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Mesenchymal stromal cells for treatment
of the acute respiratory distress
syndrome: The beginning of the story
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Abstract

In spite of decades of research, the acute respiratory distress syndrome (ARDS) continues to have an unacceptably high

mortality and morbidity. Mesenchymal stromal cells (MSCs) present a promising candidate for the treatment of this

condition and have demonstrated benefit in preclinical models. MSCs, which are a topic of growing interest in many

inflammatory disorders, have already progressed to early phase clinical trials in ARDS. While a number of their mech-

anisms of effect have been elucidated, a better understanding of the complex actions of these cells may pave the way for

MSC modifications, which might enable more effective translation into clinical practice.
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ARDS

Acute respiratory distress syndrome (ARDS) is a
devastating clinical disorder with a variety of etiolo-
gies that induces an excessive inflammatory response.
Widespread damage to the alveolar compartment
ensues leading to the development of hallmark traits
of ARDS such as hypoxia and pulmonary edema.1

First described by Ashbaugh et al. in 1967 as the
‘‘acute onset of tachypnoea, hypoxemia, and loss of
compliance,’’2 ARDS has since been studied exten-
sively. Presently, the diagnosis requires that the con-
dition develops within one week of the underlying
insult, that bilateral lung infiltrates are evident
through chest imaging, and that respiratory failure
cannot be wholly attributed to cardiac failure and
hydrostatic edema.3

Epidemiological studies report that mortality and
morbidity associated with ARDS remain significant;
rates vary from 25% to 40% and are dependent on
the severity of the condition.3–5 There has been an
improvement in mortality rates over time which
reflect improvements in supportive care and in par-
ticular the preferential use of protective lung ventila-
tion and other interventions to limit injurious
ventilation.4,6,7 An effective therapeutic intervention
that targets the underlying pathophysiology remains
elusive8 and many candidates that initially showed
promise in preclinical studies have been of no clinical

benefit with regard to mortality.9–13 The heteroge-
neous patient population coupled with a complex
pathophysiology underlying the development of
ARDS may explain the difficulty of the challenge
that researchers are faced with in developing a ther-
apy for ARDS. It is arguable that a therapy that tar-
gets multiple aspects of the pathophysiology of ARDS
may have greater potential to improve outcomes.

MSCs

Mesenchymal stromal cells (MSCs) are a heteroge-
neous population of cells found in nearly all adult
tissues including bone marrow, placenta, adipose
tissue, skin, and skeletal muscle.14–16 With the cap-
acity to differentiate into cells of both mesenchymal
and nonmesenchymal lineage, the potential applica-
tion in regenerative medicine has been widely
recognized.17–19

Further study has identified additional qualities
that may dramatically broaden the scope of their
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therapeutic use. One major obstacle for tissue and
organ transplantation is rejection and careful
donor–recipient matching is required. In contrast,
there is evidence that MSCs have inherently low
immunogenicity and are generally well tolerated
even when administered in an allogeneic fashion.20,21

In noninflammatory conditions, MSCs do not
express major histocompatibility complex (MHC)
class II, but expression is triggered by stimulation
with interferon gamma (IFN-g). However, they
appear to lack expression of CD40, CD80, and
CD86, key co-stimulatory molecules required for T
cell activation, which may explain recipient tolerance
to these cells.22 Conflicting evidence has been reported
that MSCs are not in fact immune privileged and do
elicit immune responses in nonmatched hosts.23,24

These confounding results could be a result of the
inconsistencies in the source of MSCs or perhaps
the disease setting itself. Regardless, it seems that
MSCs may not be universally tolerated in all non-
matched patients and emphasizes the need for further
study, including testing patients who receive MSCs
for development of anti-human leukocyte antigen
(HLA) antibodies. Another potential concern with
using stem cells therapeutically is in their tendency to
become tumorigenic as has been shown with embryonic
stem cells.25 Adipose-derived MSCs have been shown to
maintain genetic stability for at least 12 passages in vitro
and show no evidence of tumor development when given
intravenously to immunodeficient mice at a range of
doses.26,27 Bernardo et al.28 similarly show that human
bone marrow-derived MSCs when cultured to passage
25 show no alteration in telomerase activity or telomere
length, again suggesting genetic stability. In contrast,
another study showed malignant transformation of
human MSCs in long-term culture29 although these
cells were cultured in vitro for up to 105 weeks. It is
likely that MSCs used therapeutically will be cultured
for a much shorter period. Furthermore, MSCs have
also been reported to promote breast cancer metastasis
in vitro.30 With conflicting data regarding their tumori-
genicity, it will be imperative to have stringent quality
control processes in place to monitor their safety when
administrated to patients, including long-term follow-up.

The immunomodulatory actions of MSCs are well
documented; interactions with T lymphocytes, natural
killer (NK) cells, and dendritic cells among others
confer them with many regulatory functions in
terms of both innate and adaptive immunity.31,32

MSCs can inhibit T cell proliferation or promote
regulatory T cells via induction of an anti-inflamma-
tory macrophage phenotype.33,34 They suppress pro-
liferation, cytokine production, and cytotoxicity of
NK cells toward HLA class I expressing targets and
can prevent the differentiation of monocytes into den-
dritic cells as well as decrease the antigen presentation
capacity of mature dendritic cells.35,36 MSCs immuno-
suppressive effects also prolong the survival of allo-
geneic grafts given in a number of settings.37,38

Moreover, MSCs naturally home to sites of injury
when administered intravenously. Stromal cell-
derived factor-1 (SDF-1) is produced by resident
cells in response to injury.39,40 The chemotactic recep-
tor CXCR4, which binds SDF-1, is expressed on a
subset of MSCs and provides an important mechan-
ism in MSC homing.41 A recent study also found
SDF-1 ligation increased Akt kinase signaling and
enhanced paracrine factor secretion emphasizing
MSC responsiveness to physiological cues in their
environment.42 Rolling and adhesion of MSCs along
blood vessels are facilitated by P-selectin and vascular
cell adhesion molecule-1 expression on endothelial
cells and in vivo imaging has demonstrated the inter-
action of MSCs with platelets and neutrophils to form
clusters, thereby mediating MSC trafficking to
inflamed sites.43,44 It is important to note that MSCs
are relatively large cells and have a tendency to
become entrapped in small diameter vessels, with
reports of sequestration to the lung microvascula-
ture.45,46 Another study further investigated the
in vivo distribution of MSCs after infusion using
real-time imaging. Gao et al. observed MSC accumu-
lation primarily in the lungs immediately after sys-
temic infusion with smaller numbers in the liver and
spleen. By 48 h, there is a shift of MSCs from the
lungs toward the liver.47 The homing of MSCs to
the lung may be pertinent to their efficacy in ARDS,
as it allows targeted paracrine factor delivery.

MSCs in preclinical disease models
of ARDS

Given these data, MSCs have been tested in a range of
preclinical models of inflammatory conditions includ-
ing acute renal failure, myocardial infarction, and
sepsis where they were found to be of benefit.48–50

The therapeutic potential of MSC in ARDS has
been studied extensively during the past decade,
using different MSC sources, treatment regimens,
and models of lung injury. Intrapulmonary delivery
of murine bone marrow-derived MSCs into mice 4 h
after endotoxin-induced lung injury improved sur-
vival, reduced edema, and improved barrier perme-
ability.51 These MSCs, when given intratracheally,
were also protective in a live Escherichia coli pneumo-
nia model of lung injury, given 4 h after infection.52 In
a bleomycin-induced lung injury model in mice, intra-
venous administration of human umbilical cord
MSCs 24 h after injury resulted in reduced fibrosis
and inflammation.53 Rat and human MSCs also
have the capacity to improve repair of the lung fol-
lowing ventilator-induced lung injury.54,55 MSCs are
similarly therapeutic in larger animal models; in a
sheep model of ARDS induced by smoke inhalational
and bacterial pneumonia, human MSCs improved
oxygenation and pulmonary edema.56 Providing
further evidence of the potential of MSCs in
patients with ARDS, Lee et al.57,58 developed a
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human ex vivo lung perfusion model of endotoxin-
induced and live bacteria-induced injury. Allogeneic
MSCs given 1 h after injury improved barrier perme-
ability and alveolar fluid clearance whether given
intratracheally or intravenously.

Mechanisms of MSC effect in lung
injury

One of the most valuable qualities which can be
attributed to MSCs, which pharmacologic therapies
lack, is the ability to actively respond to the local
environment. This allows MSCs to have an individual
and potentially varied therapeutic effect targeting
multiple aspects of ARDS. A number of mechanisms
by which MSC act have been identified.

Engraftment

Considering the loss of integrity of the alveolar epithe-
lium following injury, it was hypothesized that MSCs,
with their pluripotency, may engraft into the epithe-
lium and so contribute to regeneration. While engraft-
ment of MSCs into the lung epithelium is documented,
it appears to be a rare event in the context of lung
injury with reports of less than 5% engraftment occur-
ring and so it is likely this does not represent the pri-
mary mechanism of their effect.51,59–63

Paracrine factors

Given the seemingly low capacity for engraftment into
the alveolar epithelium, it is generally considered that
the secretion of paracrine factors is one of the primary
mechanisms of their effect. A number of groups show
that keratinocyte growth factor (KGF), produced by
MSCs, is essential for the restoration of alveolar epi-
thelium permeability and alveolar fluid clearance after
injury by rescuing the activity of the epithelial sodium
channel.57,64,65 Similarly, angiopoietin-1 was found to
be responsible for the MSC protective effects on type
II alveolar epithelial cell permeability in an in vitro
model.66

One worry with a therapy having anti-inflammatory
effects being utilized in an infectious setting, as is often
the case in ARDS, is that the host’s ability to combat
infection may be hindered. Interestingly however,
MSC administration in models of sepsis and ARDS
triggered by live bacteria consistently results in
improved bacterial clearance despite reduced inflam-
mation. The antimicrobial effect of MSCs is partially
explained by their ability to enhance phagocytosis by
cells of the innate immune system. In two different
murine sepsis models, MSCs were found to increase
phagocytic capacity of CD11b positive cells and
blood monocytes.48,67 Neutrophils also demonstrate
increased phagocytic activity with the influence of
MSC, as seen byHall et al. in a cecal ligation and punc-
ture model of sepsis. Moreover, the depletion of

neutrophils from these mice abrogated the beneficial
effect of MSCs.68 MSC-derived KGF reduced bacterial
load in the ex vivo perfused human lung injured with E.
coli,whichwas associatedwith increased phagocytosis by
alveolar macrophages, potentially by the upregulation of
granulocyte-macrophage colony-stimulating factor in the
bronchoalveolar lavage fluid. In vitro experiments, also
showed a prosurvival effect of MSC-derived KGF on
human monocytes.58 Additional antimicrobial activity
is exertedbyMSCs through the secretionof antimicrobial
peptides and proteins such as human cathelicidin, LL-37,
and lipocalin-2, which binds the bacterial siderophore
responsible for iron uptake, an essential micronutrient
for bacterial growth.52,69

TNF-stimulated gene protein-6 (TSG6) is a major
contributor to the immunomodulatory effects of
MSCs and contributes to their benefit in a variety of
conditions including myocardial infarction and
wound healing.45,70 This is also true of the MSC
effect in lung injury. In an lipopolysaccharide-induced
lung injury model, MSCs significantly upregulate
TSG6 production and the blockage of TSG6 by silen-
cing RNA resulted in near complete reversal of their
anti-inflammatory effects.71 Intriguingly, MSCs placed
on nonadherent surfaces undergo compaction into
spheroid aggregates. This triggers caspase-dependent
interleukin-1 (IL-1) signaling in MSCs subsequently
augmenting the production of TSG6 in combination
with other anti-inflammatory agents.72 The generation
of these structures perhaps reflects what occurs in the
pulmonary microvasculature and could partly explain
their potent effects in lung injury models.

MSCs also produce anti-inflammatory cytokines
which partly contribute to the decreased inflammation
in preclinical models. IL-1 receptor antagonist is pro-
duced by a subset of MSCs and was found in bleo-
mycin-induced lung injury to prevent the upregulation
of IL-1a and TNFa, two key inflammatory mediators
in the lung.73 Prostaglandin E2 is a factor commonly
associated with the MSC immunomodulatory effect
and has been demonstrated to influence macrophages
to increase production of anti-inflammatory IL-10 in
a cecal ligation and puncture model of sepsis.74

It is important to note that while MSCs secrete an
extensive range of anti-inflammatory cytokines, they
are also capable of pro-inflammatory cytokine pro-
duction in response to certain cues. IL-6 and IL-8
are secreted by MSCs, both of which have been
associated with poorer outcomes in patients with
ARDS.75,76 IL-6 is often implicated in pro-
inflammatory responses, however, it is apparent that
this cytokine is promiscuous in its functions.77–79

Perhaps surprisingly, the therapeutic effects of
murine MSCs from adipose tissue in an endotoxin-
induced lung injury model were diminished with IL-
6 interference.80 While the role of MSC-derived IL-8
in lung injury is not clear, there is evidence that IL-8 is
able to promote vascular endothelial growth factor
(VEGF) production by MSCs thereby supporting a

322 Journal of the Intensive Care Society 16(4)



pro-angiogenic effect.81 It is plausible that increased
VEGF levels could provide a protective effect on the
microvasculature in lung injury, given the prosurvival
influences that it exerts on endothelial cells.82,83 It
could also be argued that the potential for MSC-
derived IL-8 to promote neutrophil recruitment in
lung injury is abrogated by their concomitant produc-
tion of TSG6, which is known to directly bind IL-8
subsequently blocking this function.84

Nanotubule formation and microvesicle secretion

MSCs are capable of secreting microvesicles, small
membranous compartments containing bioactive mol-
ecules.85,86 MSC-derived microvesicles alone were
capable of attenuating E. coli-induced lung injury in
mice and recapitulating many of the therapeutic
effects of the cells themselves, including decreases in
pulmonary edema and inflammation. mRNA coding
KGF contained within these vesicles was partially
responsible for this phenomenon.87

Interestingly, in vivo imaging depicts the forma-
tion of connexin-43-based gap junctions between
MSCs and alveolar epithelial cells allowing the
transport of mitochondria to the epithelia via
microvesicles. The resultant increase in ATP levels
concomitantly resulted in restoration of surfactant
secretion by type II pneumocytes, reduced alveolar
permeability, and mortality in an lipopolysaccharide
injury model.88 Another group also observed mito-
chondrial intercellular trafficking from MSCs to epi-
thelial cells with the use of tunneling nanotubules
which was regulated by the Rho-GTPase Miro1.89

Although the mechanisms of effect of MSCs in the
context of lung injury continue to be defined, it is
already apparent that their actions are multifaceted,
impacting on the numerous components of the
pathophysiology of ARDS.

MSCs in clinical trials of ARDS

Following the success in preclinical studies, MSCs
have progressed rapidly to be tested in the clinic,
with widespread study in diseases including steroid
resistant acute graft versus host disease, Crohn’s dis-
ease, and vascular disease.90–99 To date, studies inves-
tigating MSCs in ARDS have been primarily
concerned with safety and feasibility of their delivery
to patients.100 A randomized, placebo controlled pilot
study carried out with the use of allogeneic adipose-
derived MSCs (1� 106 cells/kg of body weight, cells at
passage of up to six) in patients with ARDS (defined
by a PF ratio< 200mmHg) suggested that the treat-
ment was not associated with any acute safety
issues.101 There were no differences in duration of hos-
pital stay, ventilator, or ICU-free days, although the
study was not powered for these clinical outcomes.
There was a decrease in serum surfactant protein-D
levels (a biomarker for type II alveolar epithelium

injury/activation) although the significance of these
data is unclear.

A further recent multicentre, open-label, dose-
escalation study sought to determine the safety and
feasibility of administration of allogeneic bone
marrow-derived MSCs in patients with moderate-to-
severe ARDS (defined as a PF ratio< 200mmHg
receiving positive end-expiratory pressure> 8 cm
H2O). The MSCs used here were at passage 2 and
were administered in three doses; low dose (1 � 106

cells/kg), intermediate dose (5� 106 cells/kg), and high
dose (10� 106 cells/kg). It was concluded that there
were again no acute MSC-related adverse events in
the study.102 The significance of the findings in these
two studies is limited by the small patient numbers (12
and 9, respectively) and short follow-up but certainly
justify progression to phase II clinical trials, which are
currently underway (clinicaltrials.gov, NCT02097641).
The long-term effects of MSC treatment in patients of
ARDS remain to be defined.

It is important to note that in these studies only a
single dose of MSCs was examined, with safety being
the primary outcome. This is in contrast to trials in
other diseases where multiple doses were given over
an extended period of time (e.g., once weekly over
four weeks in the case of Crohn’s disease93 or twice
weekly over four weeks for graft-versus-host-
disease98) and were also found to be well tolerated
and in some cases potentially efficacious in providing
a therapeutic effect. While it is possible that repeated
doses of MSCs could be safe and more effective in
ARDS, it is unwise to infer this based on
findings from conditions so significantly different.
Certainly, larger phase II studies elucidating the
safety and efficacy of a single dose of MSCs are
required before multiple dosing regimens should be
investigated.

Optimisation of the therapeutic effect
of MSCs

Preclinical research studying MSCs as a treatment
modality is ongoing and there is a significant effort
to maximize their effects. Numerous factors appear
to have effects on the efficacy of MSCs in practice.
For example, it is recognized that the route of admin-
istration can influence their benefit with intraperito-
neal delivery more effective than intranasal in
neonatal lung injury.60 This is further evidenced by
the observation that intraperitoneal injection of
MSCs is inferior to intratracheal or intravenous appli-
cation in ventilator-induced lung injury.55 Another
challenging task is to verify the optimal tissue
source of MSCs. MSCs from different niches have
distinctive attributes associated with them which
may confer advantages depending on the con-
text.103–105 For example, comparison of human bone
marrow, adipose, and umbilical cord MSCs shows
that umbilical cord MSCs have higher proliferative
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rates and lower expression of senescence markers such
as p53 and p21.104 This could suggest that umbilical
cord MSCs would be more beneficial in regenerative
applications.

The ex vivo expansion of human MSCs and con-
ditions they are exposed to prior to use has profound
effects on their phenotype. Several studies have iden-
tified that maintenance of MSCs in hypoxic condi-
tions alter MSC activity. Hypoxia, a characteristic
feature of ARDS, is associated with heightened
chemotaxis and cell viability coupled with upregu-
lated secretion of paracrine factors.106 Hypoxic expos-
ure of MSCs results in a higher proportion of
self-renewing cells with a more homogenous popula-
tion compared to cells maintained in normoxic condi-
tions.107 Intriguingly, preconditioning MSCs in serum
from ARDS patients before treating endotoxin-
injured mice elicited a more potent IL-10 and IL-1ra
response and consequentially improved outcomes.108

Preconditioning of MSCs in patient serum was also
implemented by Zheng et al.101 in their adipose-tissue
MSC clinical trial in ARDS patients.

An understanding of how the local environment
modifies MSC function has highlighted how MSCs
might be manipulated to perhaps amplify their
effects. Overexpression of soluble IL-1 receptor-like-
1 in MSCs, which competes with transmembrane
IL-1 receptor-like-1, for IL-33 ligation, markedly
increased the anti-inflammatory and reparative
effects of these cells in endotoxin-induced lung
injury compared to standard MSCs.109 IL-33 is
expressed constitutively in the nuclei of epithelial
and endothelial cells in many human tissues includ-
ing the lung and is released upon damage. IL-33 is
then able to elicit inflammatory responses.110,111

MSCs transfected with a vector overexpressing
angiopoietin-1 reduced inflammation and permeabil-
ity to a greater extent in an LPS model of lung
injury compared to control MSCs.112 MSC engraft-
ment into the lung can be augmented through the
blockage of the Wnt/b-catenin signaling pathway
which normally acts to induce differentiation
toward a fibroblast or myofibroblast phenotype.113

Another element regulating MSC function and
phenotype is Toll-like receptor (TLR) stimulation.
Waterman et al.114 described the induction of a pro-
inflammatory MSC and immunosuppressive MSC
phenotypes resulting from TLR4 and TLR3 stimula-
tion, respectively. TLR4-stimulated MSCs produced
higher levels of pro-inflammatory IL-6 and IL-8,
whereas TLR3 stimulation enhanced secretion of
anti-inflammatory IL-4 and IL-1ra. A conflicting
study demonstrates that TLR3 stimulation resulted in
the highest induction of IL-6 and IL-8, but the MSC
sources between these studies differed.115 Moreover,
the priming of bone marrow-derived MSCs with
TLR3 and not TLR4 afforded the cells with increased
resistance to NK cell killing as well as amplifying their
immunosuppressive effects on these cells.116

Ongoing research in MSC therapy is crucial to
uncover how the biological effects of MSCs can be
potentiated to enable transition of MSCs to the bed-
side as the optimal treatment for patients with
ARDS.

MSC isolation and expansion quality
control

One of the major disadvantages limiting the progres-
sion of this cell therapy to the clinic is the poor char-
acterization of these cells in combination with the
heterogeneity of their therapeutic effects. The
European Medicines Agency and British Standards
Institution both highlight the need for detailed profil-
ing of MSCs, improved isolation and purification pro-
cedures, and understanding of their mechanisms of
action. The importance of MSC source and culture
method is emphasized in comparative studies demon-
strating substantial contrast in their immunomodula-
tory functions. For example, the use of fetal calf
serum or platelet lysate for their expansion has signifi-
cant effects on their abilities to inhibit T-cell
growth.117 Other studies underline other key factors
influencing MSC biology including the age of the
donor or the levels of serum or glucose used in
culture.118–120

As a result, there is significant work being carried
out to create optimized methods of isolation and
handling of MSCs.117,121–124 Mimicking the bone
marrow extracellular matrix which the MSCs inhabit
in vivo results in improvements in their stemness and
proliferative capacity.125 Furthermore, Carrancio and
colleagues,126 when modifying a number of culture
conditions for expansion, reported that platelet
lysate supplementation and hypoxia resulted in the
largest yields of MSCs expanded ex vivo.

The inconsistency of the MSC effect in certain
conditions could be attributed to any number of
these variables related to their source, isolation,
and expansion. An emerging line of research, there-
fore, is the development of potency assays for MSCs
which could be used before administration to
patients. Expression of TSG6 appears to correlate
with their anti-inflammatory potency in a model of
chemical injury to the cornea, but conversely its
expression was negatively associated with osteogenic
differentiation capacity.127 Use of a combination of
simple in vitro assays enabled the efficacy of bone
marrow-derived MSCs in treatment of murine
wounds to be defined.128 These assays determined
MSC growth, proliferation, and viability using cell
counts, bromodeoxyuridine incorporation, and meas-
urement of cellular ATP levels, respectively. Higher
scoring in these assays was associated with more
extensive engraftment into the wound site.

It is therefore critical that isolation, expansion, and
screening procedures for MSCs in the treatment of
lung injury be optimized and standardized.
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Summary

There remains urgent need for an effective therapy for
ARDS. MSCs are a highly versatile cell population
with potential implications as a treatment for ARDS
based on their immunomodulatory capacity, repara-
tive properties, ease of isolation and propagation, and
the feasibility as an allogeneic therapy. A wealth of
evidence supports the case for MSC-based therapy in
patients with ARDS and has paved the way for
ongoing clinical trials. However much remains to be
defined about the role of MSCs in ARDS. The
importance of further investigation of MSCs cannot
be overstated and is necessary to determine the most
appropriate application of MSCs and optimising their
therapeutic effects in ARDS.
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