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Delusions, the fixed false beliefs characteristic of psy-
chotic illness, have long defied understanding despite their 
response to pharmacological treatments (e.g., D2 receptor 
antagonists). However, it can be challenging to discern 
what makes beliefs delusional compared with other unusual 
or erroneous beliefs. We suggest mapping the putative biol-
ogy to clinical phenomenology with a cognitive psychology 
of belief, culminating in a teleological approach to beliefs 
and brain function supported by animal and computational 
models. We argue that organisms strive to minimize uncer-
tainty about their future states by forming and maintain-
ing a set of beliefs (about the organism and the world) that 
are robust, but flexible. If uncertainty is generated endog-
enously, beliefs begin to depart from consensual reality 
and can manifest into delusions. Central to this scheme 
is the notion that formal associative learning theory can 
provide an explanation for the development and persis-
tence of delusions. Beliefs, in animals and humans, may 
be associations between representations (e.g., of cause and 
effect) that are formed by minimizing uncertainty via new 
learning and attentional allocation. Animal research has 
equipped us with a deep mechanistic basis of these pro-
cesses, which is now being applied to delusions. This work 
offers the exciting possibility of completing revolutions of 
translation, from the bedside to the bench and back again. 
The more we learn about animal beliefs, the more we may 
be able to apply to human beliefs and their aberrations, 
enabling a deeper mechanistic understanding.
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The End of the World and the Beginning of a Theory

In December 1954, the Chicago Tribune reported 
that Dorothy Martin was relaying a prophecy from 

extra-terrestrials that the world was about to end. A num-
ber of followers flocked to her but her prophecy did not 
manifest. She ultimately settled in Sedona, Arizona 
where she lived until she was 92, continuing to prosely-
tize about aliens but evading interaction with psychiat-
ric services. Did Martin have delusions? What about her 
acolytes? Defining, explaining, and ultimately under-
standing delusions has proven challenging (see Freeman 
and Bebbington, this issue). In this article, we describe 
how neuroscientists have tried to meet that challenge. The 
approach demands some simplifying assumptions. Basic 
neuroscience in preclinical models will not recapitulate all 
of the features of delusions. However, simple models can 
be useful.1

After David Marr, we suggest a multilevel analysis might 
be helpful2: The Computational: What is the information 
being manipulated and to what end? The Algorithmic: 
What are the manipulations? And The Implementational: 
How are those manipulations manifest by neural signal-
ing? Marr believed that one could bridge these levels of 
analysis. We contend that the same applies with compu-
tational psychiatry: one can map from phenomenology 
to neural activity,3 perhaps by building a model of sub-
jects’ behavior, estimating model parameters, and relat-
ing them to neural activity and symptom severity. If  one 
knows the neural/behavioral instantiation of the aberrant 
parameters, it may be possible to intervene and mollify 
the symptoms.3

Associative learning is our preferred framework for 
spanning levels of enquiry. Pavlov4 and Skinner5 defined 
associative paradigms that emphasized the importance 
of predictions and prediction errors (PEs) in how we 
and other animals learn about the world (see below). 
Learning theories6 are the algorithms through which 
associative learning might be realized. PE signals, such 
as those observed in midbrain dopamine cells, are 
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implementational aspects of the account.7 Crucially, each 
level pertains to both animals and humans and we believe 
perturbations of those levels may underlie delusions.8

From Acolytes to Animals

Unbeknownst to Martin, some of her followers were 
imposters: social psychologists, led by Leon Festinger. 
The academics infiltrated the group as the end-times 
loomed. The result was a book; “When Prophecy Fails: 
A social psychological study of a modern group that pre-
dicted the destruction of the world.”9 They developed the 
theory of cognitive dissonance, the internal discord felt 
from holding conflicting beliefs simultaneously10—in this 
case, between the prophecy and real world events. People 
in the cult responded in a variety of ways to reduce their 
dissonance. Many relinquished their beliefs. In some 
cases, however, a dissonant experience actually increased 
conviction. For example, failed predictions were re-con-
textualized as actually having come to fruition (“the aliens 
did come for us, but they were scared off  by the crowds 
of press”). These deft sleights of mind11 will be familiar 
to those who have spoken to patients with delusions.12,13

Rodents may experience cognitive dissonance. When 
they learn that pressing a lever leads to reward, rats might 
be said to believe their action leads to the reward.14 If  
we degrade the contingency between action and reward, 
eventually pressing decreases.5 However, immediately 
following the contingency change, pressing can increase 
dramatically.15 Such extinction bursts15 have been equated 
with the increased conviction displayed by The Seekers 
when their prophecy failed.16 These superficial similari-
ties are encouraging, but we are far from a mature under-
standing of human and animal belief  and delusion.

Why so Little Progress?

Animal experimentation has led to remarkable progress 
in the treatment of  human suffering. However, early drug 
models of  hallucinations and delusions entailed anthro-
pomorphism on the part of  the experimenter, who had to 
infer that an animal was believing and perceiving things 
incorrectly. Early experimenters were discouraged. The 
absence of  a robust psychological theory of  belief  for-
mation led Jerry Fodor to assert that, whilst beliefs are 
among the most interesting phenomena, they are not 
ready to be explained in the same cognitive and neural 
terms as more accessible processes, such as vision.17,18 
However, there are now cognitive and neural theories of 
belief19 amenable to quantitative analysis20 across spe-
cies,19 and in the clinic.21

Drug Models

Delusions are challenging to study—the sufferer often 
denies any problem.22 Experimental models provide a 

unique window onto an otherwise inaccessible disease 
process.21 Ketamine, the N-methyl-D-aspartate (NMDA) 
glutamate receptor antagonist, transiently and revers-
ibly engenders delusion-like ideas in healthy people23and 
other animals.24 These delusions might be manifestations 
of aberrant PE,8 the mismatch between our expectancy 
in a given situation and what we experience.25 Derived 
from formal learning theory to explain mechanisms of 
animal conditioning, PE25 is signaled by dopamine and 
glutamate activity in the brain.26 It has also become a key 
process in theoretical models of human causal learning 
and belief  formation.19 By minimizing PE, we improve 
our ability to anticipate the causal structure of our envi-
ronment and we form causal beliefs.19 Inappropriate PE 
garners aberrant association and delusional belief.

PE may be excessively large or it may occur chaotically 
in people forming delusions.8,27 Describing his own delu-
sions, Peter Chadwick28 notes that when he sits on the bus 
he notices that all of the doors on the left hand side of the 
street are painted red. He moves to the right and notices 
all the doors on the right are painted green. This strikes 
him as puzzling. He concludes that things must have been 
arranged that way by a nefarious Organization. PE coin-
cident with the sensation of a green door and a red door 
drove an association between the doors’ representation 
and that of The Organization, manifesting clinically as 
a delusion.8,27

Our account resonates with notions of aberrant evolu-
tionary threat detection: a cognitive model of paranoia.29 
Threat detection is essentially a signal detection task.30 
Associative learning has been described in similar terms.31 
In paranoid individuals, the bias toward detecting threat 
where there is none30 may generalize beyond threat to per-
ception and cognition more broadly. By examining the 
neural and behavioral mechanisms of associative contin-
gency detection in animals, we may well gain new insights 
into situations where that detection has gone awry. We 
turn briefly to the history of associative ideas.

From Associationism to Computational Psychiatry

Belief  is typically defined as assent to the truth value of 
some proposition. This is a fine definition at the compu-
tational level, but we are also interested in algorithm and 
implementation. Thus, we align belief  with learning and 
memory.19 We learn beliefs from our own experiences and 
from others. And we store that learning as a network of 
associations between representations.32 This began with 
Plato.33 Aristotle outlined the first laws of association.34 
John Locke described the role of improper association of 
ideas in mental illness.35 Pavlov explored the mechanisms 
of association empirically.4 His conditioning paradigms 
have highlighted that mere contiguity is not sufficient for 
learning. For example, Leon Kamin discovered block-
ing, which involves the retardation of learning about a 
novel cue-outcome association when that cue is paired 
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with a stimulus that already predicts the outcome—the 
pretrained cue “blocks” learning about the novel cue.36 
Blocking demands that the association of ideas is sensi-
tive to surprise.37

Widrow and Hoff  created a simple connectionist neu-
ral network of  nodes, representing inputs and outputs 
as links between nodes.38 Those links were strengthened 
by reducing an error signal, the mismatch between the 
desired output from a given input and the output that 
actually occurred. A  similar algorithm was proposed 
for animal conditioning by Rescorla and Wagner25; 
environmental stimuli induce expectations about sub-
sequent states of  the world, exciting representations of 
those states. Any mismatch between the expectancies 
and actual experience is a PE. PEs are used as teaching 
signals to update future expectancies about stimuli and 
states. Under this scheme, blocking occurs because the 
outcome of  the compound of  pretrained and novel cues 
is completely predicted by the pretrained cue, which pre-
cludes the generation of  a PE signal and, subsequently, 
learning about the association between the novel cue 
and the outcome. Consequently, a chaotic PE that 
just happens to co-occur with the blocked cue should 
weaken blocking. This has been demonstrated with 
amphetamine administration,39 chemogenetic manipu-
lations of  cingulate cortex in40 and optogenetic manipu-
lation of  dopamine neurons in experimental animals.41 
In humans, weaker blocking has been observed in 
patients with schizophrenia,42 and the extent to which 
the neural PE signal is inappropriately engaged corre-
lates with delusion-like beliefs.43

The Role of Attention and Action

Attention is also critical for associative learning. We 
recognize the important impact of Kapur’s perspicuous 
“incentive salience theory” of psychosis,44 that delusions 
form as a consequence of aberrant incentive salience. 
Incentive salience is a quality from the behavioral neu-
roscience of addiction.45 Events with incentive salience 
grab attention and drive goal directed action.45 Kapur 
argued that excess dopamine release in the ventral stri-
atum might cause individuals to inappropriately imbue 
certain events with salience and to form delusions as a 
way of explaining those experiences. We note that aber-
rant salience theory was presaged by more mechanistic 
theories grounded in associative learning theory46,47 and 
that the data on dopamine release capacity48 have impli-
cated the associative striatum (not the ventral striatum) 
in the genesis of psychosis. Nevertheless, there do seem 
to be phenomenological and empirical data linking the 
broad category of aberrant salience to delusions.49

There are, of  course, complexities. Some rational the-
ories of  belief  demand that it drives action, that people 
can only be said to be believers if  they act consistently 
with their beliefs. Some people with delusions do not 

act on them; they may claim they are being poisoned 
but nevertheless they eat. This double-bookkeeping may 
be explained by concurrent negative symptoms sapping 
the motivation to act.50 However, even people without 
psychotic disorders do not act consistently with their 
beliefs; economists find a distinction between people’s 
expressed and revealed preferences. Future work will 
need to explore this phenomenon. There is a need for a 
statistical theory that allows interactions between per-
ception, action, and belief. We believe Bayes theorem 
may fill that role.

Bayes, Predictive Coding, and Associations

Thomas Bayes’ doctrine of probabilities (published post-
humously in 1873)6 has had a striking impact upon sci-
ence in recent years.51 The theorem embodies a formal 
approach to reasoning about data using hypotheses and 
captures the probabilistic nature of many of the tasks 
faced by organisms: to predict the environment and 
respond appropriately, by minimizing uncertainty about 
subsequent inputs. Stimuli enter through sensory organs 
and their neural representations are sculpted through 
hierarchical processing in the brain. Top-down expecta-
tions are communicated downwards.52 Any mismatch 
between expectation and current input (PE) is detected 
and must be resolved. Depending on the relative preci-
sion of priors and PE, the error is either ignored or used 
to update subsequent expectations with new learning.53,54 
Pavlov believed that Helmholtz’ unconscious perceptual 
inferences were aligned with his conditioned responses.4 
Bayesian formalisms can explain blocking,55 perceptual 
learning,56 and visual perception.57,58 Indeed, color-after 
effects in the visions59 appear to be subject to block-
ing.60–62 Taken together, these findings suggest a unified 
model of perception, action, and belief  driven by predic-
tions and PEs.

We do not think that there is one central PE, but rather 
multiple hierarchies of  inference that converge on an 
a-modal model of  the self. The hierarchies can influence 
one another—PE in one can alter inference in another, 
via this a-modal model.63 There are also lots of  ways 
that each PE may be perturbed—it may be too precise, 
it may not be precise enough, these effects could occur 
bottom-up (pathologies of  the error signal) or top-down 
(problems with priors).64 Thus far, in human work on 
delusions, we have not discerned which of  these pertains 
and whether the effects are consistent within levels of  a 
particular hierarchy or across hierarchies. For example, 
low-level sensory perturbations in a visual module could 
have effects on belief  higher in the hierarchy—that is, 
weak sensory priors (and increased low-level PE) may 
render cognitive priors (higher in the hierarchy) more 
rigid.65

Different hierarchies (perception, action, and belief) 
may engage different neuromodulators to encode the 
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precision of  priors and PE, thus one hierarchy may be 
impaired while others remain relatively intact (some 
people have delusions, others hallucinations). On the 
other hand, the hierarchies do interact in nonlinear 
ways; the Capilano Bridge Experiment gives a useful 
illustration. Subjects who traversed a tall suspension 
bridge confused their fear for romantic attraction to a 
person they met on the other side of  the bridge (com-
pared with a group that traversed a lower, more stable 
bridge).66 The point here is that we are not accurate 
at inferring our inner states and that one hierarchy’s 
unresolved PE can influence that of  another hierarchy. 
Allen and colleagues recently reported a psychophysical 
example: subliminally presented disgust faces change 
participants’ heart rate and skin conductance. These 
peripheral bodily changes alter the impact of  priors on 
visual decision making.67

Each hierarchy may have its own neuromodulators; 
dopamine for action beliefs, noradrenaline for intero-
ceptive beliefs, acetylcholine for exteroceptive beliefs,68 
but of  course these systems are inextricably linked. 
Boosting dopamine function in the ventral tegmental 
area (VTA) can change cholinergic function and sen-
sory representation in primary cortices,69 for example. 
Perhaps psychosis involves the penetration of  one hier-
archy by processing from another. This would lead to 
an inordinate influence of  belief  on perception (hal-
lucinations) and vice versa of  perception on belief  
(delusions). Perhaps certain types of  delusions and hal-
lucinations coincide more readily—for example, delu-
sions of  passivity and auditory verbal hallucinations. 
Such co-occurrence would be a key test of  our theory. 
If  some of  that work is to take place in preclinical ani-
mal models, we must decide whether they have beliefs.

Do Animals Have Beliefs?

Whether we can reasonably impute beliefs in experi-
mental animals is an intriguing philosophical question. 
The answer, of  course, depends on how we understand 
belief. We, like Dan Dennett, think a permissive defini-
tion is helpful.70 Some philosophers deny that animals 
have beliefs since they don’t have language and can’t 
express the distinction between their beliefs and what 
pertains.71 There is a behavioral mark that is coexten-
sive with having such a concept of  what one believes 
and how it differs from reality: surprise (or PE).72 PE 
does not require language. Wynn (1992) showed human 
infants a toy and then placed it behind a screen. Next 
she showed them another toy and also placed it behind 
the screen. The screen was then lowered, revealing either 
two toys (the expected outcome), or only one toy (sur-
prise). Infants looked longer at the unexpected outcome. 
This surprise—evidence of  prior belief—precedes the 
development of  language.73 Thus, because rodents and 
primates have PE signals, they too have beliefs.

Reasoning Rats?

If  Davidson is correct and only organisms with propo-
sitional representations can have beliefs, do rats reason 
with propositions? Some say they do.74 Rats can learn 
that on some occasions a light is followed by a tone and 
on others, light is followed by food. A group of observing 
rats (who saw these animals receiving mixed presentations 
of light-tone, and light-food) were subsequently given 
simple presentations of the tone (obscuring the light). 
If  these animals are engaging in propositional inference, 
the tone should indicate that the common cause of food 
and tone has occurred and they should expect to receive 
food. The animals had this expectation and approached 
the food cup,75 which is hard to reconcile with simple 
associative theory. These findings have been simulated 
with an associative model that activates a representation 
of the food through a complex chain of associations.76 
This seems similar to imagining what may arise. Because 
psychosis, delusions, and hallucinations may entail a con-
fusion of perception and imagination,77 paradigms that 
require retrieved representations for learning (imagina-
tion) may be particularly useful for clinical and preclini-
cal investigations of psychosis.

Imagining Rats?

Dating back to Jerzy Konorski (1967), associatively 
retrieved internal representations have been implicated 
in the genesis of hallucinations.78 For example, a hungry 
rat is presented with a tone, and, subsequently, a sweet, 
sugar solution. The rat learns after only a few trials that 
the tone predicts sugar. The tone evokes a highly real-
istic, sensory representation of the sugar, which the rat 
has trouble distinguishing from reality.79 If  one deval-
ues sugar solution, by pairing it with a nausea-inducing 
agent, rats will reduce consumption of sugar thereafter. 
However, with more experience of tone-sugar pairing, 
the tone evokes a more abstract representation of the 
expected reward, which the rat readily distinguishes from 
reality and the association becomes more resistant to this 
mediated devaluation.80 Neonatal ventral hippocampal 
lesions (NVHLs) disrupt the development of inputs to 
the prefrontal cortex.81 These animals have construct 
validity for psychosis (e.g., perturbed prefrontal func-
tion82). Following mediated devaluation, NVHL animals 
(compared with controls) decrease food consumption 
both early and later in training83—suggesting that they 
retain the rich and realistic sensory representations of the 
sugar evoked by the presence of the tone.83 Their real-
ity monitoring does not mature with more experience of 
tone-sugar pairings.83

This mediated learning may have been shown in 
humans,84 however, it would bear replication in patients 
with psychosis. Future preclinical work might employ 
some of the tools that have been brought to bear on 
blocking—like optogenetics41 and chemogenetics40—to 
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elucidate the neural and behavioral mechanisms of medi-
ated devaluation and its failure. For example, midbrain 
dopamine neurons may signal the inferred value of the 
sugar mediated by the tone representation.85 Ketamine 
induces aberrant firing of dopamine neurons.86 Perhaps 
that firing underpins the preserved sensitivity to devalua-
tion in the NHVL rats.

Delusion Persistence

In addition to being bizarre departures from reality, delu-
sions are remarkably fixed. In the Chicago cult we began 
by describing, the end of the world never came, yet some 
individuals increased their credulity. Likewise, when delu-
sions are questioned, bringing them to mind may actually 
serve to reinforce rather than to disrupt the memory.8,27,87 
The idea here is that re-evocation of an association may 
strengthen a memory even when it is not formally rein-
forced.27 We have modeled this process in humans and rats 
with ketamine.24 By creating new associations, reactivat-
ing them under ketamine, and then testing their strength, 
we observed that ketamine-reactivated associations were 
strengthened.87 In humans, this effect correlated with ket-
amine-induced psychosis and PE brain signal.87

Reversal Learning

Reversal learning tasks also assay belief  updating. They 
have been translated from preclinical models to patients. 
Subjects are challenged to select from two or more 
options (e.g., nose-poke terminals, or levers). The “cor-
rect” choice yields a rewarding outcome (for review, see 
Izquierdo et  al., 201688). Reward contingencies may be 
deterministic.89 Here, adaptive responding requires rec-
ognition of the reversal—a switch from positive to nega-
tive feedback, followed by inhibition of responding to the 
previously rewarding stimulus and ultimately learning of 
the new rewarding stimulus association. Probabilistic 
reversal learning tasks, on the other hand, place an addi-
tional demand on the subject: he or she must maintain 
and update a mental representation of the task struc-
ture to differentiate between probabilistic losses (correct 
choices that are not rewarded) and true reversals. This 
uncertainty provides an ideal setting to study belief  and 
delusions.90

Given that delusions are fixed beliefs, one might expect 
patients to perseverate on previously rewarding stimuli 
(i.e., fail to switch) after reversals. In reality, patients 
with psychosis show quite the opposite response. They 
exhibit increased switching and achieve fewer perfor-
mance-dependent reversals, even when learning of initial 
stimulus–outcome associations appears intact.91–95 This 
switching correlates with positive symptoms in both deter-
ministic and probabilistic tasks.93,96,97 In fact, patients with 
the highest positive symptom ratings exhibit the highest 
rates of switching, and they require fewer trials (i.e., less 
evidence) to alter responding after a reversal occurs.96  

It appears these patients may exhibit hyperflexibility, per-
haps analogous to the incorporation of seemingly disso-
nant views in an updated version of one’s world model.98 
This hyperflexibility is observed too in the classic beads 
task or urn problem.99,100 Patients with delusions tend to 
jump to conclusions99,100 (although meta-analyses conflict 
as to the specificity of this effect to delusions101,102). But 
they also flip-flop back and forth in their beliefs after 
jumping. This may reflect an aversion to uncertainty.103

Intriguingly, recent analyses of reversal learning 
point to patient subgroups among both unmedicated, 
drug-naive patients (in the earliest stages of the illness) 
and medicated patients in the chronic phase.91–95 Unlike 
healthy controls and patients who successfully navigate 
the task, a subgroup with higher positive symptoms 
exhibited reduced prefrontal cortex activation and choice 
behavior inconsistent with a Hidden Markov Model (a 
computational estimation of beliefs about reversals and 
contingency stability updated trial-by-trial93). Patients 
who switch excessively also have more positive symp-
toms.96 Furthermore, in a study of schizotypal individu-
als, those with more unusual experiences and beliefs were 
more likely to show behavioral switching.104 While these 
findings are not immediately explicable in terms of a 
worsening reversal performance with illness chronicity, 
it is indeed the case that positive symptoms do improve 
with treatment and become a less salient feature of the 
clinical picture in more chronic patients, and in those 
whose positive symptoms are treatment resistant, the 
switching enhancement is sustained. Thus, there seems to 
be a relationship between delusions, hallucinations, and 
reversal-learning performance. We suggest that excessive 
switching could be similar to the flip-flopping behavior 
observed in the beads task and may, through reversal 
learning tasks, be accessible with animal work.

One model—the methylazoxymethanol acetate 
(MAM) model in young rats105—may be consistent with 
the patient subgroup reported by Schlagenhauf et  al. 
These rats, exposed prenatally to MAM to induce abnor-
mal prefontal cortex development and dopamine activity, 
exhibit marked hypofrontality and hyperflexible switch-
ing behavior in probabilistic learning tasks.105 A  recent 
study of reversal learning as Bayesian belief  updating in 
rhesus monkeys106 found that haloperidol (D2 receptor 
antagonist) increased reliance on priors over new infor-
mation. Taken together, the preclinical data recapitu-
late reversal-learning dysfunction and offer new insights 
into how we might intervene and optimally tune reversal 
learning in service of treating positive symptoms.

Delusion Contents

Nearly all delusions are socially relevant; they are ideas 
about oneself and one’s relationships with others. Their 
content is crucially related to the individual’s specific fears, 
needs, or security.107 How can we model such complex 
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mutations of human social behavior in creatures like lab-
oratory rats? Simple associative experiments in relatively 
asocial animals (like rodents) can have implications for 
social learning in primates and in particular humans.108 
The same volatility-driven processes guide both human 
social learning and animal associative learning, in the 
same neural circuits. There may not be dedicated “social 
modules” but rather, a learning module that deals with 
hard inferences, social inferences being the hardest.108 
Thus, when errors encroach on our inferential mecha-
nisms, social inferences are the most susceptible and there-
fore most frequently the concern of our aberrant beliefs.

Predictive Coding of Self and Other

In our theory, the brain models incoming data and mini-
mizes PE.109 However, it also actively samples those data, 
by performing actions on the world (e.g., moving through 
it).110 By predicting (and ignoring) the sensory conse-
quences of our actions, we also model ourselves as agents 
that exist. And, by identifying with the top layers of the 
hierarchy, the conscious experience of being that self  
emerges.111 Passivity experiences—the sense that one’s 
actions are under external control—may arise when the 
predictive modeling of one’s actions fails and the active 
sampling of sensory data becomes noisy.112

Furthermore, Ketamine augments experience of the 
rubber hand illusion, the spurious sense of ownership 
of a prop-hand if  the hand is stroked at the same time 
as one’s own hand.113 People on ketamine get the illusion 
more strongly and they experience it even in a control con-
dition when the real and rubber hands are stroked asyn-
chronously.113 Patients with schizophrenia114 and chronic 
ketamine abusers show the same excessive experience of 
the illusion in the synchronous and asynchronous condi-
tions.115 Surprisingly, mice have been reported to be suscep-
tible to such an illusion.116 Stroking a rubber tail in view of 
the mouse, at the same time the real tail is stroked elicits a 
threat response when the rubber tail is approached.116 This 
paradigm could provide a key test of whether a manipula-
tion in rodents recapitulates psychosis, if  mice subject to 
the putative psychosis model (say ketamine) perceive the 
illusion in the asynchronous condition.114

We use our model of our self  to make predictions about 
others.63 To the extent that we do not share generative 
models with interlocutors, we will have social problems in 
reciprocal interactions. In psychosis, there may have been 
poor learning through development too (the oft noted 
neurological soft signs present in childhood home mov-
ies117), however, the impairment does not manifest until 
young adulthood, when the model needs to be used more 
extensively to make social predictions.

Delusions may represent attempts by the individual 
to garner some social capital118; the evolutionary biolo-
gist Ed Hagen has argued that, by knowing important 
information and trying to share it with others, people 

with delusional disorder may increase their sense of self-
worth.119 Social defeat is an animal paradigm in which 
defeat to a dominant conspecific engenders a sensitized 
dopamine system in experimental animals. This has been 
extrapolated to humans in an attempt to explain the 
increased propensity to psychosis in immigrants that has 
been noted in epidemiology studies.120 The social defeat 
model is useful in illustrating the impact of social deficits 
on the predictive learning system and how that impact 
may set the scene for psychotic symptoms. Returning 
to our initial example, the social support that is pres-
ent in the Chicago cult, and absent in many (but not all) 
patients—it seems that sharing your unusual beliefs with 
a social network of like-minded believers may render 
them less toxic (although Folie a Deux and Folie a Familie 
do complicate things121). Having our predictions go awry 
constantly is a very distressing, othering, experience. On 
the other hand, finding a group of people with whom one 
feels kinship and understanding can greatly reduce uncer-
tainty. We assume that people will behave like they have 
in the past and that they are like us. It is hard for people 
to synchronize with and understand the intentions of 
someone who is unpredictable, hence patients are rarely 
successful in convincing others to share their ideas. When 
they do, the people who endorse the patients’ beliefs are 
often close family members or friends, suggesting a pro-
pensity or susceptibility and perhaps more overlapping 
world models.121 We believe insights into observational 
learning from relatively asocial animals like rodents 
might well furnish a deeper understanding of the com-
plex phenomenology of delusions.

Summary and Conclusion

We have argued that a better understanding of delusions 
may be achieved by taking a reductionist approach to 
beliefs, conceiving of them as learned associations between 
representations that govern perception (both internal and 
external) and action. Central to the process of associative 
belief formation is PE, the mismatch between prior expecta-
tion and current circumstances. Depending on the precision 
(or inverse variance) of the PE relative to the prior belief, it 
may drive new learning (i.e., updating of the belief), or it 
may be disregarded. We have argued that this process of PE 
signaling and accommodation/assimilation may be awry 
in people with psychotic illnesses. In particular, we believe 
delusions form when PE is signaled inappropriately with 
high precision, such that it garners new and aberrant learn-
ing. We have described animal research that has furnished 
a mechanistic understanding of PE signaling in terms 
of underlying neurobiology; glutamatergic mechanisms 
underlie the specification of PE (NMDA receptors signal 
top-down expectancies, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) the feedforward error 
signal), and, depending on the specific hierarchy, slower 
neuromodulators (like dopamine, acetylcholine, serotonin, 
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noradrenaline, and oxytocin) signal precision of priors and 
PE. There are thus many routes through which PE can be 
aberrantly signaled and many heterogeneous consequences 
of aberrant PE. The inferences that are perturbed give rise 
to the specific contents of delusions (they are about other 
people and one’s relationships to them, because these are 
the hardest inferences to make). We have described how 
such error correcting inferential mechanisms might give rise 
to the sense of bodily agency (the sense of being a self) and 
to a sense of reality more broadly. Disrupting these senses 
is profoundly distressing and results in psychosis. We made 
suggestions for how these processes could be examined in 
preclinical models. Some of these data have been gathered. 
We believe it is time to complete the patchwork; to gather 
data in rodent models and human patients on the com-
plete suite of PE-driven associative learning tasks we have 
outlined (blocking, reversal learning, representation-medi-
ated devaluation, and ownership illusions). Armed with 
an understanding of exactly how people with delusions 
fare on these tasks and exactly which neural mechanisms 
underpin them, we will be much better placed to determine 
the pathophysiology underpinning delusions and to tailor 
treatment approaches aimed at that pathophysiology.
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