
Type I IFNs and TNF cooperatively reprogram the macrophage 
epigenome to promote inflammatory activation

Sung Ho Park1, Kyuho Kang1, Eugenia Giannopoulou1,3, Yu Qiao1, Keunsoo Kang4, 
Geonho Kim1, Kyung-Hyun Park-Min1, and Lionel B. Ivashkiv1,2

1Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research 
Center, Hospital for Special Surgery, New York, NY 10021

2Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of 
Medical Sciences, New York, NY, 10021

3Biological Science Department, New York City College of Technology, City University of New 
York, Brooklyn, NY 10021

4Department of Microbiology, Dankook University, Cheonan, Chungnam 330-714, Republic of 
Korea

Abstract

Cross-regulation of Toll-like receptor responses by cytokines is essential for effective host defense, 

avoidance of toxicity, and homeostasis, but the underlying mechanisms are not well understood. A 

comprehensive epigenomic approach in human macrophages showed that the proinflammatory 

cytokines TNF and type I IFNs induce transcriptional cascades that alter chromatin states to 

broadly reprogram TLR4-induced responses. TNF tolerized inflammatory genes to prevent 

toxicity, while preserving antiviral and metabolic gene induction. Type I IFNs potentiated TNF 

inflammatory function by priming chromatin to prevent silencing of inflammatory NF-κB target 

genes. Priming of chromatin enabled robust transcriptional responses to weak upstream signals. 

Similar chromatin regulation occurred in human diseases. Our findings reveal that signaling 

crosstalk between IFNs and TNF is integrated at the level of chromatin to reprogram inflammatory 

responses, and identify new functions and mechanisms of action of these cytokines.
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Introduction

Tumor necrosis factor (TNF) is important in innate immunity, inflammation, and host 

defense against microbial pathogens1. TNF is also a key pathogenic cytokine and driver of 

chronic inflammation in multiple autoimmune and inflammatory diseases2. Classical 

inflammatory activation of cells by TNF is mediated by canonical NF-κB and MAPK 

signaling that activates well known inflammatory genes such as IL1 and IL6. TNF also has 

potent paradoxical anti-inflammatory functions (discussed in ref3) that limit inflammation-

associated toxicity4. Perhaps the most potent suppressive mechanism induced by TNF is 

‘cross-tolerance’3, which resembles classical endotoxin tolerance5 in that various TLR 

ligands and inflammatory stimuli are unable to induce transcription of select inflammatory 

genes. Much less is known about cross-tolerance induction by TNF than endotoxin 

tolerance, and about how the tolerizing functions of TNF are over-ridden such that TNF is 

able to drive chronic inflammation.

Type I interferons (IFNs) activate the Jak-STAT signaling pathway to induce expression of 

interferon-stimulated genes (ISGs) that are activated by STAT proteins via binding to 

conserved ISRE and GAS DNA elements6. ISGs include antiviral proteins, chemokines, and 

antigen-presenting molecules, and thus type I IFNs can promote antiviral and immune 

responses, and have been implicated in autoimmune diseases. However, type I IFNs can also 

play a suppressive role in certain chronic infections and in multiple sclerosis6. Distinct IFN 

functions may be related to context dependent effects on inflammatory NF-κB-driven genes, 

as IFNs can either suppress cytokines or contribute to increased cytokine production in 

diseases such as SLE, increased inflammation when bacterial infections follow viral 

infections, and to microbiota-mediated priming of cytokine responses6–9. Mechanisms by 

which type I IFNs regulate inflammatory NF-κB target genes, which are not targets of the 

Jak-STAT signaling pathway, are not known10,11.

Potent inflammatory activators of macrophages such as TLR ligands activate signaling via 

NF-κB, MAPK-AP-1 and IRF3 pathways to induce expression of inflammatory cytokine 

genes12. The ability of signal-responsive transcription factors (TFs) to induce transcription is 

modulated by chromatin states at gene regulatory elements (promoters and enhancers)13–17. 

Activation of many TLR-inducible genes, including Il6, Il12b and Ifnb, requires increasing 

chromatin accessibility by deposition of positive histone marks and remodeling of 

nucleosomes to create nucleosome-free regions at promoters and enhancers13–15. More 

recent work has shown that environmental cues can fine tune the macrophage enhancer 

repertoire18–23. Induction of new enhancers can explain tissue-specific macrophage gene 

expression, and raises the possibility that enhancer remodeling can alter cellular responses to 

environmental signals. However, analysis of the effects of epigenomic remodeling on 

cellular responses to secondary inflammatory challenges has been limited. Furthermore, 

little is known about whether signaling crosstalk occurs in the nucleus at the level of 

chromatin during an inflammatory TLR-driven response.

It was previously reported that TNF induces a state of ‘cross-tolerance’ in which various 

TLR ligands are unable to induce transcription of the canonical inflammatory NF-κB-

dependent cytokines IL-1β, IL-6 and TNF, and which protects mice from endotoxin lethality 
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in vivo3. In the current study, we wished to understand TNF-induced cross-tolerance in 

greater depth, and to test whether macrophages could escape from cross-tolerance; 

abrogation of this feedback mechanism could provide an explanation for how TNF can drive 

sustained unremitting inflammation in a chronic setting. We took a comprehensive and 

integrated genome-wide approach using RNA-seq, ChIP-seq, and ATAC-seq24 with digital 

footprinting25 to investigate the regulation of TLR4 responses by TNF. We discovered that 

type I IFNs effectively abrogate TNF-induced cross-tolerance by priming chromatin to 

enable robust transcriptional responses to weak signals. These findings reveal mechanisms 

by which cytokine signaling crosstalk is integrated at the epigenomic level, and identify a 

new function and mechanism of action for type I IFNs.

Results

TNF Reprograms the LPS response in human macrophages

Previous work showed that TNF pretreatment strongly attenuates LPS-induced signaling and 

chromatin remodeling upon secondary challenge3,5. To gain insight into gene regulation in 

TNF-induced tolerance, we performed transcriptomic analysis using RNA sequencing 

(RNA-seq). We used our previously established system in which primary human 

macrophages are treated with TNF for 24 hours prior to LPS challenge3 (Fig. 1a) and 

focused our analysis on the 1,574 genes that were strongly induced (>3-fold) in response to 

LPS. Clustering of LPS-inducible genes by patterns of gene expression revealed 12 clusters 

that could be assembled into 6 major classes (Fig. 1b, Supplementary Fig. 1a and Methods). 

Two classes of robustly LPS-inducible genes were minimally (Class 1, n = 466) or weakly 

(Class 2, n = 245) induced by LPS in macrophages pretreated with TNF (Fig. 1b). Following 

previous nomenclature, we termed these ‘tolerized’ or ‘T’ genes5,26. Class 1 was enriched 

for gene ontology (GO) terms related to ‘defense response’ and ‘inflammatory response’ 

(Fig. 1c), and included many pro-inflammatory cytokines (Fig. 1d) and NF-κB target genes 

(Fig. 1e). Thus, TNF-induced cross-tolerance is broadly similar to endotoxin tolerance26,27 

in transcriptional silencing of inflammatory NF-κB target genes.

LPS effectively and paradoxically induced expression of various genes in TNF-treated cells 

(Fig. 1b, Classes 3–6, and Supplementary Fig. 1a and 1b), despite minimal LPS-induced 

signaling3 (see also below). In line with previous reports of endotoxin tolerance, we termed 

these ‘nontolerized’ or ‘NT’ genes26,28. Class 3 (n = 403) is comprised of genes strongly 

induced by LPS in both naïve and TNF-treated cells; Class 3 NT genes are most clearly 

regulated in a directly opposite manner from T genes. In contrast, genes in Classes 4 (n = 

285) and 5 (n = 82) were substantially expressed in TNF-treated cells and superinduced by 

secondary LPS challenge (Fig. 1b and Supplementary Fig. 1a), thus revealing cooperation 

and even synergy (Class 4A, Supplementary Fig. 1a) between the ‘tolerizing’ factor TNF 

and LPS.

In addition to different expression patterns, the NT gene classes had distinct functions as 

revealed by GO analysis. Class 3 genes were enriched for cytokine and IFN signaling via 

Jak-STAT pathway, Class 4 genes were enriched for metabolic processes, and Class 5 and 6 

contain additional genes important in lipid metabolic processes (Fig. 1c and 1d; complete 

list of genes in all six classes is provided in Supplementary Table 1).
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The gene classes also differed in transcription factor binding motifs that were enriched in 

their promoters (Fig. 1e). Class 1 T gene promoters were most significantly enriched in NF-

κB and NFE2L1 motifs, Class 3 NT in ISREs (bind type I IFN-activated ISGF3), and Class 

4 NT genes in binding sites for SREBP, which drives expression of cholesterol pathway and 

lipid metabolism genes. Thus, in addition to different patterns of expression and different 

functions, the gene classes have distinct mechanisms of regulation. As predicted, various 

Class 3 NT genes were dependent on type I IFN signaling, whereas Class 4 NT genes were 

not (Supplementary Fig. 1c).

The gene classes could also be distinguished based on kinetics of induction by TNF 

(Supplementary Fig. 2a). Class 1 (T genes) is largely composed of early TNF-induced genes, 

which peak at 1–3 hr and decrease in expression by 24 hr. In contrast, Class 3 and Class 4 

genes exhibited delayed induction kinetics; unlike the gradual increase of expression of 

Class 3 genes, Class 4 exhibited induction only at the late (24 hr) time point. We then 

compared the behavior TNF-induced (n=433, 1 or 3 hr) and LPS-induced (n=1,219, 3 hr) 

genes to test the possibility that TNF tolerance only affects TNF-induced genes. Strikingly, 

TNF tolerized a large fraction of LPS-inducible genes that were not induced by TNF 

(Supplementary Fig. 2b), supporting the idea of crosstolerance.

Collectively, the results reveal that TNF extensively reprograms the LPS response, with 

TNF-induced ‘cross-tolerance’ representing one component of ‘reprogramming’. The TNF-

reprogrammed state appears to differ from classical endotoxin tolerance by the expression of 

IFN/cytokine-driven genes (Class 3) and lipid metabolic genes (Class 4–6) upon LPS 

challenge.

TNF regulates chromatin and TFs to reprogram LPS response

TLR4 signaling is almost completely abrogated in macrophages pretreated with TNF or 

endotoxin, and epigenetic mechanisms have been implicated in tolerance. Consistent with an 

epigenetic mechanism, TNF-induced tolerance was sustained for at least 48 h after the 

washout of TNF (Supplementary Fig. 2c). As epigenetic regulation has been studied for only 

a small number of T genes, and not for NT genes, we performed genome wide analysis of 9 

histone marks using ChIP-seq, and of chromatin accessibility using ATAC-seq to gain 

greater insight into the role of chromatin regulation in TNF-induced reprogramming of the 

TLR4 response.

We found that tolerization with TNF attenuated LPS-induced increases of the positive 

histone marks H4-Ac and H3K4me3 (associated with open chromatin and transcription), and 

of increased chromatin accessibility (ATAC-seq reads) (Fig. 2a, quantitation shown in 

Supplementary Fig. 3a; representative gene tracks are shown in Fig. 2b and Supplementary 

Fig. 3b). These results are in accord with a model that in ‘tolerized’ cells LPS is unable to 

generate a sufficiently strong signal to induce chromatin remodeling that is required for 

effective induction of transcription3,26,29,30. We also found that tolerization attenuated LPS-

induced increases in H2BK120 ubiquitination (H2Bub) (Fig. 2a), a positive mark that serves 

to increase H3K4me3 and open chromatin and is a prerequisite for H3K4me3 in other 

systems. This implies that inability of LPS to generate signals that lead to H2Bub 

contributes to the tolerization of these genes.
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Genes in nontolerized Classes 3–6 exhibited distinct chromatin regulation profiles. Notably, 

Class 3 NT genes, functionally related to IFN/cytokine Jak-STAT signaling, were ‘marked’ 

by H2Bub and H4-Ac after TNF treatment, which was associated with substantial 

inducibility of H3K4me3, opening of chromatin, and robust induction of gene expression in 

response to weak signaling upon LPS challenge (Fig. 2a and Supplementary Fig. 3a; 

representative gene tracks are shown in Fig. 2b and Supplementary Fig. 3b). This suggests 

that marking or ‘priming’ of Class 3 NT genes by H2Bub and H4-Ac enables chromatin 

remodeling and transcriptional responses even to weak signals.

Class 4–6 genes differed from Class 1–3 genes in that H2Bub, H3K4me3, and open 

chromatin (ATAC-seq read density) were lower at baseline in naive macrophages and weakly 

inducible by LPS (Fig. 2a and Supplementary Fig. 3a, c). Instead, these positive marks and 

opening of chromatin were induced during TNF stimulation (Fig. 2a, b and Supplementary 

Fig. 3a, b), suggesting that their epigenetic profile is ‘primed’ by TNF. Patterns of regulation 

were confirmed in additional replicates (Supplementary Fig. 4a), and for select genes by 

ChIP-qPCR and FAIRE in additional donors (Supplementary Fig. 4b and data not shown). 

Exceptions where histone marks did not correlate with transcriptomic changes are discussed 

in Supplementary Note 1; ChIP-seq data on other less informative or repressive histone 

marks are shown in Supplementary Fig. 3c–e. Regulation of histone marks and chromatin 

accessibility at enhancers in TNF-treated cells paralleled that of promoters but was 

quantitatively less dynamic (Supplementary Fig. 5a). In addition, CpG islands11, super-

enhancers31, and latent enhancers20 did not correlate with patterns of regulation of the 

different gene classes (Supplementary Fig. 5b–d). Overall, the data support a model whereby 

TNF alters chromatin states at TLR4-inducible gene promoters to reprogram the TLR4-

induced gene response to silence expression of inflammatory NF-κB-dependent genes, while 

augmenting the expression of cytokine-induced, antiviral, and metabolic genes.

To identify candidate transcription factors that could explain the differential expression and 

regulation of the distinct gene classes, we identified digital footprints (p < 10−10) 

‘underneath’ ATAC-seq promoter peaks followed by matching to all known transcription 

factor motifs. This approach has the advantage compared to motif enrichment in that it 

identifies sites that are actually bound by TFs, rather than just motifs that have the potential 

to bind TFs. Examples of well-delineated TF footprints are shown in Fig. 2c and 

Supplementary Fig. 4c. Footprinting analysis recovered binding of PU.1/Ets elements, of 

NF-Y and SP-1 core promoter elements32, and inducible NF-κB element binding, thus 

supporting the validity of the approach (Fig. 3a). Strikingly, footprinting analysis clearly 

identified distinguishing features among the promoters in the different gene classes (Fig. 3a). 

The most salient class-specific characteristics were inducible occupancy of IRF and ISRE 

sites at Class 3 NT gene promoters, which is consistent with regulation by IFNs and 

cytokines, and of AP-1 sites under T and TL conditions in Class 4 gene promoters. 

Accordingly, TNF induced sustained expression of AP-1 proteins (Fig. 3b) and induction of 

these genes was sensitive to MAPK inhibitors (ref.26 and data not shown). Patterns of 

expression of members of relevant transcription factor families are shown in Fig. 3c and 

Supplementary Table 1. Additional detailed description of footprinting results is provided in 

Supplementary Note 2.
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Footprinting analysis of enhancers showed inducible binding of NF-κB, IRF, AP-1 and C/

EBP-AP-1 sites (Supplementary Fig. 5e) similar to inducible binding that was detected at 

promoters, suggesting that enhancers are also responsive to TNF and LPS. However, the 

occupancy of TF binding sites at enhancers was more similar among the six gene classes 

than was occupancy of promoters. In accord with the footprinting analysis, de novo motif 

enrichment analysis under enhancer ATAC-seq peaks using HOMER showed similarity 

among the gene classes (Supplementary Fig. 5f). Overall, the ChIP-seq and footprinting 

results provide insight into the distinct regulatory logic of the different gene classes, and 

suggest a role for IRF/ISGF3 (Class 3 NT) or AP-1 (Class 4 NT) for opening chromatin and 

allowing these genes to escape tolerance.

Expression of inflammatory gene classes in human diseases

To address whether our findings reflect inflammatory gene regulation in vivo, we examined 

expression of the six classes of LPS-inducible genes in human disease states. First, we 

analyzed gene expression in monocytes from sepsis patients collected during sepsis (where 

they are exposed to both endotoxin and TNF) and after recovery, and stimulated ex vivo with 

LPS28. Strikingly, genes in Class 1 and 2 exhibited tolerization in vivo that was reversed 

when patients recovered (Fig. 3d), thus recapitulating our in vitro model. Genes in classes 4–

6 also exhibited similar expression patterns in sepsis patients as in our system, but Class 3 

genes exhibited limited inducibility by LPS ex vivo. This reinforces the notion that 

inducibility of IFN target genes is a feature that distinguishes TNF-induced reprogramming 

from endotoxin tolerance. We also found that expression of genes in two non-tolerized gene 

sets, Class 3 and Class 4, was significantly elevated in synovial macrophages from patients 

with RA, a condition where inflammation is driven by TNF (Fig. 3e and 3f). Overall, these 

results support that the patterns of gene regulation and classes of inflammatory genes we 

identified in our model system reflect aspects of inflammatory gene regulation in vivo in 

infectious/inflammatory disease states.

Type I IFNs abrogate TNF-mediated tolerance

Building on previous work that inhibition of glycogen synthase kinase 3 (GSK3) reverses 

TNF-induced tolerance and GSK3 regulates IFN production3,5,33, we found that reversal of 

tolerization of IL6 by GSK3 inhibition was mediated by increased type I IFNs 

(Supplementary Fig. 4d–f). We tested the effects of type I IFNs on TNF-induced tolerance 

genome-wide using RNA-seq. Addition of exogenous IFN-α together with TNF (Fig. 4a) 

significantly restored LPS-inducibility to the majority of Class 1 T genes (60.7%, 283/466) 

(Fig. 4b and 4c), indicating a broad but gene-specific reversal of tolerance. IFN-α 
differentially affected expression of the 6 TLR4-induced gene classes and few genes in the 

NT Classes 4–6 (21–23%) were upregulated by IFN-α (Fig. 4b). Notably, type I IFN did not 

reverse tolerization of TNF and IL6 by LPS in the classic endotoxin model (Supplementary 

Fig. 4g). IFN-α increased LPS-induced Class 1 gene expression only in TNF-treated cells 

(Fig. 4b), in accord with extensive literature that Class 1 T genes are not canonical ISGs. 

Thus, crosstalk between IFN and TNF couples IFN signaling with Class 1 NF-κB target 

genes and prevents their tolerization.
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We tested whether IFN-α could augment LPS-induced signaling in tolerized macrophages. 

As expected3, robust LPS-induced I-κBα degradation and activation of IKK and ERK were 

observed in naïve macrophages but strongly blunted in TNF-tolerized macrophages (Fig. 

4d). In contrast to its effects on gene expression, IFN-α did not reverse these defects in 

proximal LPS-induced TLR signaling (Fig. 4d, lanes 5–8 versus 9–12). IFN-α also did not 

affect TNF-induced expression of noncanonical NF-κB proteins suggested to play a role in 

tolerance27,34. These results indicate that IFN-α strongly affects transcriptional responses of 

Class 1 and 2 genes without substantially altering proximal TLR signaling defects.

The gene-specific effects of IFN-α (Fig. 4b, right panels), together with its ability to enable 

robust induction of T genes in response to very weak TLR4-induced proximal signals in 

TNF-pretreated cells, suggested that IFN-α exerts its effects in the nucleus at the level of 

gene regulation. To test this idea, we first confirmed that IFN-α-mediated abrogation of gene 

tolerization occurs at the level of transcription by measuring primary transcripts (Fig. 4e). 

Furthermore, ChIP-qPCR experiments showed that IFN-α overcame the TNF-induced block 

in RNA polymerase II (pol II) recruitment to the tolerized gene IL6 (Fig. 4f). These results 

support the notion that IFN-α signaling acts in the nucleus to regulate gene expression.

Crosstalk between IFN and TNF primes chromatin at T genes

We reasoned that IFN-α could amplify transcriptional responses of Class 1/2 genes to weak 

LPS signals in TNF-treated macrophages by remodeling chromatin. This notion was 

supported by FAIRE assays showing that IFN-α promoted opening of chromatin at the IL6 
promoter in TNF-treated macrophages (Fig. 5a). We then used ATAC-seq and ChIP-seq to 

analyze chromatin accessibility and the positive H2Bub and H3K4me3 marks genome-wide. 

IFN-α did not significantly increase ATAC-seq read counts at the majority of Class 1 genes 

in resting or LPS-stimulated naïve cells (Supplementary Fig. 6b). However, the combination 

of IFN-α and TNF resulted in increased chromatin accessibility at Class 1 gene promoters, 

with a further increase upon LPS stimulation (Fig. 5b and Supplementary Fig. 6b). A similar 

signal-responsive but quantitatively less dynamic pattern was observed at Class 1 gene 

enhancers (Supplementary Fig. 6c). Representative gene tracks are shown in Fig. 5c and 

Supplementary Fig. 6d.

A similar pattern of increased H3K4me3, which marks open chromatin, was observed when 

IFN-α was added in the T and TL conditions (Fig. 5b, c and Supplementary Fig. 6b, d). The 

breadth of H3K4me3 peaks and extension of this ‘promoter mark’ into gene bodies, which is 

associated with increased transcription35, was increased by IFN-α in a similar manner (Fig. 

5d). Interestingly, IFN-α and TNF cooperated to increase H3K4me3 peak breadth. Finally, 

H2Bub, a prerequisite for H3K4me3 in other systems, was also increased when IFN-α and 

TNF were added together. These results are strikingly different from results obtained in the 

absence of IFN-α, where chromatin remained closed (Fig. 2a and Supplementary Fig. 6b). 

The results show that addition of IFN-α together with TNF conditions or ‘primes’ chromatin 

at Class 1 gene promoters, which can facilitate transcriptional responses to weak LPS 

signals. In accord with H3K4me3 marking open chromatin, in IFN-α- plus TNF-treated 

macrophages stimulated with LPS (IFN/T-L condition) we observed broad ATAC-seq peaks 

that extended into gene bodies (Fig. 5c, e). Thus, opening of chromatin at Class 1 genes is a 
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salient feature of IFN-α action in TNF-treated macrophages, and IFN-α and TNF cooperate 

to prevent gene silencing.

IFN and TNF cooperate to recruit TFs to Class 1 promoters

We addressed the possibility that opening of chromatin at Class 1 gene promoters under 

tolerizing conditions requires cooperation between TFs induced by IFN-α and TNF. De 
novo motif analysis of TF footprints under ATAC-seq peaks in IFN/T-L conditions revealed 

that under IFN-stimulated conditions these promoters newly gain occupancy of IRF sites 

(Fig. 6a). A similar ISRE site was enriched in Class I gene enhancers (Supplementary Fig. 

7a). Motif analysis of TF footprints in the most ‘primed’ chromatin, as defined by peaks 

with high read density of ATAC-seq, H2Bub or H3K4me3, revealed enrichment of NF-κB 

and IRF motifs (Fig. 6b). Most strikingly, peaks with the highest chromatin accessibility 

were associated with a composite NF-κB/IRF motif (Fig. 6b, red font), and several IRFs 

were induced in IFN-α-treated tolerized macrophages (Fig. 6c and Supplementary Fig. 7b). 

This suggested that coordinate binding by TNF-induced NF-κB and IFN-induced IRFs to 

Class I promoters contributes to increased chromatin accessibility.

This notion was supported by ChIP-seq data that upon TNF + IFNα treatment a large 

fraction of IRF1 binding peaks at Class 1 gene promoter elements (ATAC-seq peaks) 

colocalized with NF-κB p65 peaks (Fig. 7a, p = 0.0059 relative to random genes). 

Representative gene tracks showing alignment of p65 and IRF1 binding peaks are depicted 

in Fig. 7b and Supplementary Fig. 7c). Increased co-recruitment of IRF1 and p65 after TNF 

+ IFNα treatment was confirmed for a subset of genes by ChIPq-PCR (Fig. 7c and 

Supplementary Fig. 7d). Significantly increased colocalization of IRF1 and p65 binding was 

also observed when an independent data set (GSE43036) was used to define IRF1 peaks 

(Supplementary Fig. 7e, f). Overall, these results support a model (Supplementary Fig. 8) 

whereby TNF-induced NF-κB and IFN-α-induced IRFs bind coordinately to promoters of 

Class 1 tolerized genes and cooperate to maintain an open and ‘primed’ chromatin state, 

which enables strong transcriptional responses to weak LPS-induced signals.

Escape of IL6 transcription from suppression by IL-10

One potential consequence of ‘priming’ of chromatin in IFN-α + TNF-treated macrophages 

is a change in transcriptional requirements for LPS-induced gene activation. We tested this 

idea for IL6, a Class 1 gene whose induction by LPS in naïve macrophages is dependent on 

de novo protein synthesis (which is required for increased chromatin accessibility)11,30, and 

is suppressed by the potent anti-inflammatory cytokine IL-10. In contrast to naïve LPS-

stimulated macrophages (Fig. 7d, bars 3, 4), in IFN-α + TNF-treated macrophages IL6 
expression was strongly induced by LPS in the presence of the protein synthesis inhibitor 

cycloheximide (Fig. 7d, bars 7, 8). IL-10 essentially completely suppressed LPS-induced 

IL6 expression in naïve macrophages, but only partially in IFN-α-primed tolerized 

macrophages (Fig. 7e). These results indicate that ‘priming’ by crosstalk between IFN-α and 

TNF changes the regulatory logic of gene expression and can make genes resistant to 

suppression by anti-inflammatory stimuli, thereby promoting sustained TNF-driven 

inflammation.
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Chromatin accessibility in SLE monocytes

Type I IFNs have been proposed to contribute to SLE pathogenesis by opposing tolerance 

induction36. We reasoned that SLE monocytes, which have been exposed to IFNs, TNF and 

TLR ligands in vivo, might exhibit an altered epigenomic/chromatin landscape that reflects 

some of the IFN-mediated regulatory mechanisms we have described in this study. Pearson 

correlation analysis showed that the chromatin accessibility profile of SLE monocytes 

stimulated with LPS ex vivo (labelled SLE-L) was closely correlated with the profile of IFN-

α-treated tolerized cells stimulated with LPS in our system (labelled IFN/T-L) (Fig. 8a, 

shown in red font), but did not correlate with LPS-stimulated naïve (Fig. 8a, rows 2,4,5) or 

tolerized (rows 13–16) cells. Examination of gene tracks of individual genes (Fig. 8b) 

revealed that in SLE monocytes LPS induced a broad region of chromatin accessibility that 

extended into the gene bodies, reminiscent of results obtained with IFN-α-treated tolerized 

cells (IFN/T-L condition, Fig. 8b and 5c, e). This is in accord with the broad H3K4me3 

peaks in our system (Fig. 5d, e) and reported in SLE monocytes37.

Given the importance of type I IFNs in SLE, we next turned our attention to the IFNB1 
gene. Strikingly, IFN-α led to a massive superinduction of IFNB1 by LPS, but only in cells 

that were also treated with TNF (Fig. 8c, bar 8). Thus, IFNB1 resembles Class 1 genes in 

that induction requires preconditioning by IFN-α and TNF followed by LPS challenge. LPS 

challenge of IFN-α + TNF-treated cells induced a broad region of chromatin accessibility at 

IFNB1 that extended from the promoter into the gene body, and similar results were 

obtained using LPS-stimulated SLE, but not control, monocytes (Fig. 8d). To further 

compare SLE monocytes with IFN-α-primed tolerized monocytes, we performed de novo 
motif analysis underneath ATAC seq peaks in LPS-challenged cells. Similar to IFN/T-L cells 

(Fig. 6a), SLE monocytes stimulated with LPS showed enrichment of IRF motifs, which 

likely is related to in vivo exposure to type I IFNs, and was not observed in control 

monocytes stimulated with LPS (Fig. 8e). Overall, the results show similarities in LPS-

induced chromatin accessibility in Class 1 genes between SLE monocytes and IFN-α-treated 

tolerized monocytes, suggesting that our model system mimics aspects of chromatin 

regulation in an IFN-mediated disease in vivo.

Discussion

Epigenomic reprogramming has been linked to tissue-specific macrophage 

phenotypes18–23,38,39, but how reprogramming affects inflammatory responses is not well 

understood15,40–42. In this study we found that TNF and IFN-α reprogram the human 

macrophage epigenome to alter inflammatory responses to TLR4 stimulation. TNF induces 

a balanced response that limits potentially toxic induction of inflammatory NF-κB target 

genes, while enabling expression of antiviral, metabolic, and Jak-STAT target genes. Type I 

IFNs potentiated TNF inflammatory function by preventing the silencing of inflammatory 

genes. Mechanistically, type I IFNs and TNF cooperate to induce signals and transcription 

factors that prime chromatin at inflammatory gene promoters to make them responsive to 

weak signals, and also resistant to suppression by IL-10. Overall, our findings identify a new 

function of type I IFNs, and reveal that signaling crosstalk between IFN-α and TNF is 

integrated at the level of chromatin to crossregulate transcriptional responses to LPS.

Park et al. Page 9

Nat Immunol. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are important differences between TNF-induced reprogramming and previously 

described ‘endotoxin tolerance’. These include the abrogation of TNF-induced silencing of 

T genes by type I IFNs and the nature of the ‘NT’ response, which determines the 

macrophage functional phenotype. The ability of an endogenous cytokine like IFN-α to 

prevent silencing of T genes suggests that such ‘tolerization’ is a physiological process that 

is regulated by cytokines to fine tune the magnitude, duration, and qualitative nature of 

inflammatory responses, rather than a ‘last ditch effort’ to prevent endotoxin toxicity that 

can lead to profound immunosuppression and death. On the other hand, increased expression 

of type I IFNs, as occurs in several autoimmune diseases, will inactivate an important TNF-

induced homeostatic mechanism that places a ‘brake’ on inflammatory gene expression and 

can contribute to inflammatory pathogenesis.

Our results provide substantial new insights about the functions and mechanisms regulating 

expression of genes that are effectively or synergistically activated by LPS in TNF-

pretreated macrophages (the ‘ NT response’). One notable finding is discovery of Class 3, 

which is comprised of NT genes important for cytokine-Jak-STAT and IFN-antiviral 

responses. Induction of these genes is functionally important, as it allows cells exposed to 

TNF-driven inflammation to preserve antiviral host defense. Interestingly, Class 3 genes are 

tolerized (silenced) in the classical endotoxin tolerance model, as endotoxin induces 

additional and stronger tolerance mechanisms than does TNF3. Accordingly, compromised 

antiviral responses, superinfection, and reactivation of latent viruses are major complications 

in sepsis patients with endotoxin-tolerized cells. We have also identified new classes of ‘NT 

genes’, new functions, potential roles for transcription factors including SREBP2, AP-1 and 

E box proteins, and chromatin-based mechanisms that enable robust NT gene induction. A 

primed chromatin state, especially high H3K4me3, can greatly reduce requirements for 

activation of gene transcription43 and facilitate robust transcriptional responses to weak 

signals. The results overall are consistent with a ‘sequential rheostat’ model where 

environmental cues can independently regulate the intensity of upstream signaling and the 

accessibility of downstream chromatin. In this model, closed chromatin can block a strong 

signal, whereas open/primed chromatin can amplify a weak signal, in a gene-specific 

manner.

Type I IFNs have pleiotropic immune stimulatory and suppressive effects6. Little is known 

about mechanisms that determine context-dependent type I IFN functions. Classically, type I 

IFNs promote inflammation/immunity by inducing transcription of ISGs that harbor binding 

sites for ISGF3/STATs/IRFs and encode chemokines and antigen-presenting molecules. 

Previous reports, in line with our results, showed that NF-κB-driven inflammatory cytokine 

genes, such as those that comprise Class 1, are not induced and if anything are suppressed 

by type I IFNs6,8,9,44. In sharp contrast, in the context of co-treatment with TNF, IFNAR 

signaling was coupled to NF-κB target genes, as it prevented tolerization of a large fraction 

of Class 1 and 2 genes. Thus, in addition to induction of canonical ISGs, type I IFNs 

regulate chromatin at distinct inflammatory and possibly other gene sets. This regulatory 

role likely extends beyond the system used in this study, and may contribute to phenomena 

such as innate immune training22,42 and maintenance of basal immune responsiveness by 

commensal microbiota, which has been linked to IFNs and increased H3K4me3 at Tnf and 

Il6 promoters7,45.
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Genomic regulatory sequences show less conservation between human and mouse than do 

coding sequences. One advantage of using a human macrophage experimental system is that 

it enables direct comparisons with pathogenic macrophages obtained from clinical samples. 

It is encouraging that our results model aspects of gene expression or chromatin regulation 

patterns in monocytes/macrophages from patients with sepsis/recovery, RA and SLE37. SLE 

is characterized by IFN production and TLR activation in which TNF can be protective 

(consistent with tolerizing inflammatory genes). These similarities support the utility of our 

system to model and dissect mechanisms relevant for disease pathogenesis. It will be 

interesting to test in future work whether type I IFNs promote SLE pathogenesis in part by 

preventing tolerization of inflammatory ‘T’ genes, as has already been suggested36. Equally 

importantly, the mechanisms we have discovered and data sets we have developed provide 

molecular signatures linked to pathogenic cytokines and pathways that can motivate and 

help guide interpretation of studies using patient samples. Finally, our in vitro model can be 

exploited to develop and test the efficacy of therapeutic approaches that target epigenetic 

mechanisms that regulate cytokine production.

In summary, our results reveal how signaling crosstalk between type I IFNs, TNF and TLR4 

is integrated at the level of chromatin, and associate these chromatin changes with 

reprogramming of gene expression. They highlight the concept that chromatin is not just a 

target that propagates signaling cascades, but instead serves as an integration node that 

determines transcriptional output. These findings provide insights into regulation of 

inflammatory gene expression that can be used to develop approaches to modulate 

macrophage activation and cytokine production by targeting chromatin regulators.

METHODS

Cell culture, purification and stimulation

Primary human CD14+ monocytes were isolated from buffy coats purchased from the New 

York Blood Center using anti-CD14 magnetic beads (Miltenyi Biotec) as previously 

described, using a protocol approved by the Hospital for Special Surgery Institutional 

Review Board. Monocytes were cultured in RPMI 1640 medium (Invitrogen) supplemented 

with 10% heat-inactivated defined FBS (HyClone Fisher), penicillin/streptomycin 

(Invitrogen), L-glutamine (Invitrogen), and 20 ng/ml human macrophage colony-stimulating 

factor (M-CSF; Peprotech). Recombinant human TNF and IFN-α were from Peprotech and 

PBL science respectively (endotoxin concentrations were below limit of detection (<0.1 pg/ 

g)). LPS (tlrl-3pelps) and SB216763 (S3442) were from Invivogen and Sigma respectively.

Analysis of mRNA and protein

Total RNA was extracted with an RNeasy Mini Kit (Qiagen) and was reverse-transcribed 

with a First Strand cDNA Synthesis kit (Fermertas). Real-time PCR was performed in 

triplicate with Fast SYBR Green Master Mix and 7500 Fast Real-time PCR system (Applied 

Biosystems). Whole-cell extracts were prepared as described and were fractionated by 7.5–

10% SDS-PAGE, transferred to polyvinylide fluoride membranes (Millipore) and incubated 

with specific antibodies, then enhanced chemiluminescence was used for detection 

(Amersham). Antibody to phosphorylated IKKβ (2697), Erk (4377) and STAT1 (9171), and 
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antibody to IκBα (4812), p105/p50 (3035), cRel (4727), p100/p52 (3017), and RelB (4922) 

were from Cell Signaling. Anti-p38 (sc-535) was from Santa Cruz Biotechnology.

RNA-sequencing

After RNA extraction, libraries for sequencing were prepared using the Illumina TruSeq 

Stranded Total RNA Library Prep Kit following the manufacturer’s instructions. High 

throughput sequencing (50 bp, paired end) was performed at the Weill Cornell Medicine 

Epigenomic Core Facility. More than 100 million reads were obtained for each sample. 

After quality filtering according to the Illumina pipeline, paired-end reads were mapped to 

reference human genome (hg19 assembly) using STAR aligner version 2.4.0 with default 

parameters. Transcript abundance was quantified using Cufflinks 2.2.1, and Cuffdiff version 

2.2.1 was used to determine differentially expressed genes. The expression levels of genes in 

each sample were normalized by means of fragments per kilobase of exon per million 

fragments mapped (FPKM). Independently processed replicates from three different donors 

showed high similarity (the lowest r value across samples was 0.86 for all genes (Refseq) 

and 0.9316 for LPS-inducible genes (n = 1,574), Fig. 1 and Supplementary Fig. 1).

Chromatin Immunoprecipitation and ChIP-sequencing

Cells were crosslinked for 5 min at room temperature by the addition of one-tenth of the 

volume of 11% formaldehyde solution (11% formaldehyde, 50 mM HEPES pH 7.5, 100 

mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0) to the growth media followed by 5 

min quenching with 100 mM glycine. Cells were pelleted at 4°C and washed with ice-cold 

PBS. The crosslinked cells were lysed with lysis buffer (50 mM HEPES-KOH pH 7.5, 140 

mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, and 0.25% Triton X-100) with 

protease inhibitors on ice for 10 min and washed with washing buffer (10 mM Tris-HCl, pH 

8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA) for 10 min. The lysis samples were 

resuspended and sonicated in sonication buffer (10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 

mM EDTA, 0.5 mM EGTA, 0.1% Na-Deoxycholate, 0.5% Nlauroylsarcosine) using a 

Bioruptor (Diagenode) with 30 sec ON, 30 sec OFF on high power output for 18 cycles. 

After sonication, samples were centrifuged at 12,000 rpm for 10 minutes at 4°C and 1% of 

sonicated cell extracts was saved as input. The resulting whole-cell extract was incubated 

with Protein A Agarose for ChIP (EMD Millipore) for 1 hr at 4°C. Precleared extracts were 

then incubated with 50 µl (50% v/v) of Protein A Agarose beads for ChIP (EMD Millipore) 

with 5–10 µg of the appropriate antibody overnight at 4°C. ChIP grade antibodies against 

H3K 4me3 (ab8580), H3K27ac (ab4729), H3K36me3 (ab9050) and IRF1 (ab26109, ChIP-

qPCR) were from Abcam. Antibody against H2Bub (5546), p65 (8242, ChIP-qPCR) was 

from Cell Signaling Technology. ChIP antibodies against H3K56ac (39281) and H3K79me2 

(39143) were from Active Motif. Antibody against H4ac (06-866) was from EMD Millipore. 

Antibodies against Pol II (sc-899), IRF1 (sc-497, ChIPmentation) and p65 (sc-372) were 

from Santa Cruz Biotechnology. After overnight incubation, antibody-bound agarose beads 

were washed twice with sonication buffer, once with sonication buffer with 500 mM NaCl, 

once with LiCl wash buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 250 mM LiCl, 1% 

NP-40), and once with TE with 50 mM NaCl. ChIPmentation was perfomed as described46 

using magnetic beads (Thermo Scientific, 26162). The beads were washed twice with 10 

mM cold Tris-HCl, pH 8.0, to remove detergent, salts and EDTA. Subsequently, beads were 
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resuspended in 30 µl of the tagmentation reaction buffer (10 mM Tris, pH 8.0, 5 mM MgCl2) 

containing 1 µl Tagment DNA Enzyme from the Nextera DNA Sample Prep Kit (Illumina) 

and incubated at 37 °C for 10 min. Following tagmentation, the beads were washed twice 

with TE with 50 mM NaCl. After washing, DNA was eluted in freshly prepared elution 

buffer (1% SDS, 0.1M NaHCO3). Cross-links were reversed by overnight incubation at 

65°C. RNA and protein were digested using RNase A and Proteinase K, respectively and 

DNA was purified with ChIP DNA Clean & Concentrator™ (Zymo Research). For ChIP 

assays, immunoprecipitated DNA was analyzed by quantitative real-time PCR and 

normalized relative to input DNA amount. For ChIP-seq experiments, 10 ng of purified 

immunoprecipitated DNA per sample was ligated with adaptors, and 100–300 bp DNA 

fragments were purified to prepare DNA libraries using Illumina TruSeq ChIP Library Prep 

Kit following the manufacturer’s instructions. For ChIPmentation experiments, we amplified 

library fragments using 1× NEB next PCR master mix and 1.25 M of custom Nextera PCR 

primers as previously described46, using the following PCR conditions: 72 °C for 5 m in; 

98 °C for 30 s; and thermocycling at 98°C for 10 s, 63°C for 30 s and 7 2°C for 1 min. The 

libraries were purified using a Qiagen PCR cleanup kit yielding a final library concentration 

of ~30 nM in 20 µL. Libraries were amplified for a total of 8–10 cycles. ChIP libraries were 

sequenced (50 bp single end reads) using an Illumina HiSeq 2500 Sequencer at the Weill 

Cornell Medicine Epigenomic Core Facility per manufacturer's recommended protocol. For 

input DNA to be used as control for background noise, we fragmented 1 ng of chromatin for 

each sample, which underwent all steps of the ChIP-seq protocol except for 

immunoprecipitation and washing. Then, sequenced reads were aligned to reference human 

genome (GRCh37/hg19 assembly) using Bowtie2 version 2.2.6 with default parameters, and 

clonal reads were removed from further analysis. A minimum of 10 million uniquely 

mapped reads were obtained for each condition. Data in figures are from one representative 

out of two independent experiments (H2Bub, H3K4me3 and H3K36me3) with different 

blood donors or one experiment (H4ac, H3K27ac, H3K56ac, H3K79me2, H3K27me3 and 

H3K9me3).

ATAC-seq

ATAC-seq was performed as previously described41. To prepare nuclei, we spun 50,000 cells 

at 500g for 5 min, which was followed by a wash using 50 mL of cold 1× PBS and 

centrifugation at 500g for 5 min. Cells were lysed using cold lysis buffer (10 mM Tris-HCl, 

pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL CA-630). Immediately after lysis, 

nuclei were spun at 500g for 10 min using a refrigerated centrifuge. Immediately following 

the nuclei prep, the pellet was resuspended in the transposase reaction mix (25 µL 2× TD 

buffer, 2.5 µL transposase (Illumina) and 22.5 µL nuclease- free water). The transposition 

reaction was carried out for 30 min at 37 °C. Directly following transposition, the sample 

was purified using a Qiagen MinElute kit. Then, we amplified library fragments using 1× 

NEB next PCR master mix and 1.25 M of custom Nextera PCR primers as previously 

described, using the following PCR conditions: 72 °C for 5 min; 98 °C for 30 s; and 

thermocycling at 98°C for 10 s, 63°C for 30 s and 72°C for 1 min. The libraries were 

purified using a Qiagen PCR cleanup kit yielding a final library concentration of ~30 nM in 

20 µL. Libraries were amplified for a total of 10–13 cycles and were subjected to high-
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throughput sequencing using the Illumina HiSeq 2500 Sequencer (single end). ATAC-seq 

data was aligned to the genome using the same pipeline as ChIP-seq data.

Peak calling and annotation

We used the makeTagDirectory followed by findPeaks command from HOMER version 

4.7.2 (http://homer.salk.edu/homer/) to identify peaks of ChIP-seq and ATAC-seq. A false 

discovery rate (FDR) threshold of 0.001 was used for all data sets. The following HOMER 

command was used: cmd = findPeaks <sample tag directory> -style histone (for histone 

modifications and ATAC-seq) or factor (for transcription factors) -o <output file> -i <input 

tag directory for ChIP-seq>. Super-enhancers were identified using H3K27ac ChIP-seq data 

in HOMER using the findPeaks –style super, –L 0 and –i < input sample > options. The total 

number of mapped reads in each sample was normalized to ten million mapped reads. Peak-

associated genes were defined based on the closest genes to these genomic regions using 

RefSeq coordinates of genes. We used the annotatePeaks command from HOMER to 

calculate ChIP-seq and ATAC-seq tag densities from different experiments and to create 

heatmaps of tag densities. Sequencing data were visualized by preparing custom tracks for 

the UCSC Genome browser.

Classification of chromatin regions

Gene promoters were assigned to the genomic region within ±2 kb of a TSS (hg19). To 

determine potential enhancers, peaks of H3K27ac and ATAC-seq within 2 kb of a gene TSS 

were filtered out, then only peaks of ATAC-seq which overlapped with H3K27ac peaks were 

selected for the further analysis. For latent enhancers, we used peaks that have (1) up-

regulated tag density of H3K4me1 with ATAC-seq in T or TL conditions and (2) no 

H3K27ac in N or L conditions. All enhancer peaks between the different conditions in each 

comparison were merged into one peak set using mergePeaks –size given. Each enhancer 

was assigned to the nearest TSS. CpG database was retrieved from the UCSC Genome 

browser (hg19).

Clustering and correlation analysis

To generate the heatmap of K-mean clusters with RNA-seq, we used Cluster 3.0 (http://

bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) K-means algorithm with the 

Euclidean distance metric. K was chosen at 12 because lower values failed to identify all 

meaningful clusters and higher values subdivided meaningful clusters. The clusters were 

grouped into gene classes based primarily upon pattern of gene expression in the 4 

experimental conditions (Fig. 1b) also taking into account the quantitative pattern of 

expression of each cluster (Supplementary Fig. 1a). For clusters that were on the border 

between two classes and difficult to assign solely based on pattern of gene expression, class 

assignment was supported by gene ontogeny analysis and similarity in induction kinetics 

(Supplementary Fig. 2a). For the correlation heatmap in Figure 8a, we calculated the 

pairwise Pearson’s correlation between samples (and replicates) using the ATAC-seq read 

density of gene promoters. To generate heat maps, we used GENE-E (http://

www.broadinstitute.org/cancer/software/GENE-E/) set to relative comparison. 

Representative genes in Fig. 1d and 4c were selected based on GSEA hallmark gene sets, 
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which summarize and represent specific well-defined biological states and display coherent 

expression.

Gene ontology analysis

For expression data in Fig. 1c, GO annotation was determined using the Gorilla (http://cbl-

gorilla.cs.technion.ac.il/) tool on each of the 6 classes in Fig. 1b (using a ranked list as 

input). One representative category based on p-value is depicted if more than one similar 

category was identified. For super enhancers, enriched pathways were compiled from the 

GREAT (http://bejerano.stanford.edu/great/public/html/) tool. In both cases, pathways were 

ranked using p-value or binomial p-value respectively.

Digital genomic footprinting

Our ATACseq datasets (number of samples: 28; mean of total aligned read counts: 

1.425×108) and signal to noise ratios sufficient to undergo digital genomic footprinting. For 

this purpose, the wellington_footprints (http://pythonhosted.org/pyDNase/index.html) 

function of the Wellington suite was used with standard parameters (p-value score, threshold 

10−10) on BED3-converted peaks. Then, the footprints associated with LPS-inducible genes 

(Fig. 1b) at the p value of 10−10 were selected for the further study. To visualize footprints as 

heatmap showing enrichment of known transcription factors (Fig. 2c), we used pyDNase 

command ‘dnase_to_javatreeview.py’ to generate a CSV file that can be used in 

JavaTreeView or GENE-E.

Motif enrichment analysis

We used findMotifs function of HOMER to analyze the promoters of genes for motifs that 

are enriched in target gene promoters relative to other promoters (−300bp < TSS < +50bp, 

Fig. 1e). For the motif analysis comparing different conditions in Fig. 3a and Supplementary 

Fig. 5e, we used the known motif results to find which motifs in the HOMER and JASPAR 

databases were enriched in our data sets according to HOMER2 (p ≤ 10−5). Motifs 

corresponding to 1) TFs not expressed in our experimental setup or 2) low % of targets 

sequences (<2%) were excluded from the analysis. De novo transcription factor motif 

analysis was performed with motif finder program findMotifsGenome from HOMER 

package, on given ATAC-seq footprints. Peak sequences were compared to random genomic 

fragments of the same size and normalized G+C content to identify motifs enriched in the 

targeted sequences.

Determining relationships between transcription factor motifs and chromatin regulation

To obtain the results shown in Fig. 6b, occurrences of motifs from the JASPAR database 

were identified by running HOMER on the hg19 reference sequence with a detection 

threshold of P < 10−5. Highly enriched motifs were manually chosen based on well-known 

functions of transcription factors for macrophage activation. For each of our experimental 

conditions we scored each motif’s association with chromatin accessibility and histone 

modifications. We then used the GraphPad Prism 6 to visualize the distribution of this motif 

across different experimental conditions.
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Analysis of patient monocytes and macrophages

Peripheral blood was obtained from SLE patients and healthy donors using a protocol 

approved by the Institutional Review Board at the Hospital for Special Surgery. As described 

above, human CD14+ monocytes/macrophages were purified using anti-CD14 magnetic 

beads and were cultured in RPMI-1640 medium with 10% (vol/vol) FBS (Hyclone). For RA 

synovial macrophages, the microarray data described in Donlin et al., J Immunol, 2014, 

193:2373 (GSE97779) were normalized by a quantile normalization method using the 

preprocessCore package in R. Normalized expression levels were averaged within the same 

condition (Fig. 3e, f). ATAC-seq with monocytes from healthy or patient donors (Fig. 8) was 

performed as described above with or without ex vivo LPS (10 ng/ml) stimulation. The 

datasets from sepsis patients (Fig. 3d) were retrieved from GSE46955.

Statistical analysis

Graphpad Prism 6 for Mac (GraphPad Software, Inc) was used for all statistical analysis. 

Detailed information about statistical analysis including tests and values used, and number 

of times experiments were repeated, is indicated in the figure legends. P values are provided 

in the text or the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pretreatment with TNF reprograms subsequent TLR4 response in human macrophages. (a) 

Experimental design: N, no treatment; L, no pretreatment, followed by LPS challenge; T, 

pretreatment with TNF; T-L, pretreatment with TNF and challenge with LPS; hCD14+, 

human CD14 positive monocyte-derived macrophages. (b) K-means clustering (K = 12) of 

1,574 LPS-induced genes (>3-fold) in the indicated conditions; heat map shows gene 

expression relative to maximum, set at 1. 12 clusters were assembled into 6 major Classes 

(see Methods). Bar graphs represent pooled data from three biological replicates (% of 

maximum value) for a given class. (c) Functionally enriched Gene Ontology (GO) categories 
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of the gene classes in Fig. 1b. (d) Heatmaps of representative genes from Classes 1, 3, and 4 

that correspond to distinct biological functions. (e) Motifs enriched in the promoters 

(−300bp < TSS < +50bp) of given Class genes using GC-corrected background set of all 

other promoters using HOMER. Data (c–e) are representative of three biological replicates 

with similar results.
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Figure 2. 
Distinct epigenetic landscape at different TLR4-induced gene classes. (a) Heatmaps of 

H4ac, H3K4me3, H2Bub ChIP-seq and ATAC-seq normalized tag densities at the promoters 

(−2kb < TSS < +2kb) of a given gene class based on Fig. 1b. The order of genes in each 

column is the same for all heatmaps and Fig. 1b. (see Supplementary Fig. 3a for 

quantitation). (b) Representative UCSC Genome Browser tracks displaying normalized tag 

density profiles for H4ac, H3K4me3, H2Bub ChIP-seq, ATAC-seq and RNA-seq signals at 

IL6 (Class 1), CCL5 (Class 3), and CH25H (Class 4) genes in the indicated conditions. 

Boxes enclose genomic regions showing differential regulation. Data (a and b) show results 
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from one representative donor; results from biological replicates (ChIP-seq) and pooled data 

from 3–5 replicates (ATAC-seq) are shown in Supplementary Fig. 4a. (c) Heatmaps showing 

per nucleotide ATAC-seq cleavage sites for NFκB-p65 and PU.1 motifs in LPS-stimulated 

human primary macrophages ranked by tag density. The number of ATAC-seq footprints for 

each TF is shown on y-axis. 200 bp windows are shown centered at the midpoints of the 

ATAC-seq footprint. Footprinting was performed with two independent ATAC-seq 

replicates.
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Figure 3. 
(a–c) Distinct transcription factor binding at different gene classes. (a) Heatmap of 

significantly enriched motifs (p < 10−5) within ATAC-seq footprints (p < 10−10) in gene 

class promoter regions (−2kb < TSS < +2kb) in indicated conditions. Motifs are grouped 

according to transcription factor families. (b) Immunoblot of nuclear lysates from 

macrophages stimulated overnight with TNF. (c) Bar graphs show cumulative values for 

representative TFs that match motifs in (a) from three replicates. (d–e) Expression of 

inflammatory gene classes in sepsis monocytes and RA synovial macrophages. (d) 

Expression of genes belonging to each gene class in healthy donor monocytes (CTL, n = 2), 
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or monocytes from patients during sepsis (Sepsis, n = 7) and after recovery from sepsis 

(Recovery, n = 7) stimulated ex vivo with or without LPS. Each dot represents the average 

(log2) of a gene class in an individual donor. Data are presented as mean ± SEM. The gene 

expression data are from GSE46955. ****p < 0.0001, **p<0.01, analysis of variance and 

Dunnett’s multiple comparison post hoc test. (e) Cumulative distribution plot of normalized 

gene expression (log2) of LPS-inducible, Class 3 and Class 4 genes in RA synovial 

macrophages (RA, n=8) and control macrophages (CTL, n=8). p-value: CTL vs. RA, 

Kolmogorov-Smirnov test. (f) Expression of representative Class 4 genes in control or RA 

macrophages. Data are presented as mean ± SEM. **** p < 0.0001, *** p < 0.001, ** p < 

0.01, * p < 0.05, unpaired Student’s t-test.
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Figure 4. 
Type I IFNs block TNF-mediated tolerization of inflammatory genes without affecting LPS 

signaling. (a) Experimental design: IFN, treatment with IFN-α (25 ng/ml); IFN-L, treatment 

with IFN-α, followed by LPS challenge (10 ng/ml); IFN/T, treatment with IFN-α and TNF 

(10 ng/ml); IFN/T-L, treatment with IFN-α and TNF, followed by LPS. (b) Bar graphs 

represent cumulative values for a given gene class in RNA-seq analysis (left) from three 

replicates (% of maximum value). Error bars indicate SEM. The dot plots (right) show 

percent of genes in each class that were up-regulated, down-regulated or not changed by 

IFN-α (>1.5-fold, T-L vs. IFN/T-L). Each dot represents 1% of genes; red = upregulated, 
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blue = downregulated, grey = not changed. ****p < 0.0001, *p<0.05, analysis of variance 

and Dunnett’s multiple comparison post hoc test. (c) Heatmap showing inflammatory Class 

1 genes whose tolerization is reversed by IFN-α treatment. (d) Immunoblot analysis of 

IκBα, p105/p50, cRel, p100/p52, RelB and phosphorylated IKKβ, ERK and STAT1 in 

primary macrophages cultured for 24 h with TNF (10 ng/ml) with or without IFN-α (25 ng/

ml), and challenged for the indicated times with LPS (10 ng/ml). Data are representative of 

four experiments. (e) RT-qPCR analysis of TNF and IL6 primary transcripts normalized 

relative to HPRT. Data are representative of five independent donors and error bars indicate 

SEM. (f) ChIP assays for recruitment of Pol II to IL6 promoter in the indicated conditions. 

Data are representative of 4 different donors.
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Figure 5. 
Integration of signaling crosstalk between IFN and TNF at the chromatin level. (a) 
Formaldehyde-assisted isolation of regulatory elements (FAIRE) assay at IL6 gene under 

indicated conditions. Data are representative of 4 experiments; error bars show SEM. (b) 

Heatmaps of ATAC-seq and H3K4me3, H2Bub ChIP-seq normalized tag densities at the 

promoters (−2kb < TSS < +2kb) of Class 1 genes ordered as in Fig. 1b (upper). Box graphs 

represent quantitation of the normalized tag densities (log2) for the indicated conditions. p 

value, Kolmogorov-Smirnov test. (c) Representative UCSC Genome Browser tracks 

displaying normalized profiles for ATAC-seq, H3K4me3 and H2Bub ChIP-seq signals at 
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TNF gene under indicated conditions. ATAC-seq data represents pooled data from three to 

five biological replicates. (d) Heatmap of breadth of H3K4me3 ChIP-seq peaks at Class 1 

gene promoters under indicated conditions (upper). Box graphs represent quantification of 

the H3K4me3 breadth (log2) for Class 1 genes (lower). p-value, Kolmogorov-Smirnov test. 

(e) Representative UCSC Genome Browser tracks displaying normalized profiles for ATAC-

seq signals at IL1B, DUSP2 and NFKBIA (Class 1) genes under indicated conditions. Boxes 

enclose ATAC-seq peaks that extended into gene bodies in IFN/T-L condition.
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Figure 6. 
IFN and TNF prime chromatin by cooperatively recruiting transcription factors to Class 1 

promoters. (a) De novo motif enrichment analysis of promoter regions (−2kb < TSS < +2kb) 

of Class 1 genes using ATAC-seq footprints of IFN/T-L condition. Random background 

regions were selected as a control. (b) Graphs represent association of occupied transcription 

factor binding sites (footprints) with chromatin accessibility and histone modifications. Data 

are presented as mean ± SEM. Relative chromatin accessibility or histone modification (x-

axis, normalized ATAC-seq, H2Bub or H3K4me3 tag counts) is measured as the mean 

intensity of ATAC-seq, H2Bub or H3K4me3 peaks containing the indicated motif (y-axis) 

across all experimental conditions. (c) Bar graphs represent cumulative values for IRF1, 4 

and 7 in RNA-seq analysis from three replicates.

Park et al. Page 29

Nat Immunol. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
(a–c) Colocalization of IRF1 and NF-kB p65 in IFN-α and TNF-treated macrophages. (a) 

Circle represents 100% of Class 1 gene promoter IRF1 Chip-seq peaks in unstimulated (left, 

n = 147) or IFNα/T conditions (right, n = 386). The peak fraction that overlaps with p65 

ChIP-seq peaks is shaded in black. P value was calculated relative to random genes. (b) 

Representative UCSC Genome Browser tracks displaying normalized profiles for p65 and 

IRF1 ChIP-seq signals at IL1B and CCL3 genes in indicated conditions. Boxes enclose co-

localization of p65 and IRF1 binding peaks in the same genomic regions. (c) ChIP-qPCR 

analysis of recruitment of p65 and IRF1 to CCL3 and CCL20 promoters. Data are 

representative of three independent experiments. (d–e) Altered transcriptional requirements 

in IFN-α + TNF-treated macrophages. Naïve, TNF-, or IFN-α + TNF-treated macrophages 

were stimulated with LPS (10 ng/ml) with or without CHX (d, 20 µg/mL) or IL-10 (e, 10 

ng/ml) and RT–qPCR was performed. Data are representative of three independent donors, 

and error bars indicate SEM.
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Figure 8. 
Chromatin accessibility in SLE monocytes. (a) Correlation matrix heatmap based on 

unsupervised Pearson correlation coefficients comparing normalized ATAC-seq tag densities 

at promoters (−2kb < TSS < +2kb) of Class 1 genes across all indicated conditions and 

replicates. (SLE-N: untreated SLE monocytes, SLE-L: LPS (10 ng/ml)-treated SLE 

monocytes). (b) Representative UCSC Genome Browser tracks displaying normalized 

profiles for ATAC-seq signals at TNF, CXCL2 and CCL20 genes in indicated conditions. 

(CTL: control monocytes, SLE: SLE monocytes). Boxes enclose a broad region of 

chromatin accessibility that extends into the gene bodies in SLE monocytes. (c) Bar graph 
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represents cumulative values for IFNB1 in RNA-seq analysis under indicated conditions 

from three replicates. (d) UCSC Genome Browser tracks displaying normalized profiles for 

ATAC-seq signals at IFNB1 under indicated conditions. (CTL: control monocytes, SLE: 

SLE monocytes). Boxes enclose a broad region of chromatin accessibility that extends into 

the gene bodies in IFN/T-L and SLE-L conditions. (e) De novo motif enrichment analysis of 

Class 1 gene promoters using ATAC-seq footprints of LPS-stimulated control monocytes 

(CTL-L) and SLE monocytes (SLE-L).
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