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Abstract

We introduce a rank-based bent linear regression with an unknown change point. Using a linear 

reparameterization technique, we propose a rank-based estimate that can make simultaneous 

inference on all model parameters, including the location of the change point, in a computationally 

efficient manner. We also develop a score-like test for the existence of a change point, based on a 

weighted CUSUM process. This test only requires fitting the model under the null hypothesis in 

absence of a change point, thus it is computationally more efficient than likelihood-ratio type tests. 

The asymptotic properties of the test are derived under both the null and the local alternative 

models. Simulation studies and two real data examples show that the proposed methods are robust 

against outliers and heavy-tailed errors in both parameter estimation and hypothesis testing.
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1. Introduction

Segmented linear regression is commonly used for dealing with data in which the 

relationship between response and explanatory variables is approximately piecewise linear. 

Such data can be encountered in many applications in medical research, biology, ecology, 

insurance and finance studies. For example, in hydrological studies, the transportation of 

particles in gravel bed streams is often described as occurring in phases, with a relatively 

stable transport rate at low discharge, and a drastic increase after the discharge passes a 

certain threshold (Ryan et al., 2002). Another example arises from a study of the maximal 

running speed (MRS) data of land mammals (Garland, 1983), which shows that the 

logarithm of MRS increases stably with the logarithm of the body mass, and gradually 

decreases after reaching a certain point. The common feature between these examples is that 

the response and the covariate of interest show a piecewise linear relationship that has 

varying slopes over different domains of the covariate. Besides estimating the regression 
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coefficients, identifying the threshold at which a change of relationship occurs is also a 

primary interest in statistical analyses.

In this article, we focus on an important special case of segmented linear regression: the so-

called bent line regression. This type of regression model comprises of two line segments 

with different slopes intersecting at a change point, and is used for modeling data with a 

continuous segmented relation. The two examples mentioned above demonstrate such a 

relation. As the location of the change point is unknown, the likelihood function of this 

model is non-differentiable with respect to the location of the change point, complicating 

parameter estimation and statistical inference. Many works have been done to estimate 

parameters for bent line regression models with normally distributed responses, for example, 

Quandt (1958, 1960), Sprent (1961), Hinkley (1969), Feder (1975), Gallant and Fuller 

(1973), Chappell (1989), and many others. Most of these methods are based on the grid-

search approach (Lerman, 1980), which estimates the regression coefficients for a series of 

fixed change points on a grid, and then exhaustively searches for the point that maximizes 

the likelihood function. While generating reasonable estimates, this approach is 

computationally expensive and the statistical inference of its estimators is difficult to derive. 

Recently, Muggeo (2003) proposed a clever estimation method for this model. By using a 

simple linearization technique, this method allows simultaneous inference for all model 

parameters in a computationally efficient manner.

Although the aforementioned models work well when normality holds, datasets in real 

applications often have outliers or heavy-tails, which can substantially influence the fitting 

of the models and the accuracy of parameter estimation. For instance, the MRS data includes 

several extremely slow outliers, which are animals living in environments where high 

running speed does not give a selective advantage, for example, sloths. The relationship 

between body mass and running speed for these animals is drastically different from that for 

most animals living in environments where speed is important. Even though these animals 

contribute little information towards the understanding of how body mass affects the 

maximal running speed, they markedly influence the estimation results. In such situations, a 

robust estimation procedure usually is desirable. A common way to obtain robust estimates 

is rank-based regression. Rank-based regression makes no assumption on the distribution of 

the response. It is robust against outliers and heavy-tailed errors, while maintaining high 

efficiency. The inference for rank-based regression models, in absence of change points, has 

been well developed since the first work by Jureckova (1971) and Jaeckel (1972), see Abebe 

et al. (2001), Hettmansperger and McKean (2011), and the references therein. However, to 

the best of our knowledge, no analogous work has been done when a change point is 

involved.

In this article, we introduce a robust rank-based bent linear regression with an unknown 

change point. Our contribution is two-fold. First, we propose a robust estimator for the bent 

line regression. The main idea of our estimation procedure is to replace the residual sum of 

squares in the segmented procedure of Muggeo (2003) with the rank dispersion function in 

standard rank-based regressions (Jaeckel, 1972). As a result, it not only achieves robustness 

against outliers and heavy-tailed errors, but also inherits the merit of Muggeo’s segmented 

method, providing simultaneous estimation and inference for all model parameters, 
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including the location of the change point. It can be implemented readily using existing 

packages for standard rank-based regression. As we will show, the proposed estimator is 

more robust than the segmented regression proposed by Muggeo (2003), while maintaining 

high efficiency. Second, we contribute a computationally efficient test statistic for testing the 

existence of a change point. Although there are many tests developed on determining the 

existence of a change point in linear regression (Andrews, 1993; Bai, 1996; Hansen, 1996), 

quantile regression (Qu, 2008; Li et al., 2011; Aue et al., 2014; Zhang et al., 2014), 

transformation models (Kosorok and Song, 2007), time series models (Chan, 1993; Cho and 

White, 2007), no analogous tests have been developed in the context of robust bent line 

regression. Our test is motivated from the test for structural change in regression quantiles 

(Qu, 2008). It is a weighted CUSUM type statistic based on sequentially evaluated 

subgradients for a subsample. One advantage of this test is that it only requires fitting the 

model under the null hypothesis in absence of a change point. Thus it is computationally 

more efficient than the likelihood-ratio type tests, such as the sup-quasi-likelihood-ratio type 

statistics proposed by Lee et al. (2011) for detecting general structural changes, which 

requires fitting the models under both null and alternative hypotheses. The limiting 

distributions of the proposed test statistic under both the null and local alternative models are 

derived, and the implementation procedures are provided. Both the estimating procedure and 

testing procedure are implemented in the R package Rbent (Zhang and Li, 2016), available 

from CRAN.

The rest of the article is organized as follows. Section 2 introduces the main methodology, 

including the rank-based estimation procedure and the test for the existence of a change 

point. Sections 3 and 4 evaluate the performance of the proposed estimate using simulation 

studies and two real data examples, respectively. Section 5 provides the conclusion with 

possible future enhancement. All the technical proofs are presented in the Appendix.

2. Methodology

2.1. Robust bent line regression model

Let {(Yi, Xi, Zi), i = 1,⋯, n} be a sample of n independent and identically distributed 

observations, where Yi is the response variable, Xi is a p × 1 vector of linear covariates, Zi is 

a scalar covariate whose relationship with Yi changes at a change-point location. To capture 

the linear relationship between the response Yi and the covariates Xi, and the segmented 

relationship between the response Yi and the explanatory variable Zi, we consider the 

piecewise linear model

(1)

where θ = (α⊤, β, γ) ⊤ are unknown coefficients, τ is the change point, (Zi −τ)+ = max(Zi − 

τ, 0) = (Zi − τ)I (Zi > τ), and ei are independent and identical random errors with an 

unknown distribution F (·). The vector α is the linear regression coefficients for Xi, the 

scalar β is the slope relating Yi to Zi for the segment before the change point, and γ is the 

difference in slope between the segments before and after the change point. It is commonly 
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assumed γ ≠ 0 for identifiability of τ in model (1). In Section 2.2, we develop a formal test 

for this assumption.

As discussed in the Introduction, many existing methods for model (1) assume Eei = 0 and 

Var(ei) < ∞, see Quandt (1958), Chappell (1989), Muggeo (2003), and therein references. 

Similar to the ordinal least squares, these methods can be very sensitive to outliers. When 

the error distribution has extremely heavy tails, such as the Cauchy distribution, the 

assumption of E(ei) = 0 is violated and these methods are not appropriate. This motivates us 

to seek a robust regression approach based on ranks.

2.1.1. Rank-based estimator for bent line regression—To achieve robustness in the 

bent line regression model, we consider the rank-based estimator based on Jaeckel’s 

dispersion function, which was introduced by Jureckova (1971) and Jaeckel (1972) in the 

context of classical linear models without change-points. The main idea of rank-based 

estimation is to replace the Euclidean norm in the objective function of the ordinary least 

square estimator, , by a pseudo-norm

(2)

where e = (e1, …, en) are residues, Ri is the rank of the ith residual ei among all residuals, 

and ϕ(·) is a non-decreasing and square-integrable score function defined on the unit interval 

(0, 1) satisfying ∫ ϕ(u)du = 0 and ∫ ϕ(u)2du = 1. The rank-based estimator then is obtained 

by minimizing ||e||ϕ, which is also called the dispersion function. Comparing with the 

ordinary least squares estimator, the rank-based estimator achieves robustness by 

downweighting the contribution of large residuals in the sum of residual square through 

ranks in the score function. Here we obtain the rank-based estimator for model (1) by 

minimizing the following dispersion function

(3)

where Ri is the rank of the ith residual ei = Yi − α ⊤Xi − βZi − γ(Zi − τ)+.

The score function typically is selected according to the shape of underlying distribution of 

the error (Hettmansperger and McKean, 2011). Some commonly-used score functions 

include the Wilcoxon score function, , and the sign score function, ϕ(t) = 

sgn(t − 0.5). It is worth to note that the rank-based regression with the sign score function is 

equivalent to the least absolute deviations regression (LAD). But for symmetric and 

moderately heavy-tailed distributions, the Wilcoxon score function has been shown to yield 
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robust and relatively efficient estimators. Hence, we use the Wilcoxon score function 

throughout this paper.

2.1.2. Iterative estimating procedure for the rank-based estimator—One 

complication in estimating (θ, τ) is that the objective function D(θ, τ) is not differentiable 

with respect to τ, since the indicator function I(Zi > τ) is not differentiable with respect to τ. 

A possible solution is to follow a grid-search approach commonly-used for piecewise linear 

models (Quandt, 1958), which estimates θ for a series of fixed τ on a grid and then 

exhaustively searches for τ that maximizes the likelihood function. However, this approach 

is computationally intensive, and the asymptotic properties of the change point τ are difficult 

to derive.

To circumvent this problem, we adopt the linear reparameterization technique proposed by 

Muggeo (2003). The main idea is to approximate (Zi −τ)+ using the first-order Taylor’s 

expansion, such that τ can be reparameterized as a coefficient term in a continuous linear 

model and estimated along with other regression coefficients as in the standard regression. 

Comparing with the grid-search method, this method reduces the computational burden and 

allows the asymptotic properties of all parameters to be derived easily using standard 

asymptotic theory.

Specifically, we apply the first-order Taylor’s expansion around τ(0), provided that τ(0) is 

close to τ:

Then, model (1) can be approximated by the following model,

(4)

where η = γ(τ −τ(0)). For a given τ(0), by viewing (Zi − τ(0))+ and −I {Zi >τ(0)} as two new 

covariates, model (4) takes the form of the standard linear regression. The rank-based 

estimate of regression coefficients for model (4) can be obtained using the standard rank-

based estimation as

where θ̂(1) = (α̂(1), β̂(1), γ̂(1)), and  is the rank of the ith residual 

. The estimate for change-point τ 
can be updated by
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The iterative algorithm is summarized in Algorithm 1.

Algorithm 1

i. Initialize parameters: θ(̂0) = (α̂(0), β̂(0), γ̂(0)) and τ̂(0), setting η(̂0) with a small value, such as 0.01.

ii. Fix τ̂(s) at each step s, estimate parameters θ̂(s+1) = (α̂(s+1), β̂(s+1), γ̂(s+1)) and η̂(s+1) by the rank-based 
regression estimate for the following linear model:

Y i = α⊤Xi + βZi + γ(Zi − τ(s))+ + η( − I{Zi > τ(s)}) + ei . (5)

That is,

(θ(s + 1), η(s + 1)) = arg min
θ, η ∑

i = 1

n
12

Ri
(s)

n + 1 − 0.5 ei
(s),

where  is the rank of the ith residual 

 among all residuals 

.

iii. Update the change-point estimate τ̂(s+1) by

τ (s + 1) = τ (s) + η(s + 1)

γ (s + 1) . (6)

iv. Repeat steps (ii)–(iii) until convergence criterion holds, e.g. ||θ̂(s+1) − θ̂(s)||∞ < 10−5. Here, 

 for any v ∈ ℝq.

Remark 1: By viewing Yi as the response variable and Xi, Zi, (Zi − τ(s))+, (−1)I(Zi > τ(s)) as 

the explanatory variables, fitting the non-linear and non-differentiable model (1) is 

equivalent to iteratively fitting the standard rank-based linear model (5). This fitting 

procedure can be easily implemented using the standard rank-based regression and 

computed using existing software tools, such as R package Rfit.

Based on an argument similar to that in Muggeo (2003), when the algorithm converges, the 

estimated coefficients, denoted as (θ̂, η̂), are consistent and asymptotically normally 

distributed. By the standard theory of the rank-based linear regression (Hettmansperger and 

McKean, 2011), (θ̂, η̂) have an asymptotically normal distribution. Using (6), the standard 

error estimate of the change point estimator τ̂ can be obtained from its Wald statistics. 
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Specifically, by the linear approximation for the ratio of two random variables, the variance 

of τ̂ is given by

(7)

When the algorithm converges, η̂ is expected to be approximately zero. Then from (7), the 

standard error of τ̂ is simply SE(τ̂) = SE(η̂)/| γ̂|. The 100(1 − α)% Wald-based confidence 

interval is given by

where zα/2 is the (1 − α/2)th percentile of the standard normal distribution.

2.2. Test the existence of a change-point

Note that the convergence of the iterative algorithm depends on the existence of a threshold 

effect, i.e. γ ≠ 0. If γ = 0, the change point τ is not identifiable and its estimation is ill-

conditioned. Therefore, it is important to test the existence of a threshold effect in the 

regression model (1).

Here, we consider the null and alternative hypotheses

where Γ is the range set of all τ’s. To construct our test statistic, we take a cumulative 

subgradient approach that is in spirit similar to the test for structural change in quantile 

regression in Qu (2008). The key idea of this approach is to construct the test statistic using 

sequentially evaluated subgradients of the objective function under H0 for a subsample, in a 

fashion similar to the standard CUSUM test (Ploberger and Kramer, 1992; Bai, 1996). One 

advantage of this approach is that it is a score-like test statistic that can be obtained by only 

fitting the null model, thus it is computationally more efficient than the sup-quasi-likelihood-

ratio statistics in Lee et al. (2011), which requires fitting both the null and alternative 

models.

Specifically, we define

where ξ̂ ≡ (α̂, β̂) is the estimator of the coefficients ξ = (α, β) under the null hypothesis H0,
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(8)

where  are covariates and R(Yi − ξ⊤Wi) is the rank of the ith residual Yi − 

ξ⊤Wi among all the residuals (Y1 − ξ⊤W1,⋯, Yn −ξ⊤Wn). Rn(τ, ξ̂) is a variant of the 

negative subgradient of the rank-based objective function (3) with respect to γ under H0, for 

the subsample with Zi up to the threshold τ. Intuitively, when there is no bent line, ξ̂ would 

be a good estimator for its population value, then the estimated residuals êi = Yi − ξT̂ Wi 

would be close to 0. Meanwhile, when there exists a change point, ξ̂ would be significantly 

different from the true value. Consequently, êi would depart from 0 in a systematic fashion 

related to Zi, resulting in a large absolute value of Rn(τ, ξ̂). Since the change point is 

unknown, we need to search through all the possible locations. Therefore, we propose the 

test statistic

This statistic can be viewed as a weighted CUSUM statistic based on the ranks of estimated 

residuals under the null hypothesis. It is intuitively plausible to reject H0 when Tn is too 

large. This intuition will be formally verified by Theorem 2.1. It implies that Rn(τ, ξ̂) 
converges to a Gaussian process with mean zero, and the size of such a process can be used 

to test for the existence of a change point.

To derive the large-sample inference for Tn, we consider the local alternative model,

(9)

where τ is the change-point location and γ ≠ 0. For ease of presentation, we define some 

notations. Denote F (·) and f(·) as the cumulative distribution function and density function 

of the random error e, respectively, and the scale parameter cϕ = {∫ϕ′(F (u))f(u)dF (u)}−1, 

which is presented in Hettmansperger and McKean (2011). Define 

and ,
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and .

The following theorem is essential to the large-sample inference for using Tn.

Theorem 2.1: Under regular conditions in the Appendix A, for the local alternative model 
(9), Rn(τ, ξ̂) has the asymptotic representation

(10)

Furthermore, Tn converges weakly to the process , where G(τ) is the 
Gaussian process with mean zero and covariance function

Remark 2: Under the null hypothesis H0, q(τ) equals 0 for all τ, whereas q(τ) is a nonzero 

function of τ under the local alternative model. Thus, the proposed test statistic can 

distinguish the alternative hypothesis from the null hypothesis. This supports the intuitive 

interpretation of the proposed test statistics for the existence of the change point.

The following theorem implies that the power of the test statistic Tn approaches 1 under the 

local alternative model whose order of γ is arbitrarily close to n−1/2.

Theorem 2.2: Under regular conditions in the Appendix A, for the local alternative model,

for any increasing sequence an → ∞, we have  for any t > 0.

However, the limiting null distribution of Tn is nonstandard, because the covariance of test 

statistic Tn involves the estimation for the cumulative distribution function F (·) and the 

density function f(·) of errors. To obtain critical values, we use a wild bootstrap method 

similar to that in He and Zhu (2003) for quantile regression, based on the asymptotic 

representation of Rn(τ, ξ̂) in (10). The algorithm is summarized in Algorithm 2.

Remark 3: Note that the statistic  (defined in Algorithm 2) depends on the 

bandwidth h through the kernel estimator Ŝ1n(τ). To choose the optimal bandwidth, one can 
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use Silverman’s rule of thumb (Silverman, 1986), h = 1.06σ̂n−1/5, where σ̂ is the standard 

deviation of the estimated residual êi (i = 1, …, n) under the null hypothesis. We also 

perform a sensitivity analysis to evaluate how the choice of h affects the performance of the 

proposed test procedure (Section 3.2).

In the Appendix, we prove the following result, which implies the validity of the bootstrap 

resampling scheme.

Theorem 2.3: Under both the null and the local alternative hypotheses,  converges to 
the Gaussian process G(t) as n → ∞.

Algorithm 2

1 Generate iid {u1,⋯, un} where ui is generated from N (0, 1).

2
Calculate the test statistic , where

Rn
∗(τ, ξ ) = 1

n ∑
i = 1

n
ui 12 Fn(ei) − 0.5 × (Zi − τ)I(Zi ≤ τ) − cϕS1n(τ)Swn

−1Wi ,

and

S1n(τ) = 1
n ∑

i = 1

n
12 f (ei)Wi(Zi − τ)I(Zi ≤ τ),

F̂n(·) is the empirical distribution function of the estimated residuals êi = Yi − ξ̂⊤Wi under the null 

hypothesis,  is a kernel density estimate for the density function f(êi), 
Kh(·) = K(·/h)/h, K(·) is a kernel function, and h > 0 is a bandwidth. Here, ĉϕ is the consistent estimator 
for the scale parameter cϕ, which can be readily obtained from the R package Rfit.

3
Repeat Steps 1–2 with NB times to obtain . Calculate the p-value by 

.

3. Simulation studies

3.1. Estimation

To evaluate the finite sample performance of the proposed estimation procedure (Section 

2.1), we conduct several simulation studies using data generated from the following model:

with Zi ~ Uniform(−2, 2), τ = 0.5, and (β0, β, γ) = (3, 2.5, −4). Three different error 

distributions are considered: (1) a standard normal distribution; (2) a t-distribution with three 

degrees of freedom, t3; and (3) a contaminated standard normal distribution, with 10% 
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observations from a standard Cauchy distribution. For each setting, we generate a sample of 

n = 200 independent observations (Zi, Yi) with 1, 000 repetitions.

To evaluate the performance of our estimator, we assess the accuracy of estimation and the 

appropriateness of Wald-based confidence intervals, and compare its performance with 

Muggeo’s method, which was implemented in R package segmented. The results are 

summarized as below (Table 1).

1. When the error term follows a standard normal distribution, both estimators work 

well and have comparable performance: both estimators are unbiased, the 

estimated standard errors (ESE) are close to the standard deviations (SD), and 

the empirical coverage probabilities (CP) approach the nominal level. The mean 

square errors (MSE) and the average lengths (AL) of Muggeo’s estimators are 

slightly smaller than those of the proposed estimators. This is not surprising, 

since rank-based estimators for traditional linear regressions with a normal error 

can achieve 95% relative efficiency of the ordinary least squares 

(Hettmansperger and McKean, 2011).

2. When the error term follows a t3 distribution, both methods work reasonably 

well, but our estimators have smaller SDs and MSEs than the Muggeo’s 

estimators. In addition, the confidence intervals (CIs) of our estimators are 

shorter than those of Muggeo’s estimators, and the empirical coverage 

probabilities of our CIs are closer to the nominal level than those of Muggeo’s 

CIs for most estimators.

3. When the error term follows a contaminated standard normal distribution with 

10% contamination from a standard Cauchy distribution, Muggeo’s method 

generates biased estimators with drastically inflated SDs and MSEs. However, 

our method still provides unbiased estimates, reasonable SDs and MSEs. While 

Muggeo’s CIs are unreasonably wide with low empirical coverage probabilities, 

the empirical coverage probabilities of our CIs are still close to the nominal level, 

and the lengths of CIs are as reasonable as cases 1 and 2.

In short, comparing with Muggeo’s estimators, our estimators achieve robustness against 

outliers and heavy-tailed errors.

3.2. Type I error and power analysis

We evaluate the type I error and power of the testing procedure in Section 2.2. As Muggeo 

(2003) did not provide a test for the existence of a change point, we derive a weighted-

CUSUM test statistic for Muggeo’s model (see Appendix B). We then compare its 

performance with our test statistic for the ranked-based bent line regression. We simulate the 

data from the same simulation settings as the ones in the previous section, with threshold 

effects at γ = −2, −1, 0, 1, 2. In the testing procedure, we use the Epanechnikov kernel K(u) 

= 3/4(1 − u2)I(|u| ≤ 1), and set the number of bootstrap NB = 1, 000, the bandwidth h = 

1.06σ̂n−1/5, and the nominal significance level at 5%.

As shown in Table 2, when the error term follows a standard normal distribution, both tests 

have type I errors close to the nominal level and have reasonable power. However, when the 
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error term is distributed as a t3 distribution or is contaminated with a Cauchy distribution, 

the test based on Muggeo’s method is anti-conservative, with high power but also drastically 

inflated type I errors. This is mainly because Muggeo’s method is based on the ordinary 

least squares, thus it is sensitive to outliers. In contrast, our method maintains the nominal 

level of Type I errors for all error distributions, while having reasonable power.

We also assess the sensitivity of the proposed method to the choice of bandwidth. Here we 

set the bandwidth as h = cσ̂n−1/5, and calculate the type I errors at a series of c ∈ [0.1, 2] for 

each error distribution. As shown in Figure 1, the proposed test is not sensitive to the choice 

of h, giving reasonable type I errors across a wide range of c.

4. Applications

4.1. Bedload transport data

In this section, we analyze a bedload transport dataset collected during snow-melt runoff in 

1998 and 1999 at Hayden Creek near Salida, Colorado (Ryan and Porth, 2007). Bedload 

transport measures the transportation of particles in a flowing fluid along the bed. In gravel 

bed streams, bedload transport is generally described as occurring in phases, involving a 

transition from primarily low rates of sand transport (Phase I) to higher rates of sand and 

coarse gravel transport (Phase II) (Ryan and Porth, 2007). It has been reported that the 

relationship between transport and water discharge is substantially different in the two 

phases. The transition of the relationship has been used to define the shift in the phase of 

transport (Ryan et al., 2002).

In this dataset, the discharge rate (m3/s) and the rate of bedload transport (kg/s) were 

collected for 76 observations. The dataset has been previously analyzed by Ryan and Porth 

(2007), using a piecewise linear regression model. However, as they pointed out, the dataset 

has very few observations at higher flows, making it difficult to fit the piecewise linear 

regression model. The loess curve indeed shows a segmented pattern with a visual estimate 

of a change point at around Zi = 1.5m3/s. The two points with the highest transport (Yi = 

0.0536, 0.0673) are indicated as outliers (p-value= 2.2 × 10−16 ) by Grubbs test (Grubbs, 

1950).

Here we analyze the dataset using the bent line regression,

where Zi is the discharge, Yi is the bedload transport rate, τ is the location of the change-

point, and ei is the error with unknown distribution. Here a change point indicates the 

discharge at which a phase transition of transport occurs.

We first test the existence of a change point using the procedure in Section 2.2. Our test 

indicates that the pattern of segmentation is statistically significant (p-value = 0.028). 

Therefore, it is valid to estimate the parameters from the bent line regression model. For 

comparison, we fit the data using Muggeo’s method (Muggeo, 2003) and our method. The 
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fitted curves are displayed in Figure 2 and the estimated parameters are summarized in Table 

3. For both methods, the fitted line below the change point has a flatter slope with less 

variability, while the line above the change point has a significantly steeper slope and more 

variability. This reflects the physical characteristics of phases I and II, respectively, and is in 

accordance with the analysis in Ryan and Porth (2007). The estimated change point is 1.813 

by Muggeo’s method and 1.539 by our method. Visual inspection of the fitted lines indicates 

that Muggeo’s change point is heavily influenced by the two outliers, whereas our estimate 

is more robust and is closer to the visual estimate from the loess curve.

To evaluate the performance of model fitting, we use a K-fold cross-validation. Specifically, 

we divide the data into K equal-sized subgroups, denoted as Dk for k = 1, · · · , K. The kth 

prediction error is given by

where , and parameters α̂ (−k), β̂ (−k), γ̂ (−k) τ̂
(−k) are estimated by using the data from all the subgroups other than Dk. The total 

prediction error is . Here, we set K = 4. The total prediction error of our 

method (0.0038) is 15.6% less than that of Muggeo’s method (0.0045).

4.2. Maximal running speed data

In this section, we analyze the dependency of the maximal running speed (MRS) on body 

size for land mammals, using a dataset of 107 land mammals collected by Garland (1983). It 

is known that the fastest mammals are neither the largest nor the smallest, so the dependency 

is non-monotonic. To model this dependency, Huxley and Teissier (1936) introduced an 

allometric equation,

where constants a and b may vary after the mass exceeds some change point. This suggests a 

linear relationship between log(MRS) and log(mass) with a possible change point (Chappell, 

1989; Li et al., 2011).

Figure 3a plots this dataset on the log scale. The animals are labeled according to whether 

they ambulate by hopping or not, which is believed to affect the running speed. The plot 

indeed shows that there is a slope change in the relation between of log(MRS) and 

log(mass). In addition, it shows that there are several extremely slow animals in the dataset. 

These animals live in environments where speed is not important for survival and contribute 

little to the understanding of how MRS depends on body size. The Grubbs test implies that 

the three slowest animals (Y = 0.204, 0.470 and 0.875) are outliers. This dataset has been 
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analyzed by Li et al. (2011) using a bent line quantile regression model. To handle these 

outliers, they focused on the median and higher quantiles.

Here we analyze this data set using the bent line regression model,

(11)

where Yi is log(MRS), Zi is log(mass), Xi = I (the ith mammal is a hopper), τ is the change-

point location, and ei is the error with an unknown distribution. Our test for the existence of 

a change point shows that the segmented pattern is highly significant (p-value= 0), which 

indicates that the estimates and inference from our model are valid. For comparison, we fit 

the data using our method, Muggeo’s method, and bent line quantile regression (Li et al., 

2011).

As shown in Table 4, all three methods indicate that hopping has a positive effect (α1 > 0) 

on MRS. They all report that log(MRS) increases (β > 0) with the increase of log(mass) at 

first, but then it drops (β + γ < 0) at a certain point. However, the estimated change point is 

somewhat different, at exp(3.658) = 38.78 kg, exp(4.472) = 87.53 kg, and exp(3.515) = 

33.6kg for our method, Muggeo’s method and the bent line quantile regression model with 

50% quantile (a.k.a., least absolute deviations regression, LAD), respectively. Our estimated 

coefficients based on Wilcoxon score function are similar to those of bent line median 

regression. This is unsurprising, as the rank-based regression with the sign score function 

ϕ(t) = sgn(t − 0.5) is equivalent to LAD. In addition, though all the three methods have 

similar slopes (β) before the change point, Muggeo’s method has a much lower intercept 

(α0) than our method and bent LAD, resulting a lower fitted line. This is likely because 

Muggeo’s method is sensitive to the three outliers with low MRS. A close examination of 

the residuals confirms this conclusion: the median of residuals from Muggeo’s method has a 

larger departure from zero than those from our method and LAD (Figure 3b). This indicates 

that our method and LAD are much more robust. We performed a five-fold cross validation 

as in Section 4.1 for all the three methods. The prediction error of our method (36.959) is 

smaller than those of Muggeo’s method (37.549) and the LAD method (37.243).

5. Discussion

In this paper, we developed a rank-based estimation procedure for segmented linear 

regression model in presence of a change-point. By combining a linear reparameterization 

technique for segmented regression models with rank-based estimation, our estimator is both 

robust against outliers and heavy-tailed errors and is computationally efficient. We also 

proposed a formal testing procedure for the existence of a change point. Our results showed 

that this test is robust while maintaining high power.

Our work currently is only applicable for detecting one change point. It can be extended to 

handle multiple change points. Here we briefly outline the extension for two scenarios. The 

first scenario concerns the model with multiple change points on one variable,
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where (τ1, · · · , τK ) is the change point, α is the linear regression coefficient for Xi, β is the 

slope relating Yi to Zi for the segment before the change point, and γk is the diffierence in 

slope between the segments before and after the kth change point τk. If the number of 

change points K is known priori, the estimating procedure in Section 2.1 can be readily 

extended to this case as follows. By a first-order Taylor expansion, the approximation model 

at each iteration step s is given by

The change points can be successively approximated by , in a 

fashion similar to Algorithm 1. When K is unknown, the estimation and the test of the 

change points would be more complicated. One possibility is to determine the number of 

change points by extending the idea of permutation test procedure proposed by Kim et al. 

(2009) for segmented line regression with normally distributed response to rank-based 

regression. Other methods include the binary segmentation procedure (Bai, 1997; Qu, 2008), 

the wild binary segmentation procedure (Fryzlewicz, 2014), or information-based criterion 

with penalties (e.g., Lavielle, 2005; Ciuperca, 2014). Once the number of change points is 

determined, we can apply the estimation procedure above to obtain the regression 

coefficients and the locations of change points.

The second scenario concerns the model with change points occurred on multiple covariates. 

That is,

where Zi is the vector of covariates that have change points, and β and τ are the 

corresponding vectors of change-points and regression parameters, respectively. We can 

easily extend the proposed estimating procedure to this case. By applying a vector version of 

the first order Taylor expansion at τ (0), we can obtain

where Zi > t (0) is defined componentwise. The estimation can be proceeded in a way similar 

to Algorithm 1.
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Appendix A

The Appendix contains the technical details of proofs.

Regular Conditions.

(A1) The density f is absolutely continuous with a bounded first-order derivative and f 
> 0.

(A2)
The design vector satisfies  and 

is positive definite matrix. Here, ||·|| is the Euclidean norm.

(A3) The change-point τ lies in a bounded closed interval.

(A4) The symmetric kernel function K(·) with compact support I satisfies ∫I K(u)du = 

1 and has a bounded first derivative.

(A5) The bandwidth h satisfies h → 0 and nh → ∞ as n → ∞.

We first provide the following convergence results.

Lemma 5.1

Under the regular conditions, as n → ∞, we have

i. ,
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ii.
,

iii.
,

iv.
.

Proof of Lemma 5.1

For (i), it is easily obtained by using the law of large number.

For (ii), by the law of large number,  for any given τ. Then the 

uniformly convergence follows with the similar arguments used in Lemma 1 of Hansen 

(1996).

For (iii), it is sufficient to show that . We can write

Clearly,  by the uniform convergence of the kernel density estimator.

Note that

By the Conditions (A4) and (A5), and ||ξ̂ − ξ|| = OP(n−1/2) in the proof of Theorem 2.1, and 

the mean-value theorem, we get

where ζ lies in the segment between ξ̂ and ξ. Thus, .

Furthermore,  follows from (ii), and hence (iii) holds.

The proof of (iv) is similar to that of (ii) and is omitted here.

Proof of Theorem 2.1

Note that
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which is equivalent to solve the estimating equation,

Under the local alternative model (9), that is,

we have

where the last equality is followed by Taylor expansion.

By the Theorem A.3.8 in Hettmansperger and McKean (2011), it yields that

Note that n−1/2 Sn(ξ̂) = 0, and by Lemma 5.1, it follows that

Now, under the local alternative model (9), we can write Rn(τ, ξ̂) as
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where the last equality is used Taylor expansion.

By plugging in the representation for  and some algebraic manipulation, we have

The remainder conclusion for weak convergence of Rn(t, ξ̂) is easily obtained by following 

the proofs in Stute (1997).

Proof of Theorem 2.2

The proof follows the same line as that for Theorem 2.1, then it is omitted for saving space.

Proof of Theorem 2.3

We divide the proof into three steps.

First, we show that the covariance function of  converges to that of R. Define

By the fact that the uniformly convergence of F̂
n (·)−Fn(·) and ĉϕ−cϕ, along with the uniform 

convergence of Ŝ1n(τ) − S1(τ) in Lemma 5.1, we can easily show and  are 

asymptotically equivalent in the sense that

Note that ui’s are independent of (Yi, Xi, Zi), and Eui = 0, Var(ui) = 1. Then, for any τ1, τ2, 

the covariance function of  is
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which is the same as the covariance of R.

Second, it is easily to show that any finite-dimensional projection of  converges to that 

of R(τ), by the central limit theorem.

Third,  is uniformly tight. Note that the class of all indicator functions I(Z ≤ t) is a 

Vapnik-Chervonenskis (VC) class of functions. Then, the class of functions

is a VC class of functions. Thus, by the equicontinuity lemma 15 of (Pollard, 1984), one can 

show that  is uniformly tight. Then, by the Cramer-Wold device, the proof of Theorem 

2.3 is completed.

Appendix B

This Appendix provides the algorithm for testing the existence of a change-point via the 

wild bootstrap method based on Muggeo’s method.

Similarly, the test statistic based on the Muggeo’s segmented regression is given by

where

where ξ̃ is obtained by Muggeo’s method under the null hypothesis.

The algorithm for the wild bootstrap method based on Muggeo’s method is summarized as 

follows.
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Algorithm 3

Step 1 Generate iid {u1, … , un} from the standard normal distribution N(0, 1).

Step 2 Calculate the test statistic

R∼n
∗(τ) = 1

n ∑
i = 1

n
ui (Zi − τ)I(Zi ≤ τ) − S

∼
1n(τ)Swn

−1Wi ,

where

S
∼

1n(τ) = 1
n ∑

i = 1

n
Wi(Zi − τ)I(Zi ≤ τ) .

Step 3 Repeat Steps 1–2 with NB times to obtain . Calculate the p-value as 
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Highlights (for review)

• Robust bent line regression is considered.

• A rank-based estimate via linear reparameterization technique.

• A score-like test for the existence of a change point, based on a weighted 

CUSUM process.
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Figure 1. 
Type I errors of the proposed testing procedure at different bandwidths h = cσ̂n −1/5 for the 

three error distributions in the simulation studies, with c ∈ [0.1, 2]. Each type I error is 

calculated based on 100 samples of 200 observations at the significant level of 5%.
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Figure 2. 
Fitted curves for Hayden Creek data, where “● ” indicates the location of estimated change-

point.
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Figure 3. 
MRS data analysis.
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