
Predicting Bradycardia in Preterm Infants Using Point Process 
Analysis of Heart Rate

Alan H. Gee* [Student Member, IEEE],
Wyss Institute at Harvard University, Boston, MA. He is currently with the Department of Electrical 
and Computer Engineering, and Dept. of Neurology, Dell Medical School, The University of Texas 
at Austin, Austin, TX, USA

Riccardo Barbieri [Senior Member, IEEE],
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy, 
and with the Dept. of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General 
Hospital, Harvard Medical School, Boston, MA, USA

David Paydarfar, and
Department of Neurology, University of Massachusetts Medical School and the Wyss Institute. He 
is currently with the Dept. of Neurology, Dell Medical School, The University of Texas at Austin

Premananda Indic [Senior Member, IEEE]
Department of Neurology, University of Massachusetts Medical School. He is now with the Dept. 
of Electrical Engineering, The University of Texas at Tyler, Tyler, TX, USA

Abstract

Objective—Episodes of bradycardia are common and recur sporadically in preterm infants, 

posing a threat to the developing brain and other vital organs. We hypothesize that bradycardias 

are a result of transient temporal destabilization of the cardiac autonomic control system and that 

fluctuations in the heart rate signal might contain information that precedes bradycardia. We 

investigate infant heart rate fluctuations with a novel application of point process theory.

Methods—In 10 preterm infants, we estimate instantaneous linear measures of the heart rate 

signal in neonates, use these measures to extract statistical features of bradycardia, and propose a 

simplistic framework for prediction of bradycardia.

Results—We present the performance of a prediction algorithm using instantaneous linear 

measures (mean AUC = 0.79±0.018) for over 440 bradycardia events. The algorithm achieves an 

average forecast time of 116 seconds prior to bradycardia onset (FPR = 0.15). Our analysis reveals 

that increased variance in the heart rate signal is a precursor of severe bradycardia. This increase in 

variance is associated with an increase in power from low content dynamics in the LF band (0.04–

0.2 Hz) and lower multiscale entropy values prior to bradycardia.
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Conclusion—Point process analysis of the heartbeat time series reveals instantaneous measures 

that can be used to predict infant bradycardia prior to onset.

Significance—Our findings are relevant to risk stratification, predictive monitoring, and 

implementation of preventative strategies for reducing morbidity and mortality associated with 

bradycardia in neonatal intensive care units.

Index Terms

Bradycardia; Heart Rate Variability; Inter-beat Intervals; Point Process; Prediction; Preterm 
Infants

I. Introduction

Infant prematurity, defined as < 37 weeks gestational age, occurs at a rate of 10% 

worldwide. These infants experience developmental disorders that can lead to impaired 

health outcomes [1–3]. A common disorder observed in majority of preterm infants is 

recurrent episodes of apnea and bradycardia, which may cause end organ damage related to 

hypoxemia (low oxygenation of blood) and ischemia (reduced blood flow) [4]. Though 

apnea often precedes onsets of bradycardia [5–7], apnea and bradycardia can be uncorrelated 

[8].

In preterm infants, heart rates below 100 bpm result in decreased cerebral blood velocities of 

~10–50% from baseline, while more severe bradycardias (< 60 bpm) cause > 50% blood 

velocity reduction [9]. These changes result in reduced cerebral blood velocity and delivery 

of oxygenated hemoglobin, as well as reduced clearance of metabolic byproducts [10–12]. 

The aggregate result of cardio-respiratory events is hypoxic-ischemic injury in tissue with 

high metabolic demands. Intermittent hypoxia in preterm infants is associated with a range 

of complications including retinopathy, developmental delays, and neuropsychiatric 

disorders [13–15]. To aid clinicians and medical staff, therapeutic interventions, for example 

as presented in [16, 17], might be most effective if intervention is initiated early in high risk 

infants. In particular, implementation of algorithms for detection of apnea-bradycardia [18] 

and their limited success in prediction [13, 19, 20] might help risk-stratify infants for long-

term outcomes, alert clinicians for short-term intervention, and ultimately provide automated 

therapeutic care that reduce the hypoxic-ischemic complications of preterm cardio-

respiratory control.

Heart rate is regulated by a neural feedback control system [21–25]. Blood pressure 

fluctuations are sensed by carotid sinus baroreceptors that send afferent impulses to 

brainstem and supra-bulbar circuits. The circuits' output regulates heart rate through vagal-

sympathetic efferent nerves that affect cardiac pacemakers. In pathological circumstances, 

the heart rate control system can be dysregulated, resulting in episodes of vagally mediated 

bradycardia [26]. In theory, pathological instabilities in heart rate should be evident prior to 

overt bradycardia, which is supported by [27, 28]. We hypothesize that the immature 

cardiovascular control system in preterm infants exhibits transient temporal instabilities in 

heart rate that can be detected as a precursor signal of bradycardia.
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We explore this hypothesis by extracting statistical features in heartbeat signals prior to 

bradycardia and evaluating the utility of these features for prediction. Infant heart rate is 

innately nonstationary, and conventional analysis methods may not fully capture the 

idiosyncratic fluctuations of heartbeat signals. Point process analysis can be used to generate 

real-time, stochastic measures from discrete observables of continuous biological 

mechanisms [29–34]. Introducing a stochastic estimation of heart rate can capture the 

fleeting instabilities (e.g. instantaneous variance and poles) beyond sampling rate limited 

measures. In a preliminary study [33], we introduced a point process model of infant heart 

rate dynamics and showed that a lognormal probability distribution of inter-beat intervals 

(R-R intervals) provided instantaneous mean and variance estimates of heart rate that 

exhibited increased clustering preceding severe bradycardias. This statistical feature 

suggests a possible discrimination that can be used for building a predictive tool.

In this paper, we use instantaneous mean and variance estimates from ECG alone to develop 

a novel algorithm for near-term prediction of bradycardia in preterm infants. Our goal is to 

create a real-time, prospective system for clinical practice. We also investigate a selection of 

other dynamical features to help elucidate the properties of cardiovascular control that can 

be used for future investigation of bradycardia.

II. METHODS

A. Preterm Infant Dataset

We collected data in the Neonatal Intensive Care Unit (NICU) at University of 

Massachusetts Memorial Healthcare (available at http://physionet.org). Ten preterm infants 

were studied, with post-conceptional age of  to  weeks (mean:  weeks) and 

study weights of 843 to 2100 grams (mean: 1468 grams). The infants were spontaneously 

breathing room air and lacked any congenital or perinatal infection of the central nervous 

system, intraventricular hemorrhage of grade II or higher, and hypoxic-ischemic 

encephalopathy. A 3-lead electrocardiogram (ECG) signal was recorded (500 Hz) from 

bedside patient monitors (Intellivue MP70, Philips Medical Systems) for ~20–70 hours per 

infant (Table 1). Respiratory signals, using external inductance bands placed around the 

chest wall and abdomen, were also recorded (50 Hz) and synchronized using VueLogger™, 

a data acquisition system developed at the Wyss Institute, Harvard University. The study 

protocol was approved by the University of Massachusetts Medical School Institutional 

Review Board for human subjects.

We process the ECG signals by calculating peak-to-peak R-R intervals using a modified 

Pan-Tompkins algorithm and visually remove artifacts due to movement, disconnection, or 

erroneous peak detections. Based on cerebral oxygenation deficiencies from [9] and clinical 

practice for bradycardia, we investigate normal heart rates (> 100 bpm) and clinical 

bradycardias: mild (100-80 bpm), moderate (80-60 bpm), and severe (< 60 bpm) (Table 1). 

We define a bradycardia event as an event with a heart rate less than 100 bpm for at least two 

beats (> 1.2 seconds) in duration. In total there are 622 bradycardia events (178 in training 

set, 444 in prediction set).
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B. Point Process Modeling of Infant Heart Rate

Point process theory provides a stochastic method to estimate instantaneous processes of 

continuous systems from discrete observables. The heartbeat generation mechanism can be 

modeled as a point process. The timing of heart contractions are modulated by neural signals 

from the sympathetic and parasympathetic branches of the autonomic nervous system. These 

efferent nerves project to cardiac pacemaker cells that control the timing of depolarization 

and hyperpolarization of each cardiac cell, which macroscopically couple to produce the 

sequential contraction of the heart. Hence, the occurrence of a heartbeat (i.e. R peak on the 

ECG) is highly dependent on previous instances, and the heartbeat time series can be highly 

dynamic due to variable neuron and pacemaker firing.

If we consider a data collection interval [Ta, Tb], the time of each R peak is given by: Ta ≤ 

u1 < u2 < ⋯ < uk ≤ Tb, where each ui is the time of the ith R peak. Thus, the corresponding 

R-R time interval at time k is given by the set Hk = {wk, wk−1,, … ․, wk−p+1}, where wk = uk 

− uk−1 and 0 ≤ p ≤ k. Because heart rate is a serial procedure, we can estimate a heartbeat at 

time k with a p-order linear regression [34]:

(1)

where θ(t) = {θo, …, θj, …, θk} is the estimation vector of optimized model parameters.

We can then use the estimation in (1) to generate future estimations of heartbeats from an 

appropriate probability distribution (PD). From [33], we showed that the lognormal 

probability distribution captures the statistical distribution of R-R intervals associated with 

bradycardia in preterm infants. So, we propose that a collection of infant R-R intervals 

follow a lognormal probability distribution, and that future R-R values can be estimated 

from this probability distribution with sample μ(Hk, θ(t)) = μ(t) from the linear regression.

At any given peak, uk, we assume the time until the next heartbeat, uk+1, obeys a lognormal 

probability density [31, 33]:

(2)

μ(t) and σ(t) are state variables and are estimates over time, t, using a local maximum-

likelihood optimization to create a continuous estimation of the heartbeat signal (described 

in II.C.). We estimate instantaneous mean M(t) and variance V(t) of the heartbeat signal by 

applying the traditional transformation from a lognormal to a normal distribution:
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(3)

These estimates are instantaneous because for any time t, a new probability distribution is 

computed at Δt with new state variables μ(t) and σ(t) before the next heartbeat data (see 

II.C.). We later use the descriptors M(t) and V(t) as features to predict onsets of bradycardia.

C. Local Maximum Likelihood Estimation of Parameters

For the ECG interval [Ta, Tb], let l be the length of the local likelihood observation window 

for t ∈ [Ta + l, Tb], and let Δt be the incremental time to update the parameters. To compute 

optimal estimates of θ(t) and σ(t), we define a local joint probability density of ut−l:t, with 

ut−l:t being the collection of R-wave peaks on the interval (t−l, t] that are generated with the 

previous p R-R intervals [31, 34]. We define the maximum likelihood estimate (MLE) of 

θ(t) and σ(t) on (t − l, t] to be θ̂ and σ̂, respectively. The local log likelihood is:

(4)

where w(t − u) = α(t−u) is the weighting function for the local likelihood estimation, and α is 

a weight that assigns the influence of previous observations. We chose α = 0.98.

For a given time t, we maximize log f (ut−l:t|θ(t)) with the previous local MLE of time t − Δt. 
The overlap between adjacent local likelihood intervals is large. The state variables θ(t), μ(t), 
and σ(t) are updated through this maximum likelihood estimate even though new peak data 

from the ECG is not available. We can obtain estimates of all the descriptors defined in 

Section II.A. at a resolution of Δt, which if small enough, can be considered instantaneous. 

We chose Δt = 0.005 s.

D. Bradycardia Prediction Algorithm

We restrict the training data to the first third of the data (mean of 12 ± 6 hours) for each 

infant, and evaluate our model on the remaining signal. This design was chosen as a first 

step to simulate prospective, clinical monitoring. To investigate the behavior of varying 

bradycardia severity, we choose a sample of 7–10 isolated bradycardias (exhibiting normal 

heart rate for at least 8 minutes prior to onset and at least one second in duration, Fig. 1a). 

Bradycardias in the training set that did not meet this criteria were excluded. We then 

generate point process estimates of the heartbeat signal with an 8th-order linear regression 

using methods described in II.B.

We denote Bn as the collection of bradycardia examples for infant n, where n = 1, 2… 10. 

For infant n, let j be a particular bradycardia event in Bn, and Mj and Vj be the set of all M(t) 
and V (t), respectively, in a window of duration ε = 3 minutes prior to event j (Fig. 1a). A 

Gee et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



second set of Mj and Vj is also collected for a control region. The choice of ε is influenced 

by [27] and early work on the behavior of bradycardia features [33]. We normalize both Mj 

and Vj to have zero mean and unit variance (5). This normalization allows for comparisons 

across different time frames while preserving oscillations inherent in the signal.

(5)

We take the normalized point process means φ(Mj) and variances φ(Vj) and create a (φ(Mj), 
φ(Vj)) point-cloud of all j bradycardias in Bn (Fig 1b). We calculate a cumulative density 

curve (CDC) by summing the number of (φ(Mj), φ(Vj)) pairs as a function of distance from a 

k-means cluster centroid (Fig. 1c). Steep inclinations in the CDC indicate a dense collection 

of (φ(Mj), φ(Vj)) pairs. We choose this method as it is sensitive to large densities of (φ(Mj), 
φ(Vj)) pairs.

We then use the density curves of the pre-bradycardia and control regions from the training 

data to evaluate the remainder of the ECG signal. We start the evaluation from the last time 

stamp of the last bradycardia in the training set. We incrementally slide an evaluation 

window (EW) by δ seconds (Fig. 2b). To determine whether a new input is associated with 

an impending bradycardia, we define two segments to collect statistical information from: 

(1) the pre-bradycardia window (PBW), which marks the window of length ε just prior to 

the onset of bradycardia, and (2) the control window (CW), which marks the window of 

length ε just prior to the PBW (Fig. 1a). The underlying hypothesis is that the heart rate in 

the control window behaves distinctly from the heart rate just prior to bradycardia onset For 

the results presented, we choose δ = 5 s.

We calculate the point process estimates using (3) and generate a cumulative curve for the 

EW and compare this curve to our classifiers by calculating an element-wise Euclidean 

distance array between the EW curve (EWCDC) and to each of the classifiers, PBWCDC, and 

CWCDC (6). The resultant distance arrays are then compared element-wise to each other. A 

decision statistic is generated by finding the fractional total of points where EWCDC is more 

similar to the pre-bradycardia window curve (i.e. magnitude of ΔPBWCDC < ΔCWCDC) (7).

(6)

(7)
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By design, the threshold is bound from 0 to 1. Any window that satisfies criteria (7) will 

generate a prediction with a time stamp of the leading window edge (Fig. 2b). If a prediction 

is within one EW of a bradycardia (e.g. ε = 3 min), the result will be reported as a true 

prediction. Any other prediction will be a false alarm. This criterion is driven by our choice 

of ε in the construction of PBWCDC and CWCDC.

Once a prediction is triggered, we can employ a refractory period, τr, where no further 

predictions are made. Clinically, this refractory period can be seen as an intervention period 

for the infant where clinical staff can start procedures to resolve an impending bradycardia 

(e.g. sterilize hands and apply physical arousal). For the results presented in III.A., we 

choose τr = δ = 5 s, the minimum refractory time. Although this value may not be clinically 

relevant, this choice is used to evaluate the frame-by-frame performance of the algorithm. As 

intervention methods arise, we will be able to tune τr accordingly. An overview of the 

algorithm is provided in Fig. 3.

E. Evaluation Metric for Algorithm

To evaluate the performance of our analysis, we calculate the receiver operating 

characteristic (ROC) curve. These curves depict the probability of detection (sensitivity = 

TP/P) as a function of the probability of false alarm (1− specificity = 1 − TN/NEG). We 

define sensitivity as the number of bradycardias that are predicted (TP) over the total number 

of bradycardias (P). Any prediction within one ε prior to a bradycardia is predicted. For a 

given bradycardia event, x, the [x−ε, x+6] minute interval region is classified as the positive 

bradycardia region (POS) (Fig. 2a). This criterion ensures that the EW has enough time to 

pass any peripheral effects of the previous bradycardia. As a consequence, the results 

achieved by the algorithm are not influenced by bradycardia clustering since we ignore the 

6-minute regions post-bradycardia. The negative-bradycardia regions (NEG) are defined as 

all regions outside of the POS region (Fig. 2a). Hence, specificity is defined as the rate of 

not predicting bradycardias (TN) within NEG.

To evaluate the performance of the predictor, we use the area under the curve (AUC) of the 

ROC curve to determine the classification power of the algorithm. AUC scores of 0.5 signify 

an algorithm that performs by chance (i.e. 50% probability of detection and 50% probability 

of false alarm), and scores of 1.0 signify a perfect predictor.

F. Other Physiological Features of Bradycardia

In our framework, we focus on instantaneous mean M(t) and variance V(t) as two features 

for bradycardia prediction. To further understand the physiological effect and implications of 

instantaneous M(t) and V(t) on HRV, we investigate two physiological features known to be 

influenced by mean and variance in a dynamic system: frequency and complexity. These 

analyses are evaluated on isolated segments prior to bradycardia and segments within normal 

heart rate regions.

We evaluate the frequency content of the R-R time series by calculating a traditional Morlet 

wavelet transform [35] with parameters Δt = 1/3, so = 2Δt, δj = 1/256 and J = 9/ δj. We also 

calculate the multiscale entropy (MSE) of a 20-min epoch leading up to a bradycardia to 
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investigate the complexity of heart rate during a diseased state. MSE is a time-varying 

calculation of sample entropy (SEn) across different time scales [36], and commands a long 

time interval for processing.

III. Results

A. Prediction of Infant Bradycardia

After generating a pre-bradycardia model for each subject, we evaluate the remainder of the 

ECG signals with the following algorithm parameters: ε = 3 min, δ = 5 s, τr = δ. Fig. 4a 

shows a sample evaluation of a 28-minute segment of discrete heart rates from infant 7. We 

observe a series of moderate bradycardias at time 10 and 25 min, and a collection of false 

and true prediction outcomes, red and green respectively. Within the evaluation window (the 

blue frame in Fig. 4a), instantaneous M(t) and V(t) estimates are computed (using II.B.) 

from the raw R-R intervals (Fig. 4b). The resulting CDC is then compared to an a priori 
infant-dependent model of pre-bradycardia events (Fig. 4c). For the example in Fig. 4a 

(threshold is set to 0.11 so that FPR is 0.15), the algorithm triggers predictions in multiple 

locations before the onset of moderate bradycardias with depths of 73 and 74 bpm. In this 

example, the algorithm successfully predicts the bradycardias in a 3-minute window prior to 

onset.

To evaluate the algorithm, we investigate the ROC curve by varying the detection threshold 

in (8) by increments of 0.01. We evaluate the predictive capability for all bradycardia, as 

clinical practice does not differentiate between severities. Fig. 5 depicts the ROC curve for 

infant 7. Using sensitivity and specificity defined in Section II.E., we observe an AUC of 

0.85 for infant 7. Collectively, we achieve a mean AUC of 0.79±0.018 a.u. for a total of 444 

bradycardia events with a range of AUC values from 0.72 to 0.93. We also observe mean 

AUCs for mild bradycardia of 0.81±0.09 a.u., for moderate of 0.80±0.04 a.u., and for severe 

of 0.76±0.07 a.u. This suggests that the usage of two instantaneous measures, M(t) and V(t), 
for advanced prediction of bradycardias is consistent across infants. Since AUC values of 0.5 

depict a random classifier, we observe utility in predicting bradycardia with only two linear, 

instantaneous features in the proposed framework.

B. Analysis of Prediction Algorithm

As one common mechanism in humans is cardio-respiratory coupling, we investigate 

whether predicted bradycardias are associated with preceding apnea. For a baseline 

comparison, we looked at a statistical approach of using apneas, gained from the respiration 

signal, as predictor for bradycardia. Using the same parameters (i.e. a 3-min observation 

window for bradycardia), we obtain a mean AUC of 0.67 for apneas greater than 5 seconds, 

and an AUC of 0.34 for apneas greater than 10 seconds. Additionally, at a FPR of 0.15, we 

find that, of the predicted bradycardias (215/444), 35% are associated with an apnea greater 

than 10 seconds, and 74% are associated with an apnea of at least 5 seconds. We observe 

that the prediction of bradycardia is independent of the presence of an apnea. Adding 

respiratory information as a covariate may improve heart rate estimation [37], and the effect 

of covariates can be explored in future prediction algorithm development.
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We next evaluate the first prediction time within a 3-minute window prior to bradycardia. 

This advanced warning time allows clinicians and medical staff to initiate intervention 

protocol before bradycardia onset. Looking at the quantile distribution of forecast times for a 

false positive rate of 0.15, we observe a mean prediction time of 116.2 seconds, with a range 

of median prediction times from 39 to 179 seconds (Fig. 6).

For clinical applications, we explore a refractory period after predictions to include a time 

lag for intervention or to account for the intervention itself. During these periods, subsequent 

predictions may not be useful. If a bradycardia occurs during the refractory period, the 

refractory period will still be classified as a true positive prediction. Alternatively, if no 

bradycardia occurs during the refractor period, the entire refractory time period will be 

attributed as false positive time. By instituting this refractory period, we observe a decrease 

in the mean AUC score. For example, if the duration of τr is 3 minutes, we see a decrease in 

mean AUC to 0.63 (Fig. 7). This suggests that instantaneous measurements of mean and 

variance may not be sufficient in predicting bradycardias with long refractory time frames 

(e.g. > 3-minutes). This all-or-nothing criteria may not be representative of the capability of 

the algorithm. To fully understand the implementation of a refractory period beyond a data-

driven approach, a more robust understanding of the physiological mechanism driving 

bradycardia is needed.

C. Increased Variance as a Feature of Bradycardia

We investigate the influence of M(t) and V(t) on the predictive capability of the algorithm. 

In a 90-second window prior to bradycardia, we observe a temporal elevation of variance as 

bradycardia severity increases. The average instantaneous variance increases 80 seconds 

prior to severe bradycardia, while average variance prior to a mild bradycardia increases at 

33 seconds (Fig. 8). To determine which parameter, M(t) or V(t), is important to the 

clustering feature used in the algorithm, we investigate the principal component of the M(t) 
and V(t) clusters. We observe that as severity increases, the scaling (i.e. eigenvalue λ) of the 

V(t) basis vectors becomes greater, while the scaling of the basis vector for M(t) remains the 

same (Fig. 8). We perform an unpaired t-test between all the eigenvalues with respect to 

their parameter. That is, we compare V(t) severe bradycardia λ to V(t) normal bradycardia 

λ, M(t) severe bradycardia λ to M(t) normal bradycardia λ, V(t) moderate λ to V(t) normal 

λ, etc. We observe statistical significance between V(t) of normal and severe segments (p-

value = 0.03). This observation suggests that the clustering across bradycardia severity is 

due to the V(t) parameter.

D. Physiological Impact of Increased Variance

We observe a statistical significance in variance between normal heart rate segments and 

segments prior to severe bradycardia. To understand the physiological implications of 

increased variance, we explore other linear and nonlinear features in severe bradycardia. The 

goal is to discover and implement other features into our instantaneous framework.

Using a parametric wavelet transform, we observe an average reduction of 3.3% in power 

for a region 90 seconds prior to severe bradycardia onset, when compared to normal 

segments in the LF spectrum (0.04– 0.2 Hz) (Fig. 9a). The decrease in LF content and 
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increase in VLF content (Fig. 9a) equates to slowing of the heartbeat time series, and an 

elongation of the heart rate waveform just prior to bradycardia onset (Fig. 1). Severe 

bradycardias then exhibit a mean increase in power between 0.04 and 0.3 Hz (25 to 3 s, 

respectively) 20 seconds prior to onset, while normal segments exhibit a dispersion of power 

across the same LF range (Fig. 9b). In the same segments, sample entropy at the first time 

scale (raw data) and across all time scales (time averaged data) are lower in segments prior 

to severe bradycardia (Fig. 9c). Thus, we observe decreased complexity in segments prior to 

bradycardia.

Our findings of decreased entropy are consistent with previous studies on pathological 

neonatal heart conditions [27, 38]. The finding of decreased complexity aligns with the 

notion that pathological diseased conditions (e.g. congestive heart failure) exhibit apparent 

loss in multifractal complexity inherent in normal physiological systems [39]. We propose 

that bradycardia brings heart rate dynamics in the low frequency range, with increased 

variance, as generated by a nonlinear system with decreased complexity.

IV. Discussion

This study uses single channel ECG data to predict bradycardia events with a novel 

application of point process statistics that can be implemented in future prospective, real-

time monitoring studies. Our key result shows that the heartbeat signal exhibits a rise in 

variance prior to episodes of severe bradycardia. This increase in variance is associated with 

low, complex power dynamics in LF content and low multiscale entropy values prior to 

bradycardia. Our findings suggest that point process analysis of ECG data is a powerful 

method for predicting bradycardia in individual infants. However, further research is needed 

to determine clinical utility in a larger population of preterm infants and to determine if the 

analytic framework is valid across a wider range of infant ages, weights, and co-morbidities.

One study [27] showed a progressive decrease of power in LF (0–0.2 Hz) just prior to 

bradycardia onset (< 80 bpm) in one example. Although we observe lower power content in 

LF for severe bradycardia when compared to normal heart rate (Fig. 9b), we observe a sharp 

increase in LF content 20 seconds prior to bradycardia from an average of 29 severe events. 

This increase in power is consistent with our observation of increased variance (Fig. 8). In 

the future, we can incorporate instantaneous frequency, as well as HRV measures from pole 

analysis [31] and complexity (e.g. the instantaneous Lyapunov exponents [40] and entropy 

[41]) into the prediction algorithm.

So far we have considered only two instantaneous point process measures, M(t) and V(t), 
from ECG to demonstrate a framework for bradycardia prediction. To improve the accuracy, 

other known precursors of bradycardia should be considered, e.g., apnea-based features. In 

our study, apnea from the respiratory signal is a relatively poor predictor of bradycardia (see 

section III.B.). Although respiratory monitoring using chest wall impedance is routinely 

performed in the NICU, this signal fails to detect apnea during gross movement or airway 

obstruction, and apneas are often unaccompanied by bradycardia. For future work, other 

methods to detect apnea events [42] might be considered, including ECG-derived respiration 

[43, 44]. More analysis is needed to determine whether inclusion of other physiological 
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signals would improve predictive utility, even though respiration improves point process 

estimation of heart rate [37].

Additionally, we can investigate ways to improve our implementation. The cumulative 

density metric used in the study is a simplistic approach to characterize high densities of 

normalized M(t) and V(t) pairs as a function of distance from the overall cluster. We can 

explore other characterizations of point process patterns, like computing spike-time 

distances and evaluating the temporal changes in the point process estimates [45,46], and use 

other frameworks like machine learning [13,19, 20] for predicting cardiorespiratory events.

V. Conclusion

We present a novel framework for near-term prediction of bradycardia in preterm infants. 

We apply point process theory to heart rate and generate linear, instantaneous estimates for 

ten preterm infants. The point process dynamics just prior to bradycardia onset indicate an 

increase in variance (Fig. 8). Across our data set of ten infants, we achieve prediction 

capability (AUC of 0.79±0.018) for 444 bradycardia events (Fig. 5). These result 

demonstrate the ability to predict the majority of bradycardias with an average of 116 

seconds by using an ECG signal alone.

Improved prediction outcomes can eventually lead to automated, therapeutic intervention to 

reduce morbidity and mortality associated with bradycardia and prematurity, like apnea and 

hypoxia [16, 17], and help direct medical attention toward high-risk infants. The current 

nursing protocol is to initiate manual stimulation after bradycardia has already started. This 

protocol leaves little time for full antiseptic procedure (e.g., hand wash and gown change), 

and could promote risk of transmission of infectious agents (e.g. MRSA) due to insufficient 

time to properly decontaminate. Advanced warning would allow sufficient time to 

implement the nursing protocol. In the future, an automated advanced warning system could 

provide a signal for a closed-loop systems that triggers a preventive intervention, such as a 

sub-arousal stochastic vibration via the infant’s mattress [16, 17]. The framework proposed 

in this manuscript provides a prospective method for automated monitoring of infants and 

risk stratification. Thus, incorporating other instantaneous features in the proposed 

framework is important for devising a robust real-time warning system to improve quality of 

life for infants in the NICU.
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Fig. 1. 
(a) An example of severe bradycardia for infant 7. The gray region represents a 3-minute 

control window, and the red region represents a 3-minute pre-bradycardia window. 

Statistical fluctuations of the point process estimation of R-R intervals from these two 

regions are used to evaluate the likelihood of an impending bradycardia. (b) Normalized 

mean and normalized variance of the point process indices from 7 events of infant 7. The 

pre-bradycardia window indices cluster distinctly from the control window. (c) The resulting 

average cumulative density of the indices from the cluster map.
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Fig. 2. 
(a) The green areas denote regions that encompass a bradycardia. Notice that secondary 

bradycardias (8–9 min) are classified as one event. The other regions (gray) represent 

regions absent bradycardia. (b) Detailed diagram of one particular bradycardia segment. The 

parameters used for the algorithm are outlined in the Table 2. A prediction is triggered with 

a time stamp of the leading edge of the evaluation window (green arrow).
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Fig. 3. 
Schematic of the prediction algorithm. For each subject, a portion of the ECG signal (beige) 

is used to create the classification models, while the remaining signal (green) is used for 

prediction.
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Fig. 4. 
(a) Prediction outcome for Infant 7 (ε = 3 min, δ = 5 s, τr = δ). The instantaneous M(t) and 

V(t) indices from the evaluation window (EW, blue region) are calculated and used to 

predict bradycardia. The red and green blocks (bottom) denote false and positive predictions, 

respectively, at a FPR of 0.15. (b) The heart rate and inter-beat interval data are depicted as 

black, and the point process estimation is depicted as green. (c) A cumulative density curve 

for the evaluation window (blue curve) is compared to the training models. In this instance, 

the evaluation curve satisfies a threshold to trigger a prediction.
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Fig. 5. 
ROC curve for infant 7. The dashed line represents an algorithm preforming by chance 

(AUC of 0.5). We observe a mean AUC of 0.79±0.018 for 444 bradycardia events. The 

severity performance is also given. Note “—“ denotes no events. *Infant 8 exhibited 

frequent single skipped-beat episodes that led to instantaneous bradycardia.
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Fig. 6. 
Quantile representation of the earliest prediction time in a 3-minute window preceding 

bradycardias. We observe a mean forecast time of 116 seconds across 10 infants.
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Fig. 7. 
Mean AUC of prediction algorithm with a varying refractory period. As the refractory period 

increases, the AUC decreases. There is a trade-off between the performance of the algorithm 

and the waiting time after predictions.
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Fig. 8. 
We observe an increase in the average instantaneous variance measure just prior to 

bradycardia onset. The table details the average eigenvalues (λ) from PCA analysis of the 

(M(t), V(t)) clusters prior to bradycardias. We observe statistical significance between 

variance of normal and severe segments.
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Fig. 9. 
(a) Temporal evolution of frequency content of R-R time series prior to bradycardia, with a 

Morlet wavelet transform. (b) Severe bradycardias exhibit decreased power in the LF content 

compared to normal heart rate segments. (c) We observe decreased sample entropy across all 

time scales.
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TABLE 2

Parameters for Prediction Algorithm

Symbol Quantity Description Value

ε Length of Evaluation Window Window of point process indices 3 min

δ Window Increment Time increment for sliding ε 5 s

τr Refractory Period No predictions made [δ 5 min]

POS Positive Bradycardia Region Region around bradycardia [x−3 x+6] min

NEG Negative Bradycardia Region Region with no bradycardia All time not POS
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