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Abstract

Manifold-valued data arises frequently in medical imaging, surface modeling, computational 

biology, and computer vision, among many others. The aim of this paper is to introduce a 

conditional local distance correlation measure for characterizing a nonlinear association between 

manifold-valued data, denoted by X, and a set of variables (e.g., diagnosis), denoted by Y, 

conditional on the other set of variables (e.g., gender and age), denoted by Z. Our nonlinear 

association measure is solely based on the distance of the space that X, Y, and Z are resided, 

avoiding both specifying any parametric distribution and link function and projecting data to local 

tangent planes. It can be easily extended to the case when both X and Y are manifold-valued data. 

We develop a computationally fast estimation procedure to calculate such nonlinear association 

measure. Moreover, we use a bootstrap method to determine its asymptotic distribution and p-

value in order to test a key hypothesis of conditional independence. Simulation studies and a real 

data analysis are used to evaluate the finite sample properties of our methods.
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1 Introduction

Manifold-valued data frequently arises in many domains, such as medical imaging, 

computational biology, and computer vision, among many others [2, 23, 28, 11, 19]. 

Examples of manifold-valued data in medical imaging analysis include the Grassmann 

manifold, planar shapes, matrix Lie groups, deformation field, symmetric positive definite 

(SPD) matrices, and the shape representation of cortical and subcortical structures. Most 

manifold-valued objects are inherently non-linear and high-dimensional (or even infinite-
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dimensional), so analysis of these complex objects presents many mathematical and 

computational challenges.

Motivated by shape analysis, the aim of this paper is to measure a linear/nonlinear 

association between manifold-valued data (e.g., shape representation) and a random vector/

variable (e.g., diagnosis), while controlling for the other random vector (e.g., age). 

Specifically, consider n independent observations {(Xi, Yi, Zi)}1≤i≤n, where Xi, Yi, and Zi 

are elements in metric spaces , , and , respectively. In traditional statistics, these 

metric spaces are Euclidean spaces of arbitrary dimension. Correlation and regression 

analyses are the fundamental statistic techniques for quantifying the degree of association 

between X and Y, with/without the effect of a set of controlling random variables Z 
removed. For instance, Pearson correlation and its multivariate extension, so-called 

canonical correlation analysis (CCA), are powerful tools for measuring the degree of linear 

association between X and Y. Moreover, partial correlation measures the degree of linear 

association between two random variables, while controlling for a random vector. 

Alternatively, one may fit a regression with Yi as response and both Xi and Zi as covariates 

such that , where β0, βx, and βz are regression coefficients and εi 

are measurement errors.

Generalizations of correlation and regression analyses to manifold-valued data are recently 

gaining popularity. Most existing methods for manifold-valued data are primarily on their 

mean and variation [5, 6, 10, 12]. Some nonparametric methods were subsequently 

developed for the density estimation of manifold data [3, 19, 21]. Recently, in [14], a 

Riemannian CCA model was proposed to measure an intrinsically linear association 

between manifold-valued data and a random vector (or two manifold-valued objects). 

Furthermore, various intrinsic regression models have been developed for manifold-valued 

data [13, 3, 4, 16, 24, 29, 7, 2, 19, 10, 9]. Most of these regression methods often require 

specifying a link function, projecting manifold-valued data to local tangent planes for 

computing residuals, and transporting all residuals to a common space [7].

However, when Xi or/and Yi are manifold-valued data, little has been done on the analysis of 

X and Y, while controlling for Z due to at least two major challenges. First, it is 

computationally challenging to optimize the objective function for the regression analysis of 

X and Y, when the dimension of X is relatively high. Such objective function is generally 

not convex and has a large number of parameters. Particularly, standard gradient-based 

optimization methods used in the literature strongly depend on the starting value of unknown 

parameters. Second, most intrinsic regression models for manifold-valued data require the 

specification of link functions (e.g., geodesic link), but it is conceptually challenging to 

choose a correct appropriate link function for any regression model that provides goodness 

of fit to a given data set. Due to these challenges, it is difficult to make further statistical 

inference (e.g., hypothesis test).

We propose a conditional local distance correlation to measure the nonlinear association 

between X and Y, while controlling for Z. Since such distance correlation measure solely 

requires the specification of the distances on the metric spaces , , and , it is applicable 

when both X and Y are manifold-valued data in different spaces. It also enjoys four major 
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advantages. First, it avoids the optimization of a complex objective function, since empirical 

distance correlation measure is the function of pairwise distance between sample points. 

Second, it avoids the projection of manifold-valued data to local tangent planes. Third, it has 

a high statistical power of detecting complex and unknown nonlinear relationships between 

X and Y. Fourth, it is easy to make statistical inference on the nonlinear association between 

X and Y, while controlling for Z.

2 Methods

2.1 Conditional local distance correlation

We review a novel distance correlation for characterizing statistical dependence between two 

random variables or two random vectors of arbitrary dimensions [25]. In [15], distance 

correlation was further extended to stochastic processes in metric spaces when such metric 

spaces are of strong negative type. Distance correlation as an extension of Pearson 

correlation has several important properties. The first and most important one is that it is 

zero if and only if two random vectors are independent. The second one is its computational 

simplicity, since empirical distance correlation is the function of pairwise distance between 

sample points.

We introduce a conditional local distance correlation to measure the nonlinear association 

between X and Y, while controlling for Z, when , , and  are metric spaces. Let dX(·,|

·), dY (·, ·), and dZ(·, ·) be, respectively, the metrics of , , and . Let M(  |Z) (or·M( 

|Z denote the set of finite conditional probability measures on  (or ) given Z. We say that 

μ ∈ M( | Z) has a finite first moment if . we for some o ∈ 

Similarly, we can define ν ∈ ( | Z). Define aμ (x| z):= ∫dX(x, x′)dμ(x′|z) and DX(μ|z):= 

∫dX(x, x′)dμ(x′|z)dμ(x|z) as finite functions when μ ∈ M|(  |Z) has a finite first moment. 

Also, we can define av (y |z) DY (ν|z) for ν ∈ M(  |Z) and Y.

Definition 1—The local distance covariance  between random processes X 

and Y with finite moments given Z is defined as the square root of

where X′ and Y′ are the independent copies of X and Y, respectively.

By setting X = Y, we obtain the local distance variance as 

Definition 2—The local distance correlation between random processes X and Y with 

finite moments given Z is defined as the square root of

if , or 0 otherwise.
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Under the condition that the metric spaces are of strong negative type, it can be shown that 

 if and only if X and Y given Z = z are conditionally independent. 

This property distinguishes the local distance correlation from the existing methods in the 

literature [14, 13, 3, 4, 16, 24, 29, 7, 2, 19, 7]. As shown below, it is easy to estimate 

 and use its estimate to make statistical inference.

2.2 Estimation procedure

The next interesting question is to estimate the local distance covariance and correlation. 

The local distance dependence statistics are defined as follows. Let (Xi, Yi, Zi) for i = 1,…,n 
be a random sample of n independent and identically distributed random vectors from the 

joint distribution of random vectors (X, Y, Z). We compute two distance matrices (akl) = 

dX(Xk, Xl) and (bkl) = dY (Yk, Yl). For notational simplicity, it is assumed that  holds. 

We consider a kernel function K(·) on Rr and the bandwidth h satisfying two regularity 

conditions as follows:

(C1) , , , , and 

(C2) hr → 0, nhr → ∞, as n → ∞

Let ωh,k(Z) = Kh(Z − Zk), ωh,kl(Z) = Kh(Z − Zk)Kh(Z − Zl), ωh,ijkl(Z) = Kh(Z − Zi)Kh(Z − 

Zj)Kh(Z − Zk)Kh(Z − Zl), and , where Kh(Z) = K((Z − Zk)/h)/hr. We 

then introduce Akl(Z; h) as follows:

where akl = dX(Xk, Xl), , 

, and

Similarly, we can define bkl = dY (Yk, Yl) and Bkl(Z; h). Then, the empirical local distance 

covariance can be defined as

We define the empirical local distance correlation as
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where 

2.3 Inference procedure

The next question is to make statistical inference based on LDV or LDC. Our inference 

procedure consists of carrying out hypothesis test and constructing confidence interval.

To test the dependence of X and Y at a fixed location Z = z, we formulate it as follows:

(1)

We calculate the p–value of  by using a local bootstrap procedure [18, 25, 

26] as follows:

i. Generate  from {X1,…,Xn} with the probability

for j = 1,…,n. Then, we compute  by using the local bootstrap sample 

.

ii. Select a resampling number S, say 1,000. Repeat Step (i) S times and obtain 

 for s = 1,…,S. And then the p-value of the test is given by

Given a confidence level α, we construct simultaneous confidence bands for 

as follows:

where  and  are the lower and upper limits of 

simultaneous confidence band, respectively. We use a bootstrap method to approximate the 

bounds:

I. Resample  from {(Xk, Yk, Zk): k = 1,…,n} with the 

probability
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for j = 1,…,n, then compute  by the bootstrap sample 

.

II. Repeat Step (I) with resampling number S times and obtain 

And then the simultaneous confidence band is given by the quantiles at α and 1 − 

α of .

Like many other smoothing-based method, the performance of the proposed method depends 

upon the bandwidth h. It is widely acknowledged that the optimal h for nonparametric 

estimation is generally not optimal for testing. Selecting h to achieve optimal statistical 

power for (1) is an open problem. In practice, h can not be too large, since the conditional 

local distance covariance tends to the unconditional one. That is, an inappropriately large 

bandwidth h will yield a much larger false positive rate when X and Y are dependent. For 

simplicity, we consider the bandwidth h to eliminate the effect of Z on X and Y in the 

maximum extent. That is, the bandwidth h is chosen to minimize the mean of local distance 

covariance at every location Z = z. The intuition for the choice of h comes from partial 

correlation, whose aim is to eliminate the effect of Z on X and Y by the regression of Z on X 
and Y.

3 Numerical Studies

3.1 Simulations

We use two simulation studies to examine the finite sample performance of LDC. We 

consider the directional data on the unit sphere Rp, which denoted by 

 for, both X and Y. Under the canonical Riemannian metric on Sp−1 

induced by the canonical inner product on Rp, the geodesic distance between any two points 

X and X′ is equal to dX(X, X′) = arccos(XT X′). The sample size is set to be n = 300 and 

400 in order to examine the finite sample performance of local distance estimate. We 

calculate the rejection rate at the significance level α = 0.05 and S = 200. Moreover, 200 

replications are used for each simulation setting.

Simulation 1—We set p = 3 and consider the spherical coordinate of S2, denoted as (r, θ, 
ϕ), where r ∈ [0, ∞), θ ∈ [0, 2π], and ϕ ∈ [0, π], respectively, represent the radial distance, 

inclination (or elevation), and azimuth. The simulation datasets {(Xi, Yi, Zi) ∈ S2×S2×R: i = 

1,…,n} were generated as follows:

(I.1)
, , and ;

(I.2)
, , and ;

(I.3)
, , and ;

(I.4) Half of samples (Z ∼ U(−π+0.5, 0)) are generated from (I.2) and the other half 

(Z ∼ U(0, π−0.5)) are from (I.3);

Pan et al. Page 6

Inf Process Med Imaging. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where , , , and  were independently simulated from the Uniform distribution U(−π, 

π) and the εi, , and  were independently simulated from the normal distribution N(0, 

0.2). Therefore, X and Y are independent in (I.1), whereas they are dependent in (I.2) and (I.

3). In contrast, X and Y are conditionally independent given Z in (I.1) and (I.2), whereas 

they are conditionally dependent in (I.3). For (I.4), the first half of samples are conditionally 

independent and the second half of samples are conditionally dependent given Z.

Figure 1 presents the estimated LDCs between X and Y given Z and their p-values. The 

Type I error rates based on the local bootstrap procedure are well maintained under the 

prefixed significance level, while the power of rejecting the null hypothesis is good. As the 

sample size n increases, simultaneous confidence bands become narrower and the value of 

local distance correlation is close to zero under the true conditional independence. We use 

the function e.cp3o in R package ecp to detect the change point of local distance correlation 

in (I.4). The estimated change point is very close to the true value of change point.

Simulation 2—We consider the von Mises-Fisher distribution, of which the data can be 

spherical or hyper-spherical. A p-dimensional unit random vector  is set to be p-

variate von Mises-Fisher distribution Mp(μ, κ). We set p = 10 and simulated μ from the 

multivariate normal distribution N(0, I10). The simulated datasets were generated as follows:

(II.1) Xi ∼ M10(μx, 15), Yi ∼ M10(μy, 15), and Zi ∼ N(0, 0.5);

(II.2)  and , where , , and 

ξi = (u1 Zi…,u10 Zi), in which Zi ~ U(−1, 1) and 

with equal probability. Then, we project Xi and Yi to the unit spherical 

surface;

(II.3) Xi ∼ M10(μx, 15), Yi = RXi, and Zi ∼ N(0,0.5) where R is a rotation matrix 

along the direction μx of μy

(II.4) Half of samples (Z ~ U(−5, 0) were generated from (II.1) and the other half (Z 
~ U(0, 5) were from (II.3).

Similar to Simulation 1, X and Y are independent in (II.1), whereas they are dependent in 

(II.2) and (II.3). However, X and Y are conditionally independent given Z in (II.1) and (II.2), 

while they are conditionally dependent given Z in (II.3). The first half of samples are 

conditionally independent and the second half of samples are conditionally dependent given 

Z in (II.4). Inspecting Figure 2 reveals that the proposed methods work well.

3.2 Real Data Analysis

Alzheimer disease (AD) is a disorder of cognitive and behavioral impairment that markedly 

interferes with social and occupational functioning. It is an irreversible and progressive brain 

disease that slowly destroys memory and thinking skills, and eventually even the ability to 

carry out the simplest tasks. AD affects almost 50% of those over the age of 85 and is the 

sixth leading cause of death in the United States. The corpus callosum (CC), the largest 

white matter structure in the brain, has been a structure of high interest in many 
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neuroimaging studies of neuro-developmental pathology. It contains homotopic and 

heterotopic interhemispheric connections and is essential for communication between the 

two cerebral hemispheres. Individual differences in CC and their possible implications 

regarding interhemispheric connectivity have been investigated in last several decades [27, 

20].

We consider the CC contour data of the ADNI1 study. We processed the CC shape data for 

each subject in the ADNI1 study as follows. We used FreeSurfer package [8] to process each 

T1-weighted MRI, whereas the midsagittal CC area was calculated in the CCseg package.

We are interested in characterizing the change of the CC contour shape and its association 

with several key covariates of interest, such as age and diagnosis. We focused on n = 409 

subjects with 223 healthy controls (HCs) and 186 AD patients at baseline of the ADNI1 

study. Each subject has a CC planar contour Yi with 50 landmarks and nine covariates, 

including gender, age, handedness, marital status (Widowed, Divorced, and Never married), 

education length, retirement, and diagnosis. The demographic information is shown in Table 

1. We treat the CC planar contour Yi as a manifold-valued response in the Kendall planar 

shape space and all covariates in the Euclidean space.

The first scientific question of interest is to characterize the relationship between CC shape 

data and each of the nine covariates. Table 2 presents the distance correlation statistics for 

correlating CC data with each of the nine covariates. It reveals that the shape of CC planar 

contour are highly dependent on gender, education length, age and AD diagnosis at the 

significant level α = 0.05. It may indicate that gender, age and AD diagnosis are the most 

significant influence factors of CC planar contour, which agree with [1, 17, 22].

The second scientific question of interest is to characterize the relationship between CC 

shape data and AD diagnosis given age. Figure 3 presents the conditional local distance 

correlation of CC planar contour and AD diagnosis given age as a function of age. As age 

increases, the value of the conditional local distance correlation increases. It implies that 

diagnosis and CC are dependent with each other as age changes. Figure 4 presents the mean 

age-dependent CC trajectories for healthy controls and AD within each gender group. It can 

be observed that there is a major difference of the shape between the AD disease and healthy 

both in male and female groups. The splenium seems to be less thinner and the isthmus is 

rounded in subjects with AD disease than in healthy controls.

4 Conclusion

We proposed a local distance correlation for modeling data with manifold valued responses 

and applied this method to a variety of applications, such as the responses restricted to the 

sphere, shape spaces. The proposed method can detect complex nonlinear relationship and 

keeps the computational simplicity. In future, we will further investigate the theoretical 

properties of the new method and other applications in imaging analysis.
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Fig. 1. 
Figures of local distance correlation (95% confidence bands) and Type-I-Error/Power for n = 

300 and n = 400 in simulation 1.
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Fig. 2. 
Figures of local distance correlation (95% confidence bands) and Type-I-Error/Power for n = 

300 and n = 400 in simulation 2.
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Fig. 3. 
Figures of estimated local distance correlation and the corresponding negative log10(p-

values) between CC planar contour and Diagnosis given Age.
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Fig. 4. 
ADNI data: Mean trajectories within each gender group: (a) female group (blue - normal; 

magenta - AD); (b) male group (black - normal; red - AD)
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Table 1

Demographic information for all participants.

Disease status Number of subjects Age (years) Females/males

Healthy control 223 62–90 (76.25) 107/116

AD 186 55–92 (75.42) 88/98
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Table 2

The distance correlation (Dcor) statistics for correlating CC contour data and nine covariates. The significance 

level is 0.05.

covariates Dcor P–value

Gender 0.186 0.001

Handedness 0.094 0.420

Marital Status 0.108 0.383

Education length 0.166 0.010

Retirement 0.108 0.165

Age 0.245 0.001

Diagnosis 0.190 0.001
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