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Abstract

free QD-LEDs for future display applications.

Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the
characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the
development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to
reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS
core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and
environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at ~530 nm,
superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an
emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the
turn-on voltage at ~5 V, the highest luminance (160 cd/m?) at 12 V, and the external quantum efficiency of
0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-
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Background

With unique physical and chemical properties, quantum
dots (QDs) have attracted great interest in applications
such as lasers, biomedical imaging, sensors, and light-
emitting diodes (LEDs) [1-9]. The QDs have been actively
investigated for LED applications because of their
attractive properties of size-tunable band gaps, good
photostability, superior photoluminescence efficiency, and
compatibility with solution-processing methods. The QD-
LEDs have been considered as potential display technolo-
gies with the characterizations of high color purity,
flexibility, transparency, and cost efficiency [10-16].
Currently, most of QD-LEDs have been manufactured by
cadmium-based QDs, which are proved relatively easy to
synthesize with high-quality optical properties [17].
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However, the heavy-metal nature of the cadmium-based
QDs has raised many concerns about carcinogenicity and
other chronic health risks as well as disposal hazards. The
regulatory acceptance of any heavy-metal compositions in
QDs will severely obstruct the final commercialization of
the QD-LEDs products. For the practical applications, the
development of heavy-metal-free QD-LEDs is the most
important issue to reduce the impacts on human health
and environmental pollution.

To date, to eliminate the healthy and environmental
concerns, many efforts have been focused on the synthe-
ses of cadmium-free QDs for LED applications [18-24].
In recent studies, red emission of ZnCulnS/ZnS core/shell
QDs mixed with blue-green emission of poly(N,N'-bis(4-
butylphenyl)-N,N"-bis(phenyl)benzidine) have been ap-
plied to obtain white electroluminescence LEDs [25].
Highly stable and luminescent InP/GaP/ZnS core/shell/
shell QDs with a maximum quantum yield of 85% have
been used to fabricate white QD-LEDs with luminous effi-
ciency of 54.71 Im/W, Ra of 80.56, and correlated color
temperature of 7864 K at the color coordinate (0.3034,
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0.2881) [26]. White QD-LEDs based on high-quality InP/
ZnS core/shell QDs with luminescence tunable over the
entire visible spectrum have been demonstrated with a
high color rendering index of 91 [27]. Among these mate-
rials, indium phosphide (band gap ~ 1.35 eV) with core/
shell structure is the potential candidate as the ideal alter-
native material to provide the similar emission wavelength
range without intrinsic toxicity in comparison to
cadmium-based QDs. Many studies have reported the
synthetic approaches such as hot-injection, solvothermal,
and heating-up method to synthesize InP/ZnS core/shell
QDs with high quantum efficiency [28—30]. Several phos-
phorus precursors including tris(trimethylsilyl)phosphine,
triarylsilylphosphines, phosphine, P, and PCl; have been
respectively utilized for the syntheses of InP/ZnS core/
shell QDs [31-38]. However, these phosphorus precursors
exhibiting some disadvantages such as expensive,
flammable, and toxic have inhibited the further pro-
duction of InP/ZnS core/shell QDs. Therefore, the
green synthesis of InP/ZnS core/shell QDs by cheap,
safe, and environment-friendly precursors is still the
challenge in the field of materials science. Moreover,
the use of InP/ZnS core/shell QDs to fabricate highly
efficient QD-LEDs is also an important issue for prac-
tice application in display technology.

Herein, environment-friendly InP/ZnS core/shell QDs
were successfully synthesized by solvothermal green syn-
thesis with low-cost and safe precursors including Inlj,
ZnCl,, (DMA)3P, zinc stearate, and sulfur. The structural
and optical properties of InP/ZnS core/shell QDs were
characterized by transmission electron microscopy
(TEM), powder X-ray diffraction (XRD), and ultraviolet-
visible (UV-Vis) spectrophotometer. Thermal stability of
the fluorescence of InP/ZnS core/shell QDs was investi-
gated to find the optimal process temperature for further
fabrication of multilayered InP/ZnS core/shell QD-
LEDs. Moreover, the performance of multilayered InP/
ZnS core/shell QD-LEDs was explored to demonstrate
the possibility for the practical applications such as dis-
plays in the near future.

Methods

Chemicals

Indium (III) iodide (Inls3), zinc (II) chloride (ZnCl,), tris(-
dimethylamino)phosphine (DMA)3;P, and zinc stearate
were purchased from Sigma-Aldrich. Oleylamine was pur-
chased from Acros Organics. Trioctylphosphine (TOP)
and sulfur powder were purchased from Strem Chemicals.
Octadecene (ODE) was purchased from Alfa Aesar.

Preparation of InP/ZnS Core/Shell QDs

InP/ZnS core/shell QDs were synthesized via solvother-
mal green synthesis according to the previous study with
some modifications [39]. First, 224 mg of Inl3, 300 mg
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of ZnCl,, and 5.0 mL of oleylamine were added into a
three-neck round-bottom flask. The reactants were
stirred and degassed at 120 °C for 60 min and then
heated to 180 °C under argon atmosphere. At 180 °C,
0.45 mL of (DMA);P was quickly injected into the above
reactants. After the phosphorus precursor injection, the
InP QDs were continually grown for 20 min. Second, for
the growth of ZnS shell onto InP core, 1.5 g of zinc
stearate and 6 mL ODE were mixed as zinc precursor.
In addition, 0.72 g sulfur and 10 mL TOP were mixed as
sulfur precursor. To synthesize InP/ZnS core/shell QDs,
1 mL of sulfur precursor was slowly injected into the
InP QDs solution at 180 °C. At 40 min after the injec-
tion of sulfur precursor, the solution with InP QDs and
sulfur precursor was heated to 200 °C and then the solu-
tion was added with 4 mL of zinc precursor. After
60 min, the solution with InP QDs, sulfur precursor, and
zinc precursor was heated at 220 °C for 30 min to allow
the growth of ZnS shell onto InP core. Afterward, the
additional sulfur precursor (0.7 mL) was added to the
solution with InP/ZnS core/shell QDs for second growth
of the ZnS shell. After second injection of sulfur precur-
sor, the solution was heated to 240 °C and kept at 240 °
C for 30 min. After 30 min, the zinc precursor (2 mL)
was added to the solution with InP/ZnS core/shell QDs
and second injection sulfur precursor. After second in-
jection of zinc precursor, the solution was heated to
260 °C to continue growth for 30 min. For the prepara-
tions of red and yellow fluorescent InP/ZnS core/shell
QDs, the indium precursors of InCl; and InBr; were re-
spectively used to synthesize red and yellow fluorescent
InP/ZnS core/shell QDs. After the synthetic processes,
the solution of InP/ZnS core/shell QDs was cooled
down to room temperature. To remove the unreacted
compounds and byproducts, the solution of InP/ZnS
core/shell QDs was washed with small amount of acet-
one and then centrifuged at 4000 rpm for 15 min. After
centrifugation, the supernatant was carefully removed
without disturbance. The precipitate was redispersed
in the solvent composed by chloroform and acetone
(20/80, v/v) and then centrifuged at 4000 rpm for
15 min. After removal of supernatant, the InP/ZnS
core/shell QDs were dispersed in chloroform for fur-
ther QD-LED applications.

Thermal Stability Test of InP/ZnS Core/Shell QDs

To test the thermal stability, the InP/ZnS Core/Shell QD
solution was first deposited by spin casting (1500 rpm,
60 s) on the glass slides. And then the glass slides coated
with InP/ZnS core/shell QDs were respectively annealed
under temperatures including 25, 70, 100, 130, and 150 °
C. After annealing with different times, the fluorescence
of the glass slides coated with InP/ZnS core/shell QDs
was measured by gel/fluorescence/chemiluminescence
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imaging system. The changes of fluorescence of the glass
slides coated with InP/ZnS core/shell QDs were calcu-
lated by Image] software.

Materials Characterizations

A Philips Technai G2 transmission electron microscopy
(TEM) was operated at 200 kV to acquire TEM images.
To prepare TEM samples, the InP/ZnS core/shell QDs
were ultrasonically dispersed in chloroform and then a
drop of the InP/ZnS core/shell QD solution was casted
off onto a copper-carbon TEM grid. Subsequently, the
resulting TEM grid was dried in air. X-ray diffraction
(XRD) measurements were obtained by Bruker D8 tools
advance, operating with Cu Ka radiation (A = 1.5406 A)
generated at 40 keV and 40 mA. UV-Vis absorption
spectra were measured by V-770ST UV/Vis spectropho-
tometer. Fluorescence spectra were obtained by SLM
Aminco-Bowman Series 2.

Fabrication of Multilayered InP/ZnS Core/Shell QD-LEDs
Multilayered InP/ZnS core/shell QD-LEDs were fabri-
cated via sequential depositions of the constituent layers
including hole injection layer (HIL), hole transport layer
(HTL), emitting layer (InP/ZnS core/shell QDs, EML),
exciton block layer (EBL), electron transport layer (ETL),
and electron injection layer (EIL) on the substrate of AU
Optronics (AUO) normal bottom emission (BE) model
test (MT). The constituent layers of HIL, HTL, EBL,
ETL, EIL, and substrate of AUO normal BE MT were
provided by AU Optronics Corporation. For the fabrica-
tion of multilayered InP/ZnS core/shell QD-LEDs, the
layers of HIL, HTL, and EML were sequentially depos-
ited by spin casting on the substrate of AUO normal BE
MT. The solution concentration of InP/ZnS core/shell
QDs was 20 mg/mL. The solution of InP/ZnS core/shell
QDs (20 mg/mL) was spin casted (1500 rpm) to form
the EML. Afterward, to dry the EML, the substrate of
AUO normal BE MT with HIL, HTL, and EML was
baked at 70 °C. Finally, the layers of EBL, ETL, EIL, and
Al cathode were sequentially deposited on EML by ther-
mal vapor deposition. The light-emitting area of the
multilayered  InP/ZnS  core/shell QD-LEDs was
0.2 x 0.2 cm? The film thickness of multilayered InP/
ZnS core/shell QD-LEDs was measured by the o-step
apparatus. The performance of multilayered InP/ZnS
core/shell QD-LEDs was detected by PR670 photome-
ters (Titan Electro-Optics Co., Ltd).

Results and Discussion

Characterizations of InP/ZnS Core/Shell QDs

InP/ZnS core/shell QDs were prepared by solvothermal
green synthesis with cheap, safer, and environment-
friendly precursors including Inls, ZnCl,, (DMA)3P, zinc
stearate, and sulfur compared to previous studies. In
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Fig. 1 TEM image of InP/ZnS core/shell QDs

previous work, ZnCl, has been demonstrated to facilitate
the ZnS shell growth and to reduce the size distribution
of the InP core [39]. For the formation of InP core, the
phosphorus precursor of (DMA);P was used because of
its low price. More importantly, the (DMA)3P is stable
under ambient conditions for the improvement of the
safety of InP synthesis. As shown in the TEM image of
Fig. 1, the InP/ZnS core/shell QDs revealed the spherical
morphology. After statistics of 100 QDs in the TEM
image, the average diameter of InP/ZnS core/shell QDs
was ~4 nm. Histogram of size distribution of InP/ZnS
core/shell QDs and Gaussian fitting were shown in the
Additional file 1: Figure S1. The EDX analysis of InP/
ZnS core/shell QDs showed that the atomic percent-
ages of phosphorus, sulfur, zinc, and indium were re-
spectively 21.20, 4.17, 69.27, and 5.36% as shown in
Additional file 1: Figure S2.
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Fig. 2 XRD patterns of InP/ZnS core/shell QDs. The XRD reflection
peaks of InP QDs and ZnS QDs with typical zinc-blend phase
.
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To confirm the structure of InP/ZnS core/shell QDs,
the X-ray diffraction (XRD) pattern was examined (Fig. 2).
The main peaks of InP QDs (JCPDS 73-1983) at 26.3°,
43.6°, and 51.6° were indexed to the (111), (220), and (311)
planes of zinc blende structure, respectively. The peaks
located at 285°, 47.4°, and 56.3° were respectively
responded to the (111), (220), and (311) planes of zinc
blende structure (JCPDS 77-2100) for ZnS. The XRD pat-
tern showed that the diffraction peaks of InP and ZnS
shifted to the positions between their theoretical values in
the InP/ZnS core/shell QDs. The reason was attributed to
the lattice mismatch between InP and ZnS as demon-
strated before for CdSe/CdS core/shell QDs [40]. As
shown in the XRD pattern, the lattice mismatch also re-
vealed that the InP/ZnS core/shell QDs were successfully
obtained by solvothermal green synthesis with the cheap,
safe, and environment-friendly precursors.

To further investigate the optical properties, (UV-Vis)
spectra and fluorescence spectra of InP/ZnS core/shell
QDs were measured before the fabrication of QD-LEDs.
In Fig. 3, the absorption peak of InP/ZnS core/shell QDs
was located at ~480 nm. The maximum fluorescence
emission peak of InP/ZnS core/shell QDs was obtained
at ~ 530 nm. In the fluorescence spectra, the full width
at half maximum of InP/ZnS core/shell QDs was calcu-
lated to be ~ 55 nm. The fluorescence quantum yield of
InP/ZnS core/shell QDs was estimated to be 60.1% in
comparison with fluorescein (see Additional file 1 for
the calculation of fluorescence quantum yield). The inset
in Fig. 3 showed the green fluorescence of InP/ZnS
core/shell QDs with the irradiation by hand-held long-
wave UV lamp. The excellent optical properties of InP/
ZnS core/shell QDs are suitable for the fabrication of
green QD-LEDs. Furthermore, the InP/ZnS core/shell

QDs with red and yellow fluorescence were also success-
fully prepared by the solvothermal green synthesis as
shown in the Additional file 1: Figure S3.

Performance of InP/ZnS Core/Shell QD-LEDs

Thermal stability of the fluorescence of InP/ZnS core/
shell QDs is an important factor for the fabrication and
performance of QD-LEDs. To investigate the thermal
stability of fluorescence, the InP/ZnS core/shell QDs
were annealed under different temperatures. As shown
in Fig. 4, the fluorescent intensities of InP/ZnS core/shell
QDs were decreased with annealing temperatures from
25 to 150 °C in the first hour. Previous studies have
demonstrated the decrease of fluorescence of QDs as
the increase of temperature [41-43]. However, the fluor-
escent intensities of InP/ZnS core/shell QDs were
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Fig. 4 The changes of fluorescence intensities of InP/ZnS core/shell
QDs with different annealing temperatures
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Fig. 5 The energy levels of the individual layers of multilayered InP/
ZnS core/shell QD-LEDs

slightly increased after annealing for 1 hour. The simple
annealing process diminished the accumulated defect
states within the InP/ZnS core/shell QDs and therefore
decreased the non-radiative recombination [44]. Al-
though the fluorescence intensity of InP/ZnS core/shell
QDs showed no significant change with annealing
temperature under 25 °C, the annealing temperature of
25 °C was not suitable for the fabrication of QD-LEDs.
During the QD-LED preparation, the minimal process
temperature is 70 °C because the QD-LEDs need to be
baked above 70 °C to dry the devices. As shown in Fig. 4,
after 5 h annealing, the fluorescence intensities of InP/
ZnS core/shell QDs with annealing temperatures of 70,
100, 130, and 150 °C were respectively maintained at 88,
81, 77, and 66% in comparison to that of QDs without
annealing process. Therefore, to obtain the best per-
formance, the process temperature was chosen as 70 °C
for InP/ZnS core/shell QD-LED fabrication.
Multilayered InP/ZnS core/shell QD-LEDs were fabri-
cated via sequential spin depositions of the constituent
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layers including HIL (30 nm), HTL (20 nm), InP/ZnS
core/shell QDs (EML, 26 nm), EBL (10 nm), ETL
(22 nm), and EIL (1 nm) on ITO glass substrate. Finally,
a 150-nm-thick Al film was thermally deposited as a
cathode. Figure 5 shows the energy levels of the individ-
ual layers of multilayered InP/ZnS core/shell QD-LEDs.
Luminance-voltage characteristic of multilayered InP/
ZnS core/shell QD-LEDs is presented in Fig. 6a. The
turn-on voltage of multilayered InP/ZnS core/shell QD-
LEDs was ~ 5 V. Furthermore, the multilayered InP/ZnS
core/shell QD-LEDs showed the highest luminance
(160 cd/m? at 12 V. For the current density-voltage
characteristic, the current of multilayered InP/ZnS core/
shell QD-LEDs appeared at ~5 V and increased to
1.09 mA/m? at 5.7 V as shown in Fig. 6b. The results in-
dicated the efficient injection of holes and electrons into
the InP/ZnS core/shell QDs layer. The current efficiency
as a function of luminance for multilayered InP/ZnS
core/shell QD-LEDs is shown in Fig. 6c. A maximum
current efficiency of 0.65 cd/A and external quantum ef-
ficiency of 0.223% were achieved with multilayered InP/
ZnS core/shell QD-LEDs at luminance ~ 20 cd/m? Al-
though the efficiency of multilayered InP/ZnS core/shell
QD-LED:s is still not enough for the practical applications
such as displays in this work, the development of QD-
LEDs with environment-friendly materials, low cost, and
high performance remains a key issue to make them more
competitive for practical applications.

Conclusions

Heavy-metal-free InP/ZnS core/shell QDs with different
fluorescence were successfully prepared by solvothermal
green synthesis with cheap, safer, and environment-
friendly precursors including Inl3;, ZnCl,, (DMA);P, zinc
stearate, and sulfur compared to previous studies. The
results of TEM characterizations showed that the InP/
ZnS core/shell QDs with green fluorescence revealed the
spherical morphology with the average diameter ~ 4 nm.
The XRD pattern demonstrated the lattice mismatch of
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InP/ZnS core/shell QDs for core/shell structure. For the
optical properties, the green fluorescent InP/ZnS core/
shell QDs with superior fluorescence quantum yield of
60.1% and full width at half maximum of 55 nm were
used as an emission layer to prepare multilayered QD-
LEDs. The optimal process temperature was chosen as
70 °C for InP/ZnS core/shell QD-LED fabrication to ob-
tain the best performance. The multilayered InP/ZnS
core/shell QD-LEDs showed the turn-on voltage at ~
5V, the highest luminance (160 cd/m?) at 12 V, and the
external quantum efficiency of 0.223% at 6.7 V. Al-
though the multilayered InP/ZnS core/shell QD-LEDs
were fabricated, the device long-term stability still re-
mains a great challenge. The multilayered InP/ZnS
core/shell QD-LEDs with low cost and environmental
friendliness could be a potential candidate for future
display applications.

Additional file

Additional file 1: Calculation of fluorescence quantum yield. Figure S1.
Histogram of size distribution of InP/ZnS core/shell QDs and Gaussian
fitting. Figure S2. EDX analysis of InP/ZnS core/shell QDs. Figure S3.

a UV-Vis spectra and fluorescence of InP/ZnS core/shell QDs with red
fluorescence. b UV-Vis spectra and fluorescence of InP/ZnS core/shell
QDs with yellow fluorescence. ¢ The red (right) and yellow (left)
fluorescence of InP/ZnS core/shell QDs with the irradiation by
hand-held long-wave UV lamp. (DOC 559 kb)
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