth segments for both LCCS and CED. Given a discovered solution r and a 

ground truth g that indicates a correct matching, we measured their overlap score [21] as 

. The higher the overlap score, the better the algorithm discovered the 

commonality. We considered r to be a correct discovery if the overlap score is greater than 

0.5.

Fig. 7(b) shows an example of a correct discovery of AU12. In this example, CED was able 

to correctly locate an AU 12 segment with overlap score greater than 0.8. Fig. 7(c) plots the 

precision-recall curves for the first discovery of CED and LCCS. We reported the average 

precision (AP) [21] and found CED outperformed LCCS by 0.15 points. Unlike LCCS that 

sought for identical subsequences, CED considered a distribution of temporal words present 

in two videos, and thus was able to more reliably capture common events in real-world 

videos. Fig. 7(d) shows the average precision of our approach under different parameters. 

We varied the minimal sequence length ℓ in {20, 25, …, 40}, and examined the AP of the t-
th result. As can be observed from the averaged AP (black dashed line), our B&B approach 

performed more stably across different combinations of ℓ and t. As a result, CED performed 

on average 16% higher AP than LCCS in discovering the common facial actions.

Efficiency evaluation: Using the above settings, we evaluated speedup of the CED 

algorithm against exhaustive sliding window (SW) approach, which was implemented 

following parameter settings in [35, 70]. Fig. 6(a) shows these settings denoted as SWi (i = 

1, 2, 3). Denote lengths of two time series as m,n and the minimal length for each sequence 

is ℓ, we set the maximal and minimal rectangle size for SW to be (m × n) and 

( ), respectively. To be independent of implementation, we measured the 

discovery speed as the number of evaluation for the bounding functions, referred as nCED 

and nSWi for CED and SWi respectively. Fig. 6(b) shows the histograms of the log ratio for 

nCED/nSWi. The smaller the value, the less times CED has to evaluate the distance function. 

As can be seen, although SW was parameterized to search only a subset of the search space, 
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CED searched the entire space yet still performed on average 6.18 times less evaluations 

than SW. To evaluate the discovery quality, we computed the distance difference measured 

by CED and SW, i.e., fℓ1 (rSWi) − fℓ1(rCED). The larger the difference, the lower quality of 

discovery SW got. Fig. 6(c) shows the histograms of such differences. One can observe that 

the differences are always greater than or equal to zero. This is because our method provably 

finds the global optimum. On the other hand, SW only performed a partial search according 

to its parameters, and thus was likely to reach larger distance than ours.

6.1.2 Discover multiple common human motions—This experiment attempts to 

discover multiple common actions using the CMU-Mocap dataset [1]. We used Subject 86 

that contains 14 long sequences with 1,200~2,600 frames and human action annotation [4]. 

Each sequence contains up to 10 actions (out of a total of 25) such as walk, jump, punch, 

etc. See Fig. 8(a) for an example. Each action ranged from 100 to 300 frames. We randomly 

selected 45 pairs of sequences and discovered common actions among each pair. Each action 

was represented by root position, orientation and relative joint angles, resulting in a 30-D 

feature vector. Note that this experiment is much more challenging than the previous one due 

to the large number of frames and more complicated actions. In this case, we excluded SW 

for comparison because it needs 1012 evaluations that is impractical.

Fig. 8(a) illustrates the first six common motions discovered by CED. A failure discovery is 

shown in the shaded number 6, which matches walk to kick. An explanation is because these 

actions were visually similar, resulting in similar features of joint angles. Fig. 8(b) shows the 

precision-recall curve for different values of overlapping threshold ε. Using ℓ1 distance, the 

curve decreases about 10% AP when the overlap score ε raises from 0.4 to 0.7, which 

implies that we can retain higher quality results without losing too much precision. Fig. 8(c) 

shows the average precision over various ℓ on the t-th discovered result. LCCS performed 

poorly to obtain long common subsequences because human motions have more variability 

than just one facial event (e.g., AU-12). On the contrary, CED used BoTW representation, 

and thus allowed more descriptive power for activity recognition. Fig. 8(d) shows the 

precision-recall curve evaluated with χ2 distance. Although the Mocap dataset is very 

challenging in terms of various motions and diverse sequence lengths, the CED algorithm 

with χ2 performed 30% better than ℓ1 and LCCS. It suggest χ2 is a more powerful 

commonality measure for histograms than ℓ1. Overall, using the χ2 measurement and ε = 

0.5, CED achieved 81% precision.

6.2 Synchrony discovery (SD)

This section evaluates SD for discovering synchronous behavior using three datasets of 

increasing diversity: Posed motion capture (Sec. 6.2.1) and unposed, spontaneous video of 

mothers and their infants (Sec. 6.2.2) and of young adults in a small social group (Sec. 

6.2.3).

6.2.1 Human actions—We first provide an objective evaluation the SD algorithm (Sec. 

6.1.2) on discovering human actions using the CMU Mocap dataset [1]. Mocap data 

provides high-degree reliability in measurement and serves as an ideal target for a clean-cut 

test of our method. To mimic a scenario for SD, we grouped the sequences into 7 pairs as the 
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ones containing similar number of actions, and trimmed each action to up to 200 frames. SD 

was performed using ℓ = 120 and T = 50. Denote the video index set as , we evaluated the 

discovery performance by the recurrence consistency [17]:

(30)

where I(X) is an indicator function returning 1 if the statement X is true and 0 otherwise, 

and  denote the c-th class annotation corresponding to the p-th frame in Si.

Table 2 summarizes the SD results compared with the baseline sliding window (SW). 

Results are reported using χ2-distance and the recurrent consistency. A threshold of 0.012 

was manually set to discard discovery with large distance. We ran SW with step sizes 5 and 

10, and marked the windows with the minimal distance as  and , respectively. 

Among all, SD discovers all results found by SW. To understand how well a prediction by 

chance can be, all windows were collected to report average μ and standard deviation σ. As 

can be seen, on average, a randomly selected synchrony can result in large distance over 100 

and low quality below 0.3. SD maintained an exact minimal distance with good qualities as 

the ones found by exhaustive SW. Note that, because SD is totally unsupervised, the 

synchrony with minimal distance may not necessarily guarantee the highest quality.

Fig. 9 shows the speed up of SD against exhaustive SW. SD and its extensions demonstrated 

an improved efficiency over SW. In some cases, SDΔ improved search speed by a large 

margin, e.g., in (01,11) with χ2-distance reached a speed boost over 200 times. Across all 

metrics, the speed up of SDΔ was less obvious with symmetrized KL divergence. SD# was 

implemented on a 4-core machine; an extension to larger clusters is possible yet beyond the 

scope of this study. On average, SD# consistently accelerated the original SD due to 

parallelism.

Fig. 10 shows the qualitative results on all 7 pairs, annotated with ground truth and the 

discovered synchronies. As can be seen, SD allows to discover multiple synchronies with 

varying lengths. Although some discovered synchronies contain disagreed action labels, one 

can observe that the discoveries share reasonable visual similarity, e.g., in pair (9,10), the 

“look around” action in sequence 9 was performed when the subject was seated, sharing the 

similarity with the “sit” action in sequence 10.

6.2.2 Parent-infant interaction—Parent-infant interaction is critical for early social 

development. This section attempts to characterize their affective engagement by exploring 

the moments where the behavior of both the parent and the infant are correlated. We 

performed this experiment on the mother-infant interaction dataset [46]. Participants were 6 

ethnically diverse 6-month-old infants and their parents (5 mothers, 1 father). Infants were 

positioned in an infant-seat facing their parent who was seated in front of them. We used 3 

minutes of normal interaction where the parent plays with the infant as they might do at 

home. Because this dataset was not fully annotated, we only evaluated the results 

quantitatively. After the faces were tracked, we used only the shape features because the 

Chu et al. Page 20

Int J Comput Vis. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



appearance of adults and infants are different. Throughout this experiment, we set ℓ = 80 and 

T = 40.

Fig. 11 illustrates three discovered synchronies among all parent-infant pairs. As can be 

seen, many synchronies were discovered as the moments when both infants and parents 

exhibit strong smiles, serving as a building block of early interaction [46]. Besides smiles, a 

few synchronies showed strong engagement in their mutual attention, such as the second 

synchrony of group ➀ where the infant cried after the mother showed a sad face, and the 

second synchrony of the second group where the mother stuck her tongue out after the infant 

did so. These interactive patterns offered solid evidence of a positive association between 

infants and their parents.

6.2.3 Social group interaction—This experiment investigates discovery of synchronies 

in social group interaction. We used the GFT dataset [60] that consists of 720 participants 

recorded during group-formation tasks. Previously unacquainted participants sat together in 

groups of 3 at a round table for 30 minutes while getting to know each other. We used 2 

minutes of videos from 48 participants, containing 6 groups of two subjects and 12 groups 

of three subjects. SD was performed to discover dyads among groups of two, and triads 
among groups of three. Each video was tracked with 49 facial landmarks using IntraFace 

[16]. We represented each face by concatenating appearance features (SIFT) and shape 

features (49 landmarks). In this dataset, we used annotations of AUs (10,12,14,15,17,23,24) 

that appear most frequently.

Fig. 12 shows qualitative results of the discovered dyadic and triadic synchronies among two 

social groups. Each column indicates a discovery among each group. As can be observed, 

most common events are discovered as concurrent smiles, talk, or silent moments where all 

participants remained neutral. Because the interaction was recorded during a drinking 

section, the SD algorithm discovers more frequent concurring smiles than other behavior. 

This discovery is particular interesting for complying with the findings in [60] that alcohol 

facilitates bonding during group formation. It is noticeable that the SD algorithm requires no 

human supervision, yet can identify meaningful patterns (e.g., smiles) occult to supervised 

approaches.

Quantitatively, we examined SD with varying ℓ, i.e., ℓ ∈ {30, 60, 120}, resulting in 

synchronies that last at least 1, 2 and 4 seconds; we set the synchrony offset T = 30 (1 

second). Baseline SW was performed using step sizes 5 and 10. Symmetrized KL divergence 

was used as the distance function. We evaluated the distance and quality among the optimal 

window discovered, as well as the average and standard deviation among all windows to tell 

a discovery by chance. Fig. 13 shows the averaged KL divergence and recurrent consistency 

(Eq. (30)) among top 10 discovered dyadic and triadic synchronies. As can be seen, SD 

always guarantees the lowest divergence because of its nature to find the exact optimum. 

The recurrence quality decreases while ℓ grows, showing that finding a synchrony with 

longer period while maintaining good quality is harder than finding one with shorter period. 

Note that, although the discover quality is not guaranteed in an unsupervised discovery, SD 

consistently maintained the best discovery quality across various lengths. This result 

illustrates the power of our unsupervised method that agrees with that of supervised labels.
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6.3 Segment-based Event detection (ED)

This experiment evaluates performance and computation time of segment-based event 

detection on the GFT dataset [60], as used in Sec. 6.2.3. The task is to localize AU events 

using a pre-trained segment-based linear SVM classifier. The AUs of interest are 1, 2, 6, 7, 

10, 11, 12, 14, 15, 17, 23, and 24. Unlike previous studies that require temporal 

segmentation [36, 58, 64], we focused on joint detection and segmentation of a temporal 

event. Specifically, we compared ED with a hybrid SVM-HMM [34] (denoted HMM 

hereafter for simplicity) and the state-of-the-art event detection algorithms, including a 

dynamic programming (DP) approach [29] and the Kadane’s algorithm used in STBB [77]. 

We trained a frame-based SVM for each AU, and used the same SVM for the detection task 

on different methods. For SVM-HMM, the HMM has two states, i.e., activation or 

inactivation of an AU. The state transition probabilities and the a-priori probability were 

estimated by the frequency of an AU activation in the training data. The emission 

probabilities of HMM was computed based on normalized SVM output using Platt’s scaling 

[55]. During test, the most likely AU state path for each video was determined by a standard 

Viterbi algorithm, which has a complexity (|s|2 × N), where |s| = 2 is the number of states 

and N is the number of frames of a test video. For both ED and DP, we set the minimal 

discovery length ℓ = 30. For DP, we set the maximal segment lengths in {100, 150, 200}, 

denoted as DP 100, DP 150, and DP 200, respectively. For evaluation, we used the standard 

F1 score and the F1-event metric [18] defined as , where EP and ER stand 

for event-based precision and event-based recall. Unlike a standard F1 score, F1-event 

focuses on capturing the temporal consistency of prediction. An event-level agreement holds 

if the overlap of two temporal segments is above a certain threshold.

Fig. 14(a) shows the F1-event curve w.r.t. event overlapping thresholds. Overall DP and ED 

performed better than the baseline HMM. The performance of DP dropped when threshold 

was greater than 0.6, which implies DP missed highly overlapped events during detection. 

This is because DP performed exhaustive search, and thus requested a maximal search 

length for computational feasibility. On the other hand, ED by construction excludes such 

limitation. Fig. 14(b) shows the running time on a 2.8GHz dual core CPU machine by 

comparing ED v.s. DP. Note that we omitted STBB and HMM in Fig. 14(b) because the time 

difference between ED and STBB/HMM is insignificant under this scale. Each detected AU 

event is plotted in terms of the running time and sampled video length (#frame). As can be 

seen, the computation time for DP increased linearly with video length, while ED 

maintained invariance of video length. These results suggest that ED was able to perform 

comparably with significantly improved efficiency for event detection.

Figs. 14(c) and (d) show the trend of running time v.s. F1-event and F1 score across ED and 

all alternative methods. Each marker indicates a detection result for a sequence. For 

visualization purpose, we randomly picked 120 sequences to include in this figure. The 

quantitative evaluation on the entire dataset is shown in Table 3. As can be seen in Figs. 

14(c) and (d), STBB and HMM performed significantly faster than others due to their linear 

nature in computation. In general, for F1-event and F1, STBB led to suboptimal 

performance because events with activation are usually found in over-length segments. Fig. 

14(e) illustrates detection results of three subjects. In all cases, it reveals the over-length 
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detection of STBB due to its consideration of max sub-vectors. As can be seen, STBB tends 

to include a large temporal window so that the sum of decision values is maximized. HMM 

took SVM outputs as emission probability, and thus performs similarly as a frame-based 

SVM. HMM tends to generate lower F1-event, as also suggested in Figs. 14(a). This is 

because of the memoryless property considered in the Markov chain, i.e., the future state 

only depends upon the present state. On the contrary, ED and DP produced more visually 

smooth results due to their segment-based detection. Similar to Fig. 14(b), we observed that, 

with comparable performance, ED is consistently faster over DP with different parameters.

Table 3 summarizes the comparison between ED and alternative methods in terms of 

running time, F1-Event and F1 scores averaged over sequences in the entire dataset. As what 

we have observed in Fig. 14, STBB had the smallest running time yet with the worst 

performance. Among the top performing DP and ED, without losing much accuracy, ED 

improved the speed against DP from about 6x to 14x.

7 Conclusion and Future Work

Using Branch-and-Bound (B&B), we introduced an unsupervised approach to common 

event discovery in segments of variable length. We derived novel bounding functions with 

which the B&B framework guarantees a globally optimal solution in an empirically efficient 

manner. With slight modifications the B&B framework can be readily applied to common 

event discovery, synchrony discovery, video search, and supervised event detection. The 

searching procedure can be extended to discovery among multiple time series, discovery of 

multiple commonalities, and can be accelerated with warm start and parallelism. We 

evaluated the effectiveness of the B&B framework in motion capture of deliberate whole-

body behavior and in video of spontaneous facial behavior in interviews, small groups of 

young adults, and parent-infant face-to-face interaction.

Future work includes promoting the scalability of the proposed algorithm. Given current 

pairwise design, the computational complexity grows quadratically with the number of input 

sequences. One direction is to pursue parallelism, i.e., compute pairwise bounds 

independently using clusters or multi-threading, and then aggregate these bounds into a 

overall score.
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Fig. 1. 
An illustration of Common Event Discovery (CED). Given two videos, common events (kiss 
and handshake) of different lengths in the two videos are discovered in an unsupervised 

manner.
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Fig. 2. 
An example of CED on two 1-D time series: (a) An illustration of our notation (see Sec. 

3.3). (b) Searching intervals at iterations (it) #1, #300 and #1181 over sequences S1 and S2. 

Commonalities S1[b1, e1] and S2[b2, e2] are discovered at convergence (#1811). (c) 

Convergence curve w.r.t. bounding value and #it. (d) Histograms of the discovered 

commonalities. In this example, a naive sliding window approach needs more than 5 million 
evaluations, while the proposed B&B method converges at iteration 1181 using ℓ = 20.
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Fig. 3. 
Searching scenarios readily applicable to the proposed B&B framework: (a) Common event 

discovery (CED), (b) synchrony discovery (SD), (c) video search (VS), and (d) supervised 

segment-based event detection (ED). Green area indicates the search space; an orange box 

indicates a candidate solution r. (see Sec. 4 for details)
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Fig. 4. 
An example of SD on two 1-D time series using ℓ=13 and T = 5: (a) Top 3 discovred 

synchronies at different iterations; exhaustive search takes 39151 iterations. (b) The 

convergence curve w.r.t. bounding value and #iter. (c)~(e) Discovered synchronies and their 

histograms, where blue and green bars indicate the segment features ϕobs and ϕint, 

respectively. ϕint is 10X magnified for display purpose. The ℓ1 distances between the three 

histogram pairs are 6.3e-8, 1.5e-7, and 5.8e-2, respectively.
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Fig. 5. 
Illustration of extensions: (a) pruning rules applied to multiple-commonality discovery, (b) 

SD with warm start, and (c) SD with parallelism.
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Fig. 6. 
Efficiency evaluation between CED and alternative sliding window (SW) approach. (a) 

Parameter settings [35,70]: size-ratio (SR), stepsize (SS), and aspect ratios (AR). (b) 

Histogram of ratio of #evaluation: . Red vertical lines indicate the average. Light 

green bars show CED performs less evaluations than SW; dark blue bars represent the 

opposite. (c) Histogram of difference between resulting commonality measure: fℓ1 (rSWi) − 

fℓ1 (rCED).
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Fig. 7. 
Results on discovering common facial actions: (a) Facial features extracted from the tracked 

points. (b) An example of common discovered facial events (indicated by dashed-line 

rectangles). (c)(d) Accuracy evaluation on precision-recall and average precision (AP).
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Fig. 8. 
(a) Top six discovered common motions. The numbers indicate discovered commonalities. 

Note that the shaded star (number 6) indicates an incorrect discovery that matched walk and 

kick. (b)(c) Precision-recall and average precision on ℓ1 distance. (d) Precision-recall on χ2 

distance.
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Fig. 9. 
Speedup of SD against sliding window (SW) on CMU-Mocap. All 7 pairs of sequences from 

subject 86 were evaluated. The speedup was computed as the relative number of evaluations 

NSW/NSD using ℓ1, χ2 and symmetrized KL divergence.
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Fig. 10. 
Discovered synchronies on 7 pairs of Subject 86 in CMU-Mocap dataset. Each pair is 

annotated with ground truth (colorful bars, each represents an action), and synchronies 

discovered by our method (shaded numbers). Synchronies with disagreed action labels are 

visualized.

Chu et al. Page 36

Int J Comput Vis. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Discovered sychronies from 6 groups of parent-infant interaction. Each column indicates a 

discovery and its #frame.
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Fig. 12. 
Top 10 discovered synchronies from groups 113 and 128 in the GFT dataset. Each column 

indicates a discovered synchrony and its frame number. The SD algorithm correctly matched 

the states of smiling, talking and silent.
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Fig. 13. 
Analysis on top 10 discovered dyadic and triadic synchronies of the GFT dataset. SW 

denoted with ★ indicates the optimal windows discovered, and without ★ indicates the 

average and standard deviation over all visited windows.
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Fig. 14. 
Comparison between ED and alternative approaches in terms of: (a) F1-event over 12 AUs, 

(b) running time v.s. video length, (c) F1-event v.s. time, (d) F1 v.s. time, and (e) comparison 

between ground truth and detection results on 3 subjects.
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Table 3

Comparison between ED and alternative methods in terms of running time, F1-event (F1E), and F1 on the 

supervised AU detection task.

Method Time (sec) F1E F1

STBB 0.003±0.002 0.297±0.256 0.420±0.270

HMM 0.090±0.049 0.405±0.209 0.698±0.182

DP100 3.987±2.184 0.586±0.188 0.756±0.179

DP150 6.907±3.720 0.586±0.188 0.756±0.179

DP200 9.332±5.268 0.586±0.188 0.756±0.179

ED (ours) 0.668±0.873 0.572±0.197 0.753±0.165
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	2.1 Event detection
	Supervised event detection: Supervised event detection is well-developed in computer vision. Events can be defined as temporal segments that involve either a single pattern of interest or an interaction between multiple patterns. For single-pattern event detection, popular examples include facial expression recognition [19,38,42,59,69], surveillance system [22], activity recognition [20, 23, 32, 56, 74, 75], and sign language recognition [15]. These approaches aim to detect a temporal pattern that associates with a pre-defined human behavior, action, or activity.Events may also be defined as the co-occurrence of discrete actions or activities. For instance, Brand et al. [8] treated each arm as a process, and proposed to recognize gestures by modeling motion trajectories between multiple processes using coupled hidden Markov models (CHMMs). Following up, Oliver and Pentland [53] proposed a CHMM-based system, with pedestrian trajectories, to detect and recognize interactions between people, such as following another person, altering one’s path to encounter another, etc. Hongeng and Nevatia [30] proposed a hierarchical trajectory representation along with a temporal logic network to address complex interactions such as a “stealing” scenario. More recently, Liu et al. [39] proposed to recognize group behavior in AAL environment (nursing homes), considering a switch control module that alternates between two HMM-based methods built on motion and poses of individuals. Messinger et al. [45] focused on specific annotated social signals, i.e., smiling and gaze, and characterized the transition between behavior states by a maximum likelihood approach. Interested readers are referred to [10] for a review. These techniques, however, require adequate labeled training data, which can be time-consuming to collect and not always available.Unsupervised event detection: The closest to our study is unsupervised approaches that require no annotations. For instance, Zheng et al. [78] presented a coordinated motion model to detect motion synchrony in a group of individuals such as fish schools and bird flocks. Zhou et al. [79] proposed aligned cluster analysis that extended spectral clustering to cluster time series, and applied the technique to discover facial events in unsupervised manner. On the other hand, time series motifs, defined as the closest pair of subsequences in one time series stream, can be discovered with a tractable exact algorithm [48], or an approximated algorithm that is capable of tackling never-ending streams [6]. Some attempts at measuring interactional synchrony include using face tracking and expressions [76], and rater-coding and pixel changes between adjacent frames [62]. Nayak et al. [52] presented iterated conditional modes to find most recurrent sign in all occurrences of sign language sentences.Common events refer to two or more actions that are similar either in form or in timing. The meaning of similarity depends upon the choice of features, similarity metrics, and the threshold to accept similarity. While cluster analysis or mode finding could be considered a potential method, it is not well-suited for common event discovery for some reasons. First, cluster analysis and mode finding methods are designed for discovering the instances or values that appear most often; yet, common events could appear rarely. Second, cluster analysis and mode finding methods consider all instances to obtain statistical “groups” or “modes”; common events are a sparse subset of instances with high similarity. Finally, cluster analysis and mode finding methods for time series require temporal segmentation as a pro-processing procedure; common event discovery has no such requirement.
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	3.2 Problem formulation
	3.3 Optimization by Branch and Bound (B&B)
	Problem interpretation: As depicted in Fig. 1, we interpret Problem (3) as searching a rectangle in the 2-D space formed by two time series. A rectangle r ≐ [b1, e1, b2, e2] in the search space indicates one candidate solution corresponding to S1[b1, e1] and S2[b2, e2]. To allow a more efficient representation for searching, we parameterize each step as searching over sets of candidate solutions. That is, we search over intervals instead of individual value for each parameter. Each parameter interval corresponds to a rectangle set R ≐ B1 × E1 × B2 × E2 in the search space, where  and  indicate tuples of parameters ranging from frame lo to frame hi. Given the rectangle set R, we denote the longest and the shortest possible segments as Si+ and Si− respectively. We denote |R| as the number of rectangles in R. Fig. 2(a) shows an illustration of the notation.The B&B framework: With the problem interpreted above, we describe here the proposed B&B framework. Algorithm 1 summarizes the procedure. To maintain the search process, we employ a priority queue denoted as Q. Each state in Q contains a rectangle set R, its upper bound u(R) and lower bound l(R). Each iteration starts by selecting a rectangle set R from the top state, which is defined as the state containing the minimal upper bound for f(·, ·). Given this structure, the algorithm repeats a branch step and a bound step until R contains a unique entry.In the branch step, each rectangle set R is split by its largest interval into two disjoint subsets. For example, suppose E2 is the largest interval, then R → R′ ∪ R″ where  and . In the bound step, we calculate the bounds for each rectangle set, and then update new rectangle sets and their bounds into Q. The computed bounds tell the worst possible values in f(·, ·), and therefore enable the algorithm to efficiently discard unlikely rectangle sets where their bounds are worse than the current best. The algorithm terminates when R contains a unique entry, i.e., |R|=1. Fig. 2(b)–(d) show an example of CED for discovering commonality between two 1-D time series. Despite that in the worst case the complexity of B&B can be still 
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(m2n2), we will experimentally show that in general B&B is much more efficient than naive approaches.
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	3.4 Construction of bounding functions
	Conditions of bounding functions: Recall that R represents a rectangle set and r ≐ [bi, ei, bj, ej] represents a rectangle corresponding to two subsequences Si[bi, ei] and Sj[bj, ej]. Without loss of generality, we denote f(r) = f(φSi[bi,ei], φSj [bj,ej]) as the commonality measure between Si[bi, ei] and Sj[bj, ej]. To harness the B&B framework, we need to find an upper bound u(R) and a lower bound l(R) that bounds the values of f over a set of rectangles. A proper bounding function has to satisfy the conditions:a., Bounding conditionsb.,c.u(R) = f(r) = l(R), if r is the only element in R.Conditions a) and b) ensure that u(R) and l(R) appropriately bound all candidate solutions in R from above and from below, whereas c) guarantees the algorithm to converge to the optimal solution. With both lower and upper bounds, one can further prune the priority queue for speeding the search, i.e., eliminate rectangle sets R′ that satisfy l(R′) > u(R) [3].Bound histogram bins: Let Si denote the i-th time series and can be represented as an unnormalized histogram hi or a normalized histogram ĥi using the representation in Sec. 3.1. Denote  and  as the k-th bin of hi and ĥi, respectively. The normalized histogram is defined as , where .  is the Euclidean norm of histogram of Si. Considering histograms of Si+ and Si−, we can bound their k-th histogram bin:(4)Given a rectangle r=[b1, e1, b2, e2] and denote  and . For normalized histograms, we use the fact that |Si−| ≤ |Si[bi, ei]| ≤ |Si+|. Then we can rewrite (4) for bounding the normalized bins:(5)Below we use Eq. (5) to construct bounds for various commonality measures with normalized histograms, whereas those with unnormalized histograms can be likewise obtained.Bound commonality measures: Given two time series Si and Sj represented as normalized histograms ĥi and ĥj respectively, we provide bounding functions for various commonality measures: ℓ1/ℓ2 distance, histogram intersection, χ2 distance, cosine similarity, symmetrized KL divergence, and symmetrized cross entropy. These measures have been widely applied to many tasks such as object recognition [21, 35] and action recognition [9,28,36,41,58].1) ℓ1/ℓ2 distance: Applying the min/max operators on (4), we get(6)Reordering the inequalities, we obtain the upper bound uk and lower bound lk for the k-th histogram bin:(7)Summing over all histogram bins, we obtain the bounds of the ℓ1 distance for two unnormalized histograms hi, hj:(8)For normalized histograms ĥi, ĥj, we obtain their bounds following same operations of (6) and (7):(9)where(10)Deriving bounds for ℓ2-distance can be written as:(11)where (·)+ = max(0, ·) is a non-negative operator.2) Histogram intersection: Given two normalized histograms, we define their intersection distance by the Hilbert space representation [63]:(12)Following (5) and (6), we obtain its lower bound and upper bound:(13)3) χ2 distance: The χ2 distance has been proven to be effective to measure distance between histograms. The χ2 distance is defined as:(14)Incorporating the ℓ1-bounds l̂k and ûk in (10) and the inequalities in (5), we obtain the lower bound and upper bound for fχ2 as:(15)(16)4) Cosine similarity: Treating two normalized histograms ĥi and ĥj as two vectors in the inner product space, we can measure the similarity as their included cosine angle:(17)Using (4) and the fact that ||Si−||≤||Si[bi, ei]||≤||Si+||, we obtain the bounds:(18)5) Symmetrized KL divergence: By definition, the normalized histograms ĥi and ĥj are non-negative and sum to one, and thus can be interpreted as two discrete probability distributions. Their similarity can be measured using the symmetrized KL divergence:(19)where DKL(ĥi||ĥj) is the KL divergence of ĥj from ĥi. From (5) and that , we have . Then, we obtain the bounds for (19):(20)6) Symmetrized cross entropy: The symmetrized cross entropy [50] measures the average number of bins needed to identify an event by treating each other as the true distribution. Similar to KL divergence that treats ĥi and ĥj as two discrete probability distributions, the entropy function is written as:(21)Recall (5) and that , we obtain the bounds:(22)Above we have reported derivations for six commonly used measures. However, choice of one or another is influenced by a variety of factors, such as the nature of the data, problem, preferences of individual investigators, etc. In experiments, we picked ℓ1, χ2, and KL-divergence because due to their popularity in computer vision applications. For instance, ℓ1-distance is popular in retrieval problems (e.g., [27, 57]), χ2-distance in object recognition (e.g., [21,35]), and KL-divergence in measuring similarity between distributions (e.g., Gaussian mixtures for image segmentation [26]).Algorithm 2Synchrony Discovery (SD)
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	Algorithm 2
	4 Searching Scenarios
	4.1 Synchrony discovery (SD)
	Algorithm: For an event to be considered as a synchrony, they have to occur within a temporal neighborhood between two videos. For this reason, we only need to search within neighboring regions in the temporal search space. Unlike CED or ESS [35] that exhaustively prunes the search space to a unique solution, we constrain the space before the search begins. In specific, we slightly modify Algorithm 1 to solve SD. Let L = T + ℓ be the largest possible period to search, we initialize a priority queue Q with rectangle sets  and their associated bounds (see details in Sec. 3.4). These rectangle sets lie sparsely along the diagonal in the 2-D search space, and thus prune a large portion before the search. Once all rectangle sets are settled, the CED algorithm can be employed to find the exact optimum. Algorithm 2 summarizes the SD algorithm.Fig. 4 shows a synthetic example of 1-D time series with two synchronies, denoted as red dots and green triangle, where one is a random permutation of another. SD discovered 3 dyads with the convergence curve in (b), and histograms of each dyad in (c)~(e). Note that the interaction feature distinguishes the temporal consistency for the first and second discovery, maintaining a much smaller distance than the third discovery.
	Algorithm


	4.2 Video search (VS)
	4.3 Segment-based event detection (ED)
	Algorithm: The ED problem in (25) becomes supervised detection rather than unsupervised as mentioned in previous sections. The proposed bounds in Sec. 3.4 are thus inapplicable. Due to the summation property of BoTW in (1), we decompose the commonality measure into per-frame positive and negative contributions:  Denote the longest and the shortest possible searching segments as S+ and S− respectively, with slight abuse of notation, we reach the bounds:(26)where R = [b, e] corresponds to time series S, instead of previous definition over two time series. With the derived bounds, the CED algorithm can be directly applied for efficient inference of an event of interest.
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	4.4 Comparisons with related work
	Problem definition: Although CED achieves discovery via “matching” between subsequences, it has fundamental differences from standard matching problems. For instance, CED allows many-to-many mapping (e.g., Sec. 6.1.2), while standard matching algorithms assume one-to-one or one-to-many mapping. Moreover, a matching problem (e.g., graph matching or linear assignment) typically measures sample-wise similarity or distance to determine correspondence between one another, e.g., a feature vector on a node in a graph. CED uses bag-of-words representation that aggregates multiple samples (i.e., frames) into one vector, making the application of standard matching methods non-trivial.CED is also different from time warping (e.g., dynamic time warping [33]) and temporal clustering (e.g., aligned cluster analysis [79]). Time warping aims to find the optimal match between two given sequences that allow for stretched and compressed sections of the sequences. Given this goal, time warping assumes the beginning and the ending frames of the sequences to be fixed, and performs matching on entire sequence. Similarly, temporal clustering considers entire sequence in its objective, and hence is likely to include irrelevant temporal segments in one cluster. On the contrary, CED does not assume fixed beginning and ending frames, instead directly targeting at subsequence-subsequence matching, and thus enables a large portion of irrelevant information to be ignored.Technical details: Technically, the proposed B&B framework is closely related to Efficient Subwindow Search (ESS) [35] and Spatio-Temporal B&B (STBB) [77]. However, they have at least three differences. (1) Learning framework: ESS and STBB are supervised techniques that seek for a confident region according to a pre-trained classifier. CED is unsupervised, and thus requires no prior knowledge. (2) Bounding functions: We design new bounding functions for the unsupervised CED problem. Moreover, ESS and STBB consider only upper bounds, while CED can incorporate both upper and lower bounds. (3) Search space: ESS and STBB search over spatial coordinates of an image or a spatiotemporal volume in a video, while CED focuses on temporal positions over time series.For segment-based event detection (ED), we acknowledge its similarity with the version of STBB that omits spatial volume. Both address efficient search in a one-dimension time series, and differ in the following ways. (1) Objective: ED searches for segments with maximal, positive segment-based decision values. STBB uses a Kadane’s algorithm for frame-based max subvector search, which potentially lead to inferior detection performance because the max sum is usually found in an overly-large segment (as can be seen in Sec. 6.3). (2) Searching strategy: ED prunes the search space to avoid evaluating segments where an AU is unlikely to occur; STBB evaluates every frame. (3) Inputs: ED can take the minimal length and normalized histograms as input, yet it is unclear for STBB to accommodate such input because of the linear nature of the Kadane’s algorithm.
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	5 Extensions to the B&B framework
	Discovery among multiple time series: We have described above how the B&B framework can discover temporal commonalities within a pair of time series. Here we show that the framework can be directly extended to capture commonality among multiple time series. Specifically, we formulate the discovery among N sequences  by rewriting (3) as(27)where F(·) is a similarity measure for a set of sequences and defined as the sum of pairwise similarities:(28)Given a rectangle set R and a time series pair (Si, Sj), we rewrite their pairwise bounds in Sec. 3.4 as  and . The bounds for F(·, ·) can be defined as:(29)Given this bound, Algos. 1 and 2 can be directly applied to discover commonalities among multiple time series.Discover multiple commonalities: Multiple commonalities occur frequently in real videos, while the B&B framework only outputs one commonality at a time. Here, we introduce a strategy that prunes the search space to accelerate multiple commonality discovery. Specifically, we repeat the searching algorithm by passing the priority queue Q from the previous search to the next, and continue the process until a desired number of solutions is reached, or the returned commonality measure f(·, ·) is less than some threshold. The threshold can be also used for excluding undesired discoveries for the scenario where two sequences have no events in common. That is, if the first discovery does not pass a pre-defined threshold, the algorithm returns empty because the subsequent discoveries perform no better than the first one. Fig. 5(a) illustrates an example of the pruning rule when E1 overlaps with a previously discovered solution r. Because we want to exclude the same solution for the next discovery, the search region is updated by avoiding overlapping with previous solution. For axes of both S1 and S2, all R overlapped with r is updated using the same rule, or discarded if the updated R is empty, i.e., |R| = 0. The updated rectangle sets, along with their bounds, are then pushed back to Q before the next search.This pruning strategy is simple yet very effective. Previously derived bounds remain valid because each updated set is a subset of R. In practice, it dramatically reduces |Q| for searching the next commonality. For example, in synchrony discovery of Fig. 4, |Q| is reduced 19% for the second search, and 25% for the third SD. Note that this pruning strategy differs from conventional detection tasks, e.g., [35, 77], which remove the whole spatial or temporal region for the next search. In CED, temporal segments can be many-to-many matching, i.e., S1[b1, e1] can match multiple segments in S2 and vice versa. Thus, removing any segments from either time series would cause missing matches. This strategy allows us to maintain many-to-many matching.SD with Warm start: Due to the B&B nature, SD exhibits poor worst-case behavior, leading to a complexity as high as an exhaustive search [51]. On the other hand, B&B can quickly identify the exact solution when a local neighborhood contains a clear optimum [35]. Given this motivation, we explore a “warm start” strategy that estimates an initial solution with high quality, and then initializes SD around the solution. Estimating an initial solution costs only few percentage of total iterations, and thus can effectively prune branches in the main SD algorithm. Fig. 5(b) illustrates the idea. Specifically, we run sliding window sampled with stepsize=10, sort the visited windows according their distances, and then determine a warm start region around the windows within the top one percentile. Then SD is performed only within an expanded neighborhood around the warm start region.SD with Parallelism: The use of parallelism to speed up B&B algorithms has emerged as a way for large problems [24]. Based on the block-diagonal structure in the SD search space, this section describes an parallelized approach to scale up SD for longer time series. In specific, we divide SD into subproblems, and perform the SD algorithm solve each in parallel. Because each subproblem is smaller than the original one, the number of required iterations can be potentially reduced. As illustrated in Fig. 5(c), the original search space is divided into overlapping regions, where each can be solved using independent jobs on a cluster. The results are obtained as the top k rectangles collected from each subproblem. Due to the diagonal nature of SD in the search space, the final result is guaranteed to be a global solution. The proposed structure enables static overload distribution, leading to an easily programmable and efficient algorithm.
	Discovery among multiple time series: We have described above how the B&B framework can discover temporal commonalities within a pair of time series. Here we show that the framework can be directly extended to capture commonality among multiple time series. Specifically, we formulate the discovery among N sequences  by rewriting (3) as(27)where F(·) is a similarity measure for a set of sequences and defined as the sum of pairwise similarities:(28)Given a rectangle set R and a time series pair (Si, Sj), we rewrite their pairwise bounds in Sec. 3.4 as  and . The bounds for F(·, ·) can be defined as:(29)Given this bound, Algos. 1 and 2 can be directly applied to discover commonalities among multiple time series.Discover multiple commonalities: Multiple commonalities occur frequently in real videos, while the B&B framework only outputs one commonality at a time. Here, we introduce a strategy that prunes the search space to accelerate multiple commonality discovery. Specifically, we repeat the searching algorithm by passing the priority queue Q from the previous search to the next, and continue the process until a desired number of solutions is reached, or the returned commonality measure f(·, ·) is less than some threshold. The threshold can be also used for excluding undesired discoveries for the scenario where two sequences have no events in common. That is, if the first discovery does not pass a pre-defined threshold, the algorithm returns empty because the subsequent discoveries perform no better than the first one. Fig. 5(a) illustrates an example of the pruning rule when E1 overlaps with a previously discovered solution r. Because we want to exclude the same solution for the next discovery, the search region is updated by avoiding overlapping with previous solution. For axes of both S1 and S2, all R overlapped with r is updated using the same rule, or discarded if the updated R is empty, i.e., |R| = 0. The updated rectangle sets, along with their bounds, are then pushed back to Q before the next search.This pruning strategy is simple yet very effective. Previously derived bounds remain valid because each updated set is a subset of R. In practice, it dramatically reduces |Q| for searching the next commonality. For example, in synchrony discovery of Fig. 4, |Q| is reduced 19% for the second search, and 25% for the third SD. Note that this pruning strategy differs from conventional detection tasks, e.g., [35, 77], which remove the whole spatial or temporal region for the next search. In CED, temporal segments can be many-to-many matching, i.e., S1[b1, e1] can match multiple segments in S2 and vice versa. Thus, removing any segments from either time series would cause missing matches. This strategy allows us to maintain many-to-many matching.SD with Warm start: Due to the B&B nature, SD exhibits poor worst-case behavior, leading to a complexity as high as an exhaustive search [51]. On the other hand, B&B can quickly identify the exact solution when a local neighborhood contains a clear optimum [35]. Given this motivation, we explore a “warm start” strategy that estimates an initial solution with high quality, and then initializes SD around the solution. Estimating an initial solution costs only few percentage of total iterations, and thus can effectively prune branches in the main SD algorithm. Fig. 5(b) illustrates the idea. Specifically, we run sliding window sampled with stepsize=10, sort the visited windows according their distances, and then determine a warm start region around the windows within the top one percentile. Then SD is performed only within an expanded neighborhood around the warm start region.SD with Parallelism: The use of parallelism to speed up B&B algorithms has emerged as a way for large problems [24]. Based on the block-diagonal structure in the SD search space, this section describes an parallelized approach to scale up SD for longer time series. In specific, we divide SD into subproblems, and perform the SD algorithm solve each in parallel. Because each subproblem is smaller than the original one, the number of required iterations can be potentially reduced. As illustrated in Fig. 5(c), the original search space is divided into overlapping regions, where each can be solved using independent jobs on a cluster. The results are obtained as the top k rectangles collected from each subproblem. Due to the diagonal nature of SD in the search space, the final result is guaranteed to be a global solution. The proposed structure enables static overload distribution, leading to an easily programmable and efficient algorithm.
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