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Abstract

The proteolytic processing of collagen (collagenolysis) is critical in development and homeostasis, 

but also contributes to numerous pathologies. Mammalian interstitial collagenolytic enzymes 

include members of the matrix metalloproteinase (MMP) family and cathepsin K. While MMPs 

have long been recognized for their ability to catalyze the hydrolysis of collagen, the roles of 

individual MMPs in physiological and pathological collagenolysis are less defined. The use of 

knockout and mutant animal models, which reflect human diseases, has revealed distinct 

collagenolytic roles for MT1-MMP and MMP-13. A better understanding of temporal and spatial 

collagen processing, along with the knowledge of the specific MMP involved, will ultimately lead 

to more effective treatments for cancer, arthritis, cardiovascular conditions, and infectious 

diseases.
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1. Introduction

The matrix metalloproteinases (MMPs) are a family of Zn2+-dependent endopeptidases. 

MMPs were first identified as enzymes capable of catalyzing the hydrolysis of collagen [1]. 

MMP-mediated collagenolysis has long been implicated in the physiological remodeling of 

tissues and embryonic development as well as the progression of disease pathologies. 

Inhibition of MMP collagenolytic activity has been extensively pursued [2–4], but with little 

success in the clinic [5–7]. One of the limitations of previous inhibitor development was the 

lack of recognition that some MMPs have host beneficial functions that should not be 

modulated if possible [8–11]. Systems biology approaches have allowed for a more global 

view of MMP activities [12–18], and insights into the MMP collagenolytic mechanism [19–

21] has revealed possibilities for selective inhibition of collagenolytic MMPs. The role of 
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specific MMPs in collagenolysis, and the relationship between collagenolysis and disease, 

has been better defined through the use of knockout and mutant animal models.

2. Structural organization and assembly of interstitial collagens

Collagens are the most abundant proteins in the human body and the main components of 

the extracellular matrix (ECM). The collagen family is made up of at least 28 members [22–

24]. Collagens are composed of three α chains of primarily repeating Gly-Xaa-Yaa triplets, 

which induce each α chain to adopt a left-handed polyPro II helix. Three chains then 

intertwine, staggered by one residue and coiled, to form a right-handed superhelix [25, 26]. 

Triple-helical structure provides collagens with exceptional mechanical strength, broad 

resistance to the proteolytic enzymes, and a distinct topology for protein-protein interactions 

[27].

Collagens have been classified according to their α chains. Homotrimeric collagens (i.e., 

types II and III) have three α chains of identical sequence. Heterotrimeric collagens have 

two α chains of identical sequence (designated α1) and one α chain of differing sequence 

(designated α2) (i.e., type I), or three α chains with different sequences (designated α1, α2, 

and α3) (i.e., type VI) [28]. Collagens are further classified into subfamilies, based on their 

quaternary structure. These subfamilies include fibrillar, fibril associated with interrupted 

triple-helices, short chain, basement membrane, multiplexins, and membrane associated with 

interrupted triple-helices [28]. The most common collagens (types I, II, III, V, and XI) have 

fibrillar structures [29].

Types I, II, and III collagen compose the interstitial collagen subfamily. Interstitial collagens 

are so named because of their proximity to cells in the extracellular space. Type I collagen, 

the most profuse and ubiquitous of the collagens, is found in the majority of connective and 

embryonic tissues [28, 30]. Type II collagen is found in cartilage and the vitreous humor 

[30]. Its expression also occurs during embryogenesis. Type III collagen is found in visceral 

and cardiovascular tissues [30], as well as in numerous tissues characterized by high type I 

collagen content. Type V collagen is found associated with type I collagen, while type XI 

collagen is associated with type II collagen [31, 32].

The triple-helical domains of types I, II, and III collagen span 1014–1023 residues. Each of 

these collagens also initially possess N- and C-terminal non-triple-helical regions 

(propeptides). Following synthesis, but before interstitial procollagen can be properly folded, 

a series of post-translational modifications must occur on the central (Gly-Xaa-Yaa)n 

domain, including hydroxylation of most Pro and some Lys residues in the Yaa position (by 

prolyl 4-hydroxylase, prolyl 3-hydroxylase, and lysyl 5-hydroxylases) followed by 

glycosylation of selective 5-hydroxylysine residues [33–36]. Glycosylation also occurs on 

some Asn residues in the C-terminal propeptides. Disulfide bonds between the propeptides 

are rearranged by protein disulfide isomerase and isomerization of Pro and 4-hydroxy-L-

proline (Hyp) from cis to trans takes place [37–39]. Assembly and correct folding of 

procollagen occurs within the endoplasmic reticulum [40]. Hsp47 stabilizes the folded 

triple-helix [41–43].
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The C-terminal propeptides mediate interaction between three α chains and hold these 

chains in place, nucleating triple-helical formation. Lateral association of triple-helices 

occurs in the Golgi [40]. The triple-helical molecules are then secreted from the cell and the 

N- and C-terminal propeptides that flank the central (Gly-Xaa-Yaa)n domain are removed. 

The resulting tropocollagen contains short N- and C-terminal telopeptides and the central 

triple-helical domain. A disintegrin and metalloproteinase with thrombospondin motifs 2 

(ADAMTS-2) removes the N-terminal propeptide from types I, II, and III procollagens [44]. 

ADAMTS-3 processes the N-terminal propeptide from type II procollagen, while 

ADAMTS-14 processes the N-terminal propeptide from type I procollagen [44]. Procollagen 

C-proteinase-2/bone morphogenetic protein-1 cleaves the C-terminal propeptides from types 

I, II, and III procollagens [45, 46]. Meprins α and β also cleave procollagen III N- and C-

propeptides, releasing the mature protein which then assembles into fibrils [47]. Cleavage by 

meprins is at the same site as procollagen C-proteinase-2. Oxidation of Lys residues by lysyl 

oxidases (LOXs) allows for the formation of intermolecular crosslinks, which stabilize 

higher order structures such as fibrils and fibers [48].

3. Am I a collagenase? MMPs that catalyze interstitial collagen catabolism

Hydrolysis of interstitial collagens occurs by a limited number of proteases. The scientific 

literature contains numerous examples of proteases deemed “collagenolytic,” but this is 

often obscured by the lack of criteria by which an enzyme is classified to efficiently catalyze 

the hydrolysis of an intact triple-helix. A collagenolytic enzyme should be considered one 

that processes a triple-helix under conditions by which that triple-helix is intact. One 

standard test for triple-helical integrity is susceptibility to trypsin hydrolysis [49]. Some 

collagens (type III) have more “flexible” potential cleavage sites than others (type I), and 

thus are more susceptible to hydrolysis by a variety of proteases [50–52]. A collagenolytic 

enzyme should thus process the triple-helix efficiently, i.e. with a reasonable kcat/KM value 

for soluble collagen or specific activity for fibrillar collagen [53]. The fibrillar form of 

collagen is more resistant to general proteolysis [54], and MMP hydrolysis of fibrillar 

collagen has a higher activation energy than for soluble collagen [55]. Collagenolytic 

activities between enzymes can also be directly compared to determine relative efficiencies 

of proteolysis.

Interstitial collagens have long been recognized as being hydrolyzed by the “classic” 

collagenases, MMP-1, MMP-8, and MMP-13, into ¾ and ¼ length fragments (Table 1 and 

Fig. 1) [53, 56–62]. All three of these enzymes catalyze collagen hydrolysis efficiently 

(Table 2), but their relative activities towards interstitial collagens differ. MMP-1 has greater 

catalytic activity on type III collagen as a substrate. At 25 °C, the MMP-1 collagen 

preference is III > I ≫ II [63]. MMP-8 preferentially cleaves type I collagen over types II 

and III collagen at 25 °C [63]. MMP-13 cleaves type II collagen 5- and 6-times faster than 

types I and type III collagen, respectively, at 25 °C [53].

There is some ambiguity as to the collagenolytic activity of the gelatinase members of the 

MMP family, MMP-2 and MMP-9. MMP-2 has been reported to cleave types I, II, and III 

collagen [64–66], although other reports have brought into question how robust the type I 

collagenolytic activity of MMP-2 is [67, 68]. Recombinant MMP-9 (0.5 μg) was found to 
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cleave type I collagen (27 μg) at 37 °C after 72 h [69]. MMP-9 also digested type III 

collagen at 25 °C following 98 h treatment [69]. For MMP-2 and MMP-9, the interstitial 

collagen cleavage site is the same as the classic collagenases (Table 1). For both MMP-2 and 

MMP-9, type III collagen is a preferred substrate compared with types I and II [65, 69]. 

Most likely, MMP-2 and MMP-9 do not contribute significantly to interstitial collagen 

turnover in vivo, but instead produce collagen fragments following the action of MMP-13 or 

MT1-MMP (see below).

The ability of MMP-9 to cleave the intact triple-helix of type V collagen has been reported 

[70–72]. Conditions were 438–876 nM MMP-9, 2 μg human type V collagen for 30 h at 

30 °C [71], which resulted in near complete digestion of the collagen, or 22–43 nM MMP-9, 

1 μg/μL human type V collagen for 18 h at 30 °C [72], which resulted in more moderate 

digestion of the collagen. Although the cleavage sites within type V collagen was identified 

by treatment at 30 °C for 16 h, the sites were slightly out of alignment within the 

[α1(V)]2α2(V) heterotrimeric triple-helix (Table 1) [70].

Transfection of two membrane type-MMPs (MT-MMPs), MT1-MMP/MMP-14 and MT2-

MMP/MMP-15, allowed invasion-incompetent cells to penetrate type I collagen matrices 

[73]. MT1-MMP processes types I–III collagen at the same site as the classic collagenases 

(Table 1) [74]. MT1-MMP prefers type I collagen, as activity against type I collagen was 

estimated to be 4 times that of type II collagen and 6.5 times that of type III collagen [74].

Some studies indicated a requirement of MT1-MMP homodimerization through the 

hemopexin-like (HPX) domain for efficient collagenolysis [75, 76]. Alternatively, deletion 

of the HPX domain did not inhibit collagen invasion modulated by cell surface-bound MT1-

MMP [77, 78]. In solution, MT1-MMP was not found as a dimer [21, 79] and the MT1-

MMP HPX domain alone did not form a dimer [80]. The low level of collagenolytic activity 

observed with an MT1-MMP HPX domain mutant [81] may have been due to disruption of 

favorable MT1-MMP interaction with the cell surface rather than dimer disruption [79]. The 

conflicting results in prior studies may result from different MT1-MMP constructs being 

utilized. When MT1-MMP residues 336-535 were deleted (the resulting enzyme contained 

the CAT domain, the linker, and 18 residues from the HPX domain), collagenolysis was 

inhibited [76]. In this construct Cys318 is present; in the full-length MT1-MMP, Cys318 

forms a disulfide bond with Cys507. When MT1-MMP residues 318-535 were deleted (the 

resulting enzyme contained the CAT domain and the linker), collagenolyis was still observed 

[77]. In this construct there are no unpaired Cys residues. Ultimately, recent studies have 

concluded that dimerization is not necessary for MT1-MMP catalyzed collagenolysis [21, 

79], and that collagenolysis can occur without the HPX domain when the enzyme is cell-

surface bound [77, 78].

MT3-MMP/MMP-16 was found to cleave type III collagen at the classic site (Table 1), and 

was more efficient at processing type III collagen than MT1-MMP (Table 2) [82]. 

Conversely, MT3-MMP did not cleave types I and II collagen within their triple-helical 

domains [82]. Transfection of MT3-MMP either did not allow or only weakly allowed 

invasion-incompetent cells to penetrate type I collagen matrices [73, 83]. Similar behavior 

was observed with MT3-MMP-expressing WM852 melanoma cells [84]. However, in 
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complete contrast, Shi et al. found MT3-MMP to efficiently process types I and II collagen 

films [85]. The differences in observed MT3-MMP collagenolytic activities may originate 

from the constructs or cell types (MDCK cells [73, 83], WM852 melanoma [84], and Cos-7 

cells [85]) used.

MT6-MMP/MMP-25 was initially reported to have little or no collagenolytic activity [86, 

87], but subsequently was found to cleave types I and II collagen (albeit at 37 °C) [88] and a 

triple-helical peptide model of the classic collagenase cleavage site in interstitial collagen 

[89]. The MT6-MMP cleavage sites in the α1 and α2 chains of type I collagen did not align, 

and many sites were located in the non-triple-helical C-terminal telopeptide region [88]. 

This indicates that MT6-MMP is not aa truly collagenolytic protease.

The CAT domain of MMP-12 processes types I and III collagens at 33 °C, where hydrolysis 

occurs at the classic cleavage site and at numerous other sequences [90]. The classic 

collagenase cleavage site seemed to be the most sensitive to MMP-12 (Table 1). However, 

we found that MMP-12 could not cleave type I collagen efficiently under conditions 

comparable to other collagenases (Fig. 2). The observed hydrolysis reported previously was 

most likely due to the combination of high concentration of enzyme and substrate (10 μg/mL 

of enzyme with 1 mg/mL substrate), temperature (33 °C), and time (24 h). In similar 

fashion, although the MMP-12 catalytic domain has been reported to cleave the triple-helix 

of type V collagen [91], we found that it could not cleave type V collagen efficiently (Fig. 

3). The prior study used 0.2 μg of enzyme and 10 μg of type V collagen at room temperature 

for 16 h.

MMP-3 binds to type I collagen, but does not cleave the native triple-helix [92, 93]. 

However, the MMP-3 catalytic (CAT) domain can cleave collagen when the triple-helix is 

destabilized by catalytically inactive MMP-1 [94]. Thus, MMP-3 is entirely competent to 

cleave type I collagen, but does not. Based on the MMP collagenolysis mechanism, the 

linker needs to be able to properly orient the CAT and HPX domains [19–21]. Large domain 

movements based on the flexible linker have been observed for MMP-1, MMP-9, and 

MMP-12 [20, 95–98]. Gly272 is critical for the collagenolytic activity of MMP-1, with its 

role proposed to be the linker-bending motion that allows the HPX domain to present 

collagen to the CAT domain [99, 100]. MMP-1 and MMP-8 linkers are considerably shorter 

than the MMP-3 linker, while MT1-MMP linker is very long (33 residues), with significant 

and heterogeneous O-glycosylation [101]. Thus, linker length per se is not the ultimate 

criteria for efficient collagenolysis. A chimeric MMP-8 whose linker region (16 residues) 

was replaced with the corresponding MMP-3 sequence (25 residues) lost activity towards 

collagen [102]. In similar fashion, MMP-1/MMP-3 chimeras possessing the MMP-3 linker 

are not active towards collagen [93, 103]. The linker appears critical for proper alignment of 

the CAT and HPX domains during collagenolysis. Ultimately, there may be negative 

regulation of collagenolytic activity due to (mis)alignment of the CAT and HPX domains in 

the case of MMP-3 and other non-collagenolytic MMPs.

The intact triple-helix of interstitial collagen is cleaved efficiently by the cysteine protease 

cathepsin K under acidic conditions (optimum pH 5.0) [104–106]. Five distinct sites of 
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cathepsin K hydrolysis of type I collagen have been identified, as well as one in type II 

collagen (Table 1 and Fig. 1) [105, 107].

To determine “am I a collagenase?”, the most prudent approach is to compare an enzyme to 

a known collagenase (such as MMP-1) and a non-collagenolytic protease (such as trypsin) 

using gel-based analysis of collagen degradation (as shown in Figs. 2 and 3). One can 

readily monitor the disappearance of the intact collagen chains over time to evaluate kinetic 

parameters. Active enzyme concentrations should be comparable on a molar basis, and an 

appropriate temperature used whereby there is no collagenolysis by the non-collagenolytic 

protease. For cell surface-bound enzymes, comparisons to MT1-MMP-producing or -

transfected cells can be performed for invasion of collagen matrices or processing of 

collagen films. In lieu of titrating the amount of active enzyme on the cell surface (which 

can be quite difficult), total protein concentration of the enzyme and MT1-MMP should be 

comparable.

4. The role of collagen catabolism in normal physiology

The proteolysis of collagen is integral for numerous physiological functions including 

morphogenesis, tissue remodeling, and wound healing. Determining which MMPs 

participate in collagenolysis is difficult, based on the fact that MMPs have multiple activities 

beyond collagenolysis. For example, MT1-MMP participates in collagenolysis, shedding of 

cell surface biomolecules, hydrolysis of serum proteins, cytokines, fibrillar amyloid β-

protein, fibronectin, Notch1, and the laminin-5 γ2 chain, and activation of proMMP-2 and 

the pro-αv integrin subunit [108–125]. MT1-MMP is also active intracellularly, processing 

centrosomal breast cancer type 2 susceptibility gene (BRCA2) and pericentrin, where the 

latter event leads to chromosomal instability [126, 127]. In addition, collagen hydrolysis by 

MMPs has other effects, such as directly disrupting the fibronectin binding site [128] and 

revealing cryptic binding sites within collagen chains [129–132]. Bulk collagenolysis may 

be performed by several MMPs in a redundant and compensatory fashion [78]. However, the 

ultimate products of collagenolysis and their effects on cellular behaviors differ based on the 

specific MMP [132]. Precise roles for collagen catabolism have been ascertained from MMP 

knockout mice or mutant collagen mice.

There are several pathways that have been considered for mammalian collagen catabolism 

[62]. One pathway involves initial extracellular MMP hydrolysis of collagen fibrils, 

followed by the large collagen fragments undergoing urokinase plasminogen activator 

receptor-associated protein (uPARAP)/Endo180-mediated (on mesenchymal cells) and 

mannose receptor-mediated (on macrophages) endocytosis, lysosomal delivery, and 

cathepsin catalyzed degradation [133–136]. The initial collagen proteolysis has been 

ascribed to MT1-MMP [133, 137].

Knockout studies showed that MT1-MMP has a variety of roles in skeletal development, as 

aberrant cranial bone formation was observed at birth in MT1-MMP knockout mice, and 

over time osteopenia increased and bone mass decreased [138]. These effects were attributed 

to a lack of interstitial collagenolytic activity of MT1-MMP [138, 139], as the knockout 

mice exhibited increasing fibrosis in tendons, ligaments, synovial capsules, musculotendinal 
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junctions, and septal/fascial structures and persistence of parietal cartilage [138]. The 

skeletal defects may also have contributions from the lack of other proteolytic activities of 

MT1-MMP, or indirect effects of decreased collagenolysis, such as the lack of regulation of 

fibronectin binding to collagen (see above). A mutation in the signal peptide (Thr17Arg) 

results in decreased production of active MT1-MMP in Winchester Syndrome [140]. The 

mutation is hypothesized to affect MT1-MMP transport to the cell membrane [140]. 

Winchester Syndrome is characterized by osteolysis, or “vanishing bone” syndrome, whose 

skeletal phenotype parallels that observed in the MT1-MMP knockout mouse [140].

MT3-MMP also contributes to skeletal development [85]. MT1-MMP/MT3-MMP double 

deficiency mice have severe craniofacial dysmorphism and shortening of cortical bone 

beyond that observed in MT1-MMP knockout mice. These contributions of MT3-MMP are 

proposed to be a result of the collagenolytic activity of the enzyme (see above) [85].

Knockout studies indicated that MMP-13 functions in skeletal growth plate development 

(the transition from cartilage to bone) [141]. More specifically, in the knockout mice growth 

plates had a lengthened hypertrophic chondrocyte zone and trabecular bone was increased 

over time [141]. The lack of MMP-13 to process cartilage type II collagen was key to these 

effects [139, 141]. A mutation in the propeptide of MMP-13 (Phe56Ser) results in the 

Missouri variant of spondyloepimetaphyseal dysplasia (SEMD), a human disorder [142]. 

The mutant MMP-13 is degraded intracellularly [142]. SEMD is characterized by 

abnormalities in development and growth of endochondral skeletal components [141, 142]. 

An Arg792Gly mutation in type II collagen results in SEMD congenita [143]. This mutation 

has been suggested to negatively effect the MMP HPX domain interaction with the P17’ 

subsite of collagen [144] and hence decrease collagen turnover. Alternatively, it has also 

been proposed that the mutation results in increased binding of type II collagen to 

fibronectin and poor ECM assembly [145].

MT1-MMP knockout mice have arrested tendon development around the time of birth [146]. 

The knockout mouse tendons had collagen fibrils of ~50 nm diameter that were retained by 

fibripositors (actin-dependent invaginations of the plasma membrane). It was determined 

that collagenolysis by MT1-MMP was not essential for tendon development, but MT1-MMP 

processing of fibronectin was, resulting in the release of fibrils from fibripositors [146].

Substitution of Pro for Gln774 and Ala777 in the Col1a-1 gene results in the production of 

type I collagen resistant to MMP-1, MMP-8, and MT1-MMP processing [147–149]. 

Introduction of this MMP resistant type I collagen in mice did not affect development to 

young adulthood [150]. MMP-13 cleaved the N-terminal telopeptide region of the resistant 

type I collagen [151, 152]. The relatively mild effects of the mutant collagen on 

development to young adulthood may be due to release of triple-helices from fibrils by 

aminotelopeptidase activity [150], denaturation of the isolated triple-helices at body 

temperature [153], and general proteolysis of isolated chains. However, after 3–6 months of 

age, mice displayed thickened skin with dermal fibrosis [150]. Additionally, postpartum 

involution of the uterus was impaired in female mice bearing the mutant collagen [150]. The 

uteri were filled with nodules consisting of primarily type I collagen fibers [150]. Thus, it 

was proposed that cleavage in the N-terminal telopeptide region contributed to remodeling 
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of type I collagen during development to young adulthood, but cleavage within the triple-

helix was needed for remodeling during adulthood [151]. This may be due to collagen cross-

linking over time.

Skeletal remodeling was altered in the collagen mutant mice, with increased calvarial 

periosteal and tibial/femoral endosteal bone deposition observed at 3–12 months of age 

[154]. Osteocyte/osteoblast apoptosis occurred in the collagen mutant mice starting at 2 

weeks of age [154]. It has been proposed that MMP-derived collagen cleavage products are 

anti-apoptotic [131, 141, 155]. This may be the reason that parathyroid hormone induction 

of osteoclastic bone resorption is greatly reduced in the collagen mutant mice [156]. Failure 

to degrade type I collagen impaired hepatic stellate cell apoptosis and may prevent the 

effective restoration of hepatocyte mass in liver fibrosis [157]. Wound healing, 

reepithelization, and contraction were delayed in the first 2 weeks after injury in type I 

collagen mutant mice [158]. The number of contractile myofibroblasts in the wound was 

decreased, and thus differentiation of fibroblasts to myofibroblasts was impaired [158]. The 

signal to produce α smooth muscle actin to generate tensile force to contract the tissue was 

not received [158]. It is possible that apoptosis, as described above, may be the reason why 

wound healing is impaired [158]. In addition, MMP-1 processing of type I collagen has been 

shown to promote keratinocyte migration during reepithelialization [159, 160].

For the mutant collagen studies, the precise MMP involved was not identified. As described 

above, specific roles for MT1-MMP and MMP-13 collagenolysis have been identified. MT1-

MMP also contributes to postnatal vascular development and skin homeostasis by cleaving 

type I collagen [139, 161]. MT1-MMP does not appear to be the critical collagenase for 

wound repair [161].

Cathepsin K deficiency resulted in pycnodysostosis, a bone-sclerosing dysplasia [162]. 

Undigested collagen fibrils are observed in osteoblasts and fibroblasts during 

pycnodysostosis [163, 164]. Patients treated with the cathepsin K inhibitor balicatib 

exhibited skin hardening, which was correlated to thickened collagen bundles and a 

hypocellular and hypovascular dermis [165].

5. The role of collagen catabolism in disease

The proteolysis of collagen has been recognized as a contributing factor to multiple 

pathologies, including tumor cell spreading (metastasis), arthritis, glomerulonephritis, 

periodontal disease, tissue ulcerations, cardiovascular disease, and neurodegenerative 

diseases [166–171].

It has long been demonstrated that tumor extracts can possess collagenolytic activity [61, 

171, 172]. MT1-MMP is the dominant pericellular collagenase operative in vivo enabling 

cells to migrate through connective tissue matrices where collagens exist as insoluble fibers 

[121, 173–175]. MT1-MMP appears to play a significant role in tumor metastasis [173, 176, 

177]. Interestingly, even though MT1-MMP is an interstitial collagenase, in similar fashion 

to several secreted MMPs (MMP-1, MMP-8, and MMP-13), the activity of MT1-MMP, but 

not of secreted collagenases, is critical for transmigration of tumor cells, endothelial cells, 
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and fibroblasts through collagen matrices [73, 78, 178–183]. Tumor cell invasion through 

type I collagen is dependent upon MT1-MMP activity [182]. Collagen degradation by MT1-

MMP results in cryptic Arg-Gly-Asp sites being revealed and binding to the αvβ3 integrin. 

Integrin ligation then activates ERK through c-Src, which in turn causes tumor cell 

proliferation [184]. MT1-MMP collagenolysis has been correlated to metastasis in vivo 
[176]. Additional roles for collagenolysis in tumor progression have been described [185], 

including participation of MMP-1 collagenolytic activity in metastasis [186].

Homotrimeric type I collagen is produced by a variety of tumor cells but not cancer-

associated fibroblasts [187]. Homotrimeric type I collagen is highly resistant to 

collagenolytic MMPs [188], and wild type fibroblasts degraded heterotrimeric type I 

collagen matrices but not homotrimeric type I collagen matrices [187]. Homotrimeric type I 

collagen enhances tumor cell proliferation and migration compared with heterotrimeric type 

I collagen. It has been suggested that tumor cells might use MMP-resistant homotrimeric 

type I collagen fibers as “roadways” for invasion [187].

Matrix stiffness has been implicated in tumor progression, with collagen considered a 

significant contributor to changes in the cellular mechanical microenvironment [189, 190]. 

Increased orientation of interstitial and fibrillar collagens, and increased stiffness, is seen in 

the invasive front of human breast cancer [190]. Transforming growth factor β (TGF-β) 

enhances collagen deposition in breast and pancreatic cancers [190, 191], and TGF-β can be 

activated by MMP-2, MMP-9, and MT1-MMP [192–195]. Increased matrix tension due to 

LOX crosslinking of collagen induces integrin signaling [196]. In turn, inhibition of LOX 

activity impedes breast tumor progression [196]. Mechanotransduction and oncogenic 

signaling pathways may be synergistic in promoting tumorigenicity [189], and there is 

mechanical heterogeneity within tumors [190]. While intact collagen is required for 

signaling and matrix stiffness, MMP degradation of collagen facilitates tumorigenesis [189]. 

LOX and MMPs most likely collaborate to create a dynamic collagen-based 

microenvironment [189].

Osteoarthritis (OA), the most common form of arthritis, is characterized by the destruction 

of articular cartilage. The main constituents of articular or joint cartilage are type II collagen 

and various proteoglycans, such as aggrecan, chondroitin sulfate, and hyaluronan [197]. 

Tensile strength of articular cartilage is due to the triple-helical structure of type II collagen 

[198]. In native joint cartilage, type II collagen fibrils are protected from cleavage by tight 

association with molecles of aggrecan [199]. In arthritic cartilage, aggrecan is hydrolyzed by 

ADAMTS-1, ADAMTS-4, and ADAMTS-5, collectively known as aggrecanases [200]. 

Aggrecanolysis removes aggrecan molecules from type II collagen fibrils, which makes 

collagenolysis possible.

MMP-13 has been shown to be the main collagenase responsible for degradation of articular 

cartilage during OA [201, 202]. Under normal circumstances, MMP-13 is constitutively 

produced in human chondrocytes, but is rapidly endocytosed and degraded [203, 204]. 

MMP-13 is specifically expressed in the cartilage of human OA patients and is not present in 

normal cartilage. MMP-13 synovial fluid levels correlate to human OA severity [205]. 

Furthermore, transgenic animal models indicate that overexpression of MMP-13 induces 
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joint abnormalities characteristic of human OA [206]. More specifically, mice expressing an 

inducible transgene of spontaneously active MMP-13 had increased cartilage collagen 

cleavage and OA progression [202]. Studies with semi-selective and selective MMP-13 

inhibitors demonstrated that MMP-13 inhibition renders protection to human and bovine 

cartilage cultures as well as providing chondroprotective effects in vivo [206, 207]. 

Cathepsin K has also been implicated in fibroblast-mediated degradation of type II collagen 

in cartilage [208].

Osteoporosis (OP) is a chronic skeletal disease that is predicted to affect nearly 61 million 

women over the age of 50 in the United States by the year 2020 [209]. The skeletal density 

is dependent on constant bone remodeling events, which are regulated by the balance of 

osteoblast bone building and osteoclast resorptive actions. Bone is primarily comprised of 

type I collagen which is mineralized via the deposition of apatite during its synthesis by 

osteoblasts. Estrogen deficiency increases osteoclast formation by increasing the levels of 

available pro-osteoclastogenic cytokines [210, 211]. Osteoblastic cells have been shown to 

secrete multiple MMPs, including MMP-2, MMP-3, MMP-8, MMP-9, MMP-13, and MT1-

MMP, while MMP-9 is mainly expressed by osteoclasts [212]. These MMPs have been 

shown to be capable of degradation of the osteoid that covers the bone trabeculae and to 

initiate or activate bone remodeling in mice, rats, and humans [213, 214]. MMP-13 is mainly 

associated with mineralized bone matrix, is thought to be essential for osteoclastogenesis, 

and plays an important role in degradation of type I collagen in bone matrix in concert with 

cathepsin K and MMP-9 [212]. One of the mechanisms of estrogen deficiency-induced bone 

loss is ascribed to the abnormal expression of multiple MMPs in osteoblastic cells, as 

estrogen inhibits bone resorption and reduces bone turnover rate by down-regulating the 

expression of MMP-13 in osteoblastic cells [214].

The selection of MMP-13, as opposed to other proteases, as a target in OA and OP is well 

justified. For example, cartilage degradation is reversible in the presence of aggrecanase 

activity, but not once type II collagen degradation has proceeded [215]. Inhibition of 

cathepsin K, which has been pursued for OP, may indiscriminately prevent normal collagen 

turnover outside of the skeletal system [216].

During pathological vessel remodeling, neointimal lesions and subsequent occlusive events 

found in atherosclerosis and postangioplasty restenosis result from MT1-MMP activity 

[217]. Vascular smooth muscle cells use MT1-MMP to degrade and infiltrate three-

dimensional collagenous barriers including the arterial wall (which is rich in type I collagen) 

[217]. Amongst several causes, atherosclerotic plaque vulnerability (rupture) has been 

postulated to result from processing of interstitial collagens in the fibrous cap of the plaque 

[218]. It is presently not clear which collagenase (MMP-1, MMP-8, and/or MMP-13) 

contributes to plaque instability [218].

Increased collagen synthesis over catabolism can result in myocardial fibrosis, leading to 

ventricular hypertrophy and diastolic dysfunction [219]. In contrast, increased collagen 

catabolism over synthesis can lead to ventricular dilatation and systolic dysfunction [219]. 

MT1-MMP myocardial levels are increased post-myocardial infarction (MI) and coincident 

with adverse left ventricular remodeling [220, 221]. MT1-MMP is the dominant collagenase 
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within myocardial tissues [221]. Following MI, MT1-MMP+/− mice have a survival 

advantage over MT1-MMP+/+ mice, while post-MI survival is reduced when MT1-MMP is 

overexpressed [220]. Survival has been correlated to decreased collagenolytic potential of 

cardiac fibroblasts (preservation of myocardial type I collagen network) [221]. Liberation of 

collagen fragments and subsequent processing by MMP-9 can help or hinder left ventricle 

remodeling post-MI, depending upon the timing and extent of MMP-9 action [222, 223].

Pulmonary fibrosis occurs following repeated bouts of lung injury, as observed in cystic 

fibrosis, usual interstitial pneumonitis (UIP)/idiopathic pulmonary fibrosis (IPF), and acute 

respiratory distress syndrome (ARDS). Pulmonary fibrosis corresponds to excess collagen 

production compared with degradation. [224]. Fibrosis may be the result of a change in 

collagen composition, resulting in decreased degradation, or an increase in the production of 

protease inhibitors. A greater proportion of type I collagen compared with type III collagen 

is observed in lung fibrotic tissue compared to normal lung tissue. Fibrotic tissue also has 

increased amounts of collagen binding biomolecules, such as fibronectin and proteoglycans, 

increased proportion of hydroxylated Lys residues within the collagen, and an increase in 

collagen crosslinking via lysyl oxidase. An increased tissue inhibitor of metalloproteinase 

(TIMP) to MMP ratio and decreased collagenolysis in the lung is found in human UIP/IPF 

patients. Knockout studies have implicated MT1-MMP and cathepsin K as key collagenases 

in fibrosis [224].

Inducible deletion of MT1-MMP in stromal fibroblasts was used to examine the role of this 

enzyme in skin fibrosis [161]. Deletion of MT1-MMP resulted in increased type I collagen 

accumulation in skin due to a lack of collagen degradation, and a subsequent continuous 

increase in skin thickness and stiffness. Fibrosis was entirely due to the lack of collagen 

turnover, as collagen fibril diameters did not increase [161].

MT1-MMP also contributes to tissue damage and mortality in infectious diseases. 

Tuberculosis, once the leading cause of death in the U.S., remains a global threat due to 

limited treatment options, high percentage of infection transmission, and increasing 

Mycobacterium tuberculosis resistance [225]. The interaction between the Mycobacterium 
tuberculosis bacteria and the host immune response (macrophage infection) evokes 

inflammation and breakdown of the pulmonary ECM leading to formation of granulomas, 

the hallmark of the disease [226]. Granulomas, formed by aggregates of lung epithelial and 

immune cells, were once thought to curtail the spread of the disease by encasing 

Mycobacterium tuberculosis. However, recently it has been shown that infected 

macrophages shuttle between granulomas and the lung surface in order to recruit uninfected 

macrophages. Upon arrival in the granulomas, newly attracted macrophages become infected 

by the bacteria and further propagate the infection [225].

MT1-MMP expression is upregulated in Mycobacterium tuberculosis-infected macrophages 

[227]. MT1-MMP is significantly upregulated in patients with pulmonary tuberculosis, 

expressed throughout granulomas, upregulated by monocyte-monocyte networks, and is 

functionally active [226]. This upregulation was correlated to local tissue degradation 

(including collagen destruction) and leukocyte recruitment to the granuloma, contributing to 

the disease pathology [226].
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The lung epithelial barriers, supported by the ECM scaffold and functioning as the first line 

of defense against pathogens, are severely damaged during viral infections.[228, 229] 

Uncontrolled immune-mediated ECM-remodeling events act as a double-edged sword, 

allowing multiple immune cells to infiltrate the infection focus while causing devastating 

collateral damage that promotes acute respiratory failure. Global genomics analysis of lung 

tissue derived from an H1N1 influenza mouse model detected extremely elevated ECM 

remodeling collagenase genes (mostly MT1-MMP) without a corresponding increase in 

tissue inhibitor of metalloproteinase-2 [230]. Follow-up experiments, including 

fluorescence-correlated electron microscopy of intact tissues [231], global mass 

spectrometry, immune staining, and tissue zymography, revealed dramatic morphologic and 

compositional ECM changes in influenza-infected lungs, including depletion of fibrillar 

collagens [230]. The majority of the MT1-MMP-expressing cells during the infection were 

immune cells of myeloid origin. Remarkably, mice receiving Tamiflu exhibited a devastating 

ECM phenotype, despite having extremely low viral titers [230]. Mice treated with an anti-

MT1-MMP Fab fragment [232] showed tissue recovery, both at the level of morphology and 

composition (including improved collagen component abundance), and therapeutic effects 

[230]. The two mouse models used were influenza A infection and influenza A co-infected 

with Streptococcus pneumoniae [230]. Treatment with anti-MT1-MMP Fab fragment 

significantly increased the ability of virally infected mice to fight off secondary 

Streptococcus pneumoniae bacterial infection over control. This was demonstrated by the 

finding that 50% of the mice receiving the anti-MT1-MMP Fab fragment survived the 

double-infection, whereas 100% of the mock treated mice died. Mice that did not receive the 

inhibitor exhibited bacteremia and dissemination of Streptococcus pneumoniae bacteria into 

the spleen and liver, whereas the infection of treated mice remained confined within the 

lungs, with no systemic bacterial dissemination [230]. The results suggested that the ECM 

damage is caused by infiltrating immune cells contributing to the lethal outcome from 

influenza infection. Immune cell invasion and respiratory failure depended on tissue 

damage, presumably by MT1-MMP. Blocking MT1-MMP dysregulated collagenolytic 

activity in vivo and prompted a therapeutic effect in both primary and co-infected disease 

stages/models.

Mutations of type I collagen genes have been identified in osteogenesis imperfecta (OI) [22, 

28, 32, 39, 233, 234]. OI dominant-negative mutations can occur in either gene that encode 

the α chains of type I collagen and are typically missense mutations that change the Gly 

codons in the triple-helical motifs. Gly substitutions result in different effects on helix 

stability, depending on their location and the newly substituted amino acid. Mutations near 

the MMP cleavage site, particularly in the α1(I) chain, often result in severe forms of the 

disease [235]. This may be due to rendering the cleavage site susceptible to proteases that 

are normally inhibited by triple-helical structure. We have found that decreasing the thermal 

stability of the MMP cleavage site renders it more susceptible to MMP-2 and MMP-9 

hydrolysis [236].

MMP processing of type I collagen can ultimately result in the production of numerous, 

distinct fragments (see prior discussion). One fragment resulting from collagenolysis, 

CO1-764/C1M (Gly-Ser-Pro-Gly-Lys-Asp-Gly-Val-Arg-Gly586; numbering based on the 

α1(I) chain triple-helical region), is generated by the action of MMP-13, MMP-2, and/or 
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MMP-9 [237]. It is presumed that a collagenase first cleaves type I collagen at the 775–776 

bond (see Table 1), followed by MMP-13, MMP-2, and/or MMP-9 action at the 586–587 

bond of the denatured α1(I) chain. CO1-764/C1M was proposed as a biomaker for liver 

fibrosis [237]. Serum levels of C1M were found to be predictive of increased mortality in 

women up to 9 years prior to death, while no correlation was observed for a cathpesin K 

generated type I collagen fragment (CTX-1) and mortality [238]. The most prevalent 

primary causes of death in the study were cancer and cardiovascular disease [238]. Increased 

C1M levels in the serum has been associated with chronic inflammation [238], and recent 

studies have focused on the interrelationships between chronic inflammation and numerous 

diseases, including cancer and vascular diseases, as well as the role of MMPs in 

inflammation [11, 194, 239].

The peptide Pro-Gly-Pro is generated by the initial processing of type I or II collagen by 

neutrophil MMP-8, followed by the proteolytic action of MMP-9 and prolyl endopeptidase 

[240, 241]. Pro-Gly-Pro is a neutrophil chemoattractant and induces production of 

superoxide [242]. Pro-Gly-Pro has been implicated in neutrophilic inflammation in lung 

diseases such as cystic fibrosis and chronic obstructive pulmonary disease (COPD) [240, 

242].

6. Summary

The role of specific MMPs in collagenolysis has been better defined through the use of 

animal models and the correlation of animal studies with human diseases. The processing of 

collagen by MT1-MMP is now associated with metastasis and progression of tuberculosis 

and influenza to the lungs. In turn, MMP-13-mediated collagenolysis contributes 

significantly to osteoarthritis as well as normal bone development, while collagen turnover 

by MMP-1 is a contributor to wound healing. As we improve our understanding of temporal 

and spatial collagen processing, along with the knowledge of the specific MMP involved, we 

will ultimately be able to design more effective treatments for cancer, arthritis, 

cardiovascular conditions, and infectious diseases.
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Highlights

• Collagenolysis is critical in numerous developmental processes.

• MT1-MMP, MT3-MMP, and MMP-13 contribute to bone development.

• MT1-MMP-mediated collagenolysis facilitates numerous pathologies.

• Collagenolysis generates bioactive peptides.
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Fig. 1. 
Schematic representation of MMP and cathepsin K cleavage sites in type I collagen. The 

bold, solid green arrow indicates the known MMP cleavage site (bond 775–776) aligned in 

all three chains in the triple-helix. The bold, dashed green arrows indicate the cathepsin K 

cleavage sites where all three chains in the triple-helix align (bonds 9–10 and 21–22; see 

Table 1). The dashed green arrows indicate the cathepsin K cleavage sites in individual 

collagen chains that do not align within the triple-helix (see Table 1). For cleavage by 

cathepsin K within individual chains, sites in the α1(I) chain are noted above the triple-

helix, while cleavage sites in the α2(I) chain are noted below the triple-helix.
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Fig. 2. 
Cleavage of type I collagen by MMP-1 CAT domain, full-length MMP-1, MMP-12 CAT 

domain, and trypsin. Type I collagen (10 μg) was treated with 200 ng of enzyme in 50 mM 

Tris•HCl, pH 7.5, 150 mM NaCl, 5 mM CaCl2, 0.05% Brij35, 1 μM ZnCl2 for 36 h at either 

room temperature or 33 °C. Full-length MMP-1 (MMP1 FL) cleaved type I collagen at room 

temperature, resulting in the characteristic ¾ and ¼ fragments, while MMP-1 CAT domain 

(MMP1cat) showed a low level of hydrolysis and MMP-12 CAT domain (MMP12cat) did 

not cleave the collagen. At 33 °C, increased hydrolysis by MMP-1 CAT domain and a low 

level of hydrolysis by MMP-12 CAT domain was observed. Trypsin showed minimal 

collagen hydrolysis at either temperature. “Contr” is type I collagen alone.
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Fig. 3. 
Cleavage of type V collagen by MMP-12 CAT domain (top) and trypsin (bottom). Type V 

collagen (333 nM) was treated with 4–32 nM of MMP-12 or 0.5–4 nM of trypsin in 50 mM 

Tris•HCl, pH 7.5, 150 mM NaCl, 5 mM CaCl2, 0.05% Brij35, 1 μM ZnCl2 overnight at 

either room temperature (gels on the left) or 37 °C (gels on the right). MMP12 CAT domain 

or trypsin catalyzed the hydrolysis of type V collagen at 37 °C, but not at room temperature. 

“Lad” is the molecular weight ladder, “Col V” is type V collagen alone, and “Enzm” is 

trypsin alone.
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Table 1

Representative MMP and cathepsin K cleavage sites within collagen triple-helical domains.

Enzyme Collagen Chain (collagen type) Sequencea

MMP-1, -2, -8, -9, -12, -13, MT1-MMP α1(I) Pro-Gln-Gly775~Ile776-Ala-Gly

MMP-1, -2, -8, -9, -12, -13, MT1-MMP α2(I) Pro-Gln-Gly775~Leu776-Leu-Gly

MMP-1, -8, -13, MT1-MMP α1(II) Pro-Gln-Gly775~Leu776-Ala-Gly

MMP-1, -8, -9, -12, -13, MT1-MMP, MT3-MMP α1(III) Pro-Leu-Gly775~Ile776-Ala-Gly

MMP-9 α1(V) Pro-Pro-Gly439~Val440-Val-Gly

MMP-9 α2(V) Pro-Pro-Gly445~Leu446-Arg-Gly

Cathepsin K α1(I) Gly-Pro-Arg9~Gly10-Leu-Pro

Cathepsin K α1(I) Gly-Pro-Gln21~Gly22-Phe-Gln

Cathepsin K α1(I) Gly-Leu-Asp96~Gly97-Ala-Lys

Cathepsin K α1(I) Gly-Pro-Gln189~Gly190-Val-Arg

Cathepsin K α1(I) Gly-Pro-Ser810~Gly811-Ala-Ser

Cathepsin K α2(I) Gly-Pro-Arg9~Gly10-Pro-Pro

Cathepsin K α2(I) Gly-Pro-Gln21~Gly22-Phe-Gln

Cathepsin K α2(I) Gly-Leu-Lys99~Gly100-Pro-Gln

Cathepsin K α2(I) Gly-Ala-Arg144~Gly145-Ser-Asp

Cathepsin K α2(I) Pro-Pro-Gly814~Ala815-Arg-Gly

Cathepsin K α1(II) Lys-Pro-Gly61~Lys62-Ser-Gly

a
Numbering begins at the N-terminus of the triple-helical region of each collagen.
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