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Abstract
Background

Combined retinal degeneration and sensorineural hearing impairment is
mostly due to autosomal recessive Usher syndrome (USHI1: congenital deaf-
ness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment,
RP).

Methods

Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic
deafness, overlapping conditions), MLPA, and array-CGH were conducted in
138 patients clinically diagnosed with Usher syndrome.
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Results

A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients,
with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quanti-
tative readout reliably detected CNVs (confirmed by MLPA or array-CGH),
qualifying targeted NGS as one tool for detecting point mutations and CNVs.
CNVs accounted for 10% of identified USH2A alleles, often in trans to seem-
ingly monoallelic point mutations. We demonstrate PTCI124-induced read-
through of the common p.Trp3955* nonsense mutation (13% of detected
USH2A alleles), a potential therapy target. Usher gene mutations were found in
most patients with atypical Usher syndrome, but the diagnosis was adjusted in
case of double homozygosity for mutations in OTOA and NR2E3, genes impli-
cated in isolated deafness and RP. Two patients with additional enamel dys-
plasia had biallelic PEX26 mutations, for the first time linking this gene to
Heimler syndrome.

Conclusion
Targeted NGS not restricted to Usher genes proved beneficial in uncovering
conditions mimicking Usher syndrome.

Introduction

The co-occurrence of bilateral hearing impairment (here
comprehensively termed “deafness”) and visual impair-
ment, if due to retinal degeneration, is of genetic origin
in most cases in industrial countries. Usher syndrome
mutations account for approximately 11% of deaf and
hard of hearing children, and the population prevalence
was estimated to be 1/6000 (Kimberling et al. 2010). The
by far most prevalent causes are mutations in the 11
genes (MYO7A, OMIM *276903; USHIC, OMIM
*605242; CDH23, OMIM *605516; PCDHI5, OMIM
*605514; USHIG, OMIM *607696; CIB2, OMIM *605564;
USH2A, OMIM *608400; ADGRVI, OMIM *602851;
DENB31/WHRN, OMIM  *607928; CLRN1, OMIM
*606397; PDZD7, OMIM *612971) associated with Usher
syndrome (Besnard et al. 2014), an autosomal recessive
trait characterized by congenital deafness and RP in the
first decade (in type 1, USHI; about 35% of cases (Petit
2001)) or by progressive hearing loss and RP of later onset
in USH2 (about two thirds of patients). Symptoms apart
from deaf-blindness, however, may indicate other (genetic)
diagnoses (e.g., disease related to mutations in PEXI,
OMIM *602136, or PEX6, OMIM *601498). Especially in
consanguineous families, simultaneous presence of two
non-syndromic sensory deficits must be taken into
account. In our comprehensive analysis of a large cohort
of deaf-blindness patients clinically diagnosed as Usher
syndrome, we therefore conducted both conventional San-
ger and next-generation sequencing (NGS) of a large gene
panel not only comprising the Usher genes but also the
known genes for non-syndromic deafness and for syn-
dromes that may comprise both sensory deficits. We

efficiently established identification of CNVs from NGS
data, highlighting targeted NGS as a tool for diagnosing
both point mutations and copy number alterations. Simul-
taneous homozygosity for mutations in genes associated
with isolated retinal degeneration and hearing loss (OTOA,
OMIM *607038 and NR2E3, OMIM *604485), and muta-
tions in PEX26 (OMIM *608666) in patients with addi-
tional enamel dysplasia demonstrate how rare, genetically
distinct entities may mimic Usher syndrome.

Materials and Methods

Ethical compliance

Samples were obtained with written informed consent. All
investigations were conducted according to the Declara-
tion of Helsinki, and the study was approved by the insti-
tutional review board of the Ethics Committee of the
University Hospital of Cologne.

Patients

The patients had been referred to our diagnostic labora-
tory with the diagnosis of retinal degeneration and sen-
sorineural hearing loss, and therefore in most cases with
suspected Usher syndrome (see below for exceptions con-
cerning deafness patients). About two third of the
patients were of German descent, and the remaining one
third were from Saudi Arabia (KSA) and other Middle
East/North African (MENA) countries (Fig. 1D). Patients
whose phenotype was compatible with USH1 or USH2
were grouped accordingly. Patients whose symptoms
comprised retinal degeneration and hearing impairment

532 © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.



C. Neuhaus et al.

Figure 1. Diagnostic yield and mutational
spectrum in patients clinically diagnosed with
different types of Usher syndrome. Numbers
correspond to patient numbers. ?, unsolved
patients. (A) USH1. (B) Atypical Usher
syndrome (including patients with additional,
non-sensory symptoms). (C) USH2. (D) Ethnic
origin of patients. Patients were counted as
/5 + '/, if parents had different ethnical
backgrounds.

but did neither correspond to USH1 nor to USH2 (either
because of clinical course or “plus symptoms” that were
unusual for Usher syndrome) were categorized as “atypi-
cal Usher syndrome”. In nine pediatric or adolescent
patients with apparently non-syndromic deafness who
had been referred for genetic testing of hearing loss genes
(including the most important syndrome genes like those
for Usher syndrome), the diagnosis was reversed (to a
syndrome with RP to develop in the future) due to the
genetic findings. For clarity, and although these patients
had not been referred as Usher syndrome patients, they
were grouped retrospectively under the clinical subtype
that is usually associated with the respective gene
(Table 1).

Workflow of genetic analysis and
determination of diagnostic yield

The analytic workflow depended on the assumed diag-
nosis and the request of the physician in charge of
the patient. If the clinical diagnosis was USH2, Sanger
sequencing (and possibly MLPA) of the USH2A exons
was the initial step of genetic testing in most cases
because of the high probability to identify the causa-
tive mutation with this approach, followed by NGS
for patients without USH2A mutations. For most
patients who were categorized as USH1 or atypical
Usher syndrome, NGS was carried out without other
precedent tests. In P135, whose symptoms indicated

a peroxisome biogenesis disorder (PBD), Sanger

USH1 B
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Atypical USH

sequencing of PEXI and PEX6 was carried out, fol-
lowed by NGS. MLPA or array-CGH analysis was con-
ducted to verify CNVs that were indicated by
quantitative analysis of NGS data (see below). In a
few cases, genotyping of Usher locus-specific polymor-
phic microsatellite markers or genome-wide linkage
analysis (as reported previously (Zaki et al. 2016))
preceded gene analysis.

When calculating the diagnostic yield, we considered
patients with monoallelic mutations in a gene compatible
with the respective clinical subtype as “resolved”, assum-
ing that the secondary mutations had escaped detection
due to atypical extra-exonic localizations (deep-intronic,
non-coding regulatory regions).

Next-generation sequencing (NGS)

Targeted next-generation sequencing (NGS) was con-
ducted for 112 genes (1914 coding exons) that have been
associated with non-syndromic (NSHL) and selected
forms of syndromic hearing loss (SHL), including 11
genes associated with Usher syndrome (MYO7A/USHIB;
USHIC; CDH23/USH1D; PCDHI15/USHIF;, USHIG;
CIB2/USH1]J; USH2A; ADGRV1/USH2C; WHRN/USH2D;
CLRN1/USH3A; PDZD7/USH2A modifier, digenic con-
tributor) and 14 linked to peroxisome biogenesis disor-
ders (Table S1; including GenBank Accession Numbers of
the wild-type gene sequences), on a MiSeq or a
HiSeq1500 system (Illumina), as previously described
(Eisenberger et al. 2014). In brief, sheared DNA was
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ligated to barcoded adaptors for multiplexing. Exons were
targeted by an in-solution customized sequence capture
library (NimbleGen). Amplified enriched DNA was sub-
jected to NGS. Reads were mapped against the hgl9
human reference genome using BWA (Li and Durbin
2009) and processed with SAMtools (Li et al. 2009),
Picard  (http://picard.sourceforge.net), —and  GATK
(McKenna et al. 2010). Variants were filtered against
dbNSFP v2.0 (Liu et al. 2011), dbSNP v137, the Human
Gene Mutation Database (HGMD® Professional 2013.2)
(Stenson et al. 2014), and our in-house database. The
cutoff for the maximum minor allele frequency (MAF)
was set to 1% (Bamshad et al. 2011). Nonsense, frame-
shift, and canonical splice site variants were regarded
likely pathogenic. SNVs were assessed using SIFT (Ng and
Henikoff 2003), MutationTaster (Schwarz et al. 2010),
PolyPhen-2 (Adzhubei et al. 2013), AlignGVGD (Mathe
et al. 2006; Tavtigian et al. 2006), Pmut (Ferrer-Costa
et al. 2005), NNSPLICE v0.9 (Reese et al. 1997), and Net-
Gene2 (Brunak et al. 1991; Hebsgaard et al. 1996). SeqPi-
lot SeqNext module (v4.0.1, JSI medical systems) was
used for visualization and final assessment of SNVs. Veri-
fication of all point mutations identified by NGS was car-
ried out by Sanger sequencing. If samples from other
family members were available, segregation analyses were
carried out to confirm biallelic constellations — in particu-
lar in case of compound-heterozygous mutations, but also
in case of apparent homozygosity to rule out large dele-
tions in trans to point mutations. Because the identified
mutations were clearly pathogenic in almost all cases,
biallelic situations are very likely true also in cases where
segregation analyses were not possible.

Copy number variation analysis from NGS
data

We performed copy number variation (CNV) analysis on
highly covered samples sequenced on the Illumina Hise-
q1500™  system. Potential copy number alterations
(CNA) were initially identified with the tools copy num-
ber and copyCaller from VarScan v2.3.6 (Koboldt et al.
2012) on mapped reads with a maximum segment size of
300. All other parameters were used with standard set-
tings. Thereby, coverage of every target region of the sam-
ple of interest was internally normalized and compared
versus normalized control data of other samples of the
same run. CNVs were annotated using RefSeq gene file
from UCSC (ftp://hgdownload.cse.ucsc.edu/golden-Path/
hgl19/database/refGene.txt.gz). CNVs were initially taken
into account if indicated by VarScan against at least 85%
of the control patients and if the log, threshold was >0.6
(in case of an amplification) or <—0.6 (in case of a
deletion).

C. Neuhaus et al.

MLPA and array-CGH

Results from CNV analysis were verified by MLPA (multi-
plex ligation-dependent probe amplification) analysis or,
if corresponding MLPA kits were not available, by array-
CGH. The following SALSA MLPA probe mixes (MRC-
Holland, Amsterdam, The Netherlands) were applied:
P361-A1 and P362-Al1 for USH2A, and P292-A2 for
PCDHI15 (USHIF). In every MLPA analysis, six samples
without CNVs in the investigated locus were used as
negative controls.

Molecular karyotyping (array-CGH) was performed
using Agilent Human Genome CGH 244A (Agilent Tech-
nologies, Santa Clara, CA, USA) according to the manu-
facturer’s instructions. Genomic positions were defined
using NCBI37/hg19. CNVs were considered if at least five
contiguous oligonucleotides presented with an abnormal
log, ratio.

Translational read-through approach for
P-Trp3955*ysH2a

HEK293T cells (cultured at 37°C and 5% CO, in Dul-
becco’s Modified Eagle Medium with GlutaMax™, with
10% fetal bovine serum; Invitrogen, Karlsruhe, Ger-
many) were transiently transfected (Lipofectamine™
with PLUS™ reagent; Invitrogen, Karlsruhe, Germany)
with ¢cDNAs coding for the FN3 domains 24 and 35,
the transmembrane domain, and the cytoplasmic tail
(residues p.3955-4175 fused to residues p.4926-5202)
of  wild-type and  mutant USH2A  (USH2-
A_p.Trp3955*%), respectively. A cDNA fragment from
€.12250-15996 of USH2A isoform b, encoding protein
residues p.3955-5202, was amplified and inserted into
the pDest SP S/F-C-Tag vector with a C-terminal Flag
tag. The region of ¢.12910-14988 was deleted using
the restriction enzymes Blpl and PmIl (NEB, Frankfurt
am Main, Germany). The reading frame was recovered
by insertion of the bases G and C at position ¢.12907
of the wild-type sequence using the QuickChange
Lightning Site-Directed Mutagenesis Kit (Stratagene, La
Jolla, CA). The p.Trp3955* mutation was generated
using the QuickChange Lightning Site-Directed Muta-
genesis Kit.

After 6 h, PTC124 (Selleckchem, Houston, USA; dis-
solved in DMSO; Sigma-Aldrich, Deisenhofen, Germany)
was applied to the culture media for 48 hours. Read-
through of the nonsense mutation was validated by indi-
rect immunofluorescence using antibodies against Flag
(Sigma-Aldrich) on methanol-fixed HEK293T cells as
previously described (Goldmann et al. 2012). The amount
of restored USH2A protein expression was calculated as
the ratio of Flag-positive cells in PTCI124-treated

538 © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
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p-Trp3955*-transfected cells, normalized to the total amount
of analyzed cells.

Cell cultures were grown on sterile cover slips and fixed
using cold methanol. PBS-washed cover slips were
blocked with blocking solution (0.5% cold water fish gela-
tin, 0.1% ovalbumin in PBS) for 30 min, followed by
incubation with primary antibodies overnight at 4°C.
Cover slips were incubated with secondary antibodies
conjugated to Alexa 488 (Molecular Probes, Leiden,
Netherlands) and DAPI (4’,6-diamidino-2-phenylindole,
Sigma—Aldrich) for staining of the nuclear DNA for 1 h
at room temperature. PBS-washed cover slips were
mounted in Mowiol 4.88 (Hoechst, Frankfurt, Germany).

Results

High diagnostic yield with predominance of
Usher syndrome mutations

Biallelic mutations (in trans constellation was either pro-
ven by segregation analysis or very likely, see Methods)
were identified in the vast majority of patients (97% of
USHI1, 90% of USH2, and 92% of atypical Usher syn-
drome). When considering patients with monoallelic
mutations (USH1: none; USH2: six; atypical Usher: one)
as resolved, the diagnostic yield was 97% for both USH1
and USH2, and 92% for atypical Usher syndrome. In one
USH1 patient and in three USH2 patients, no mutation
was identified despite NGS of the aforementioned
extended gene panel. The genetic diagnosis was made
before onset of RP in 10 young patients with apparently
isolated hearing impairment: nine with Usher syndrome
due to mutations in MYO7A and USHZ2A, and one with a
peroxisome biogenesis disorder (PBD) due to compound
heterozygous PEX26 mutations. Overall, 83 alleles carried
a novel mutation, several of which were observed more
than once. This was often the case in patients from the
KSA and other MENA countries, then often in homozy-
gous state. The “rarest” Usher syndrome genes with
mutations were as follows: USHIG (1 patient), CLRNI
(1 patient), PCDH]I5 (2 patients), and USHIC (4x).

CNVs account for a significant proportion of
Usher syndrome mutations

We have established quantitative analysis of NGS data to
detect CNVs such as deletions or duplications of one or
several exons. We have previously shown that this bioin-
formatic tool effectively uncovers such structural muta-
tions which escape detection in conventional approaches
(PCR and Sanger sequencing of exons) if present in
heterozygous state (Eisenberger et al. 2013). In our cohort,
CNVs in USH genes significantly contribute to the muta-
tional load. Compatible with its prevalence, but probably

NGS Reveals Landscape of Apparent Usher Syndrome

also due to its large size, USH2A is most often affected
(Fig. 2). In patients with biallelic USH2A mutations, CNVs
account for 10% (16/157 alleles; Table 1, Fig. 4A). Some
CNVs were observed more than once and likely represent
regional founder alleles. For example, a deletion of
PCDH]15 exons 1-3 was found in two families from Syria.

In two (not knowingly related) Saudi patients with
Usher syndrome and hyperinsulinism (P96 and P97), we
identified a homozygous deletion of the largest part of
the USHIC gene (exons 3-27). One patient, P97, had a
family history with likewise affected members and a
deletion involving USHIC and ABCCS8. Accordingly,
high-resolution array-CGH revealed a homozygous
microdeletion of approximately 123 kb on chromosome
an 11pl5.1 between genomic positions 17,439,772 and
17,546,526 bp (Fig. 3), defined by 14 contiguous oligo-
mers (eight in ABCC8, MIM #600509; three in USHIC;
three between ABCC8 and USHIC). The deletion break-
points are located in intron 22 of ABCC8 and in intron
2 of USHIC, corresponding to the previously reported
11p15-pl4 deletion syndrome (MIM #606528 (Bitner-
Glindzicz et al. 2000)). In addition to Usher syndrome,
patients with this condition present with congenital
hyperinsulinism, severe enteropathy, and renal tubulopa-
thy, and they may develop non-autoimmune diabetes in
adolescence (Hussain et al. 2004; Al Mutair et al. 2013).
In P96, the USHIC/ABCCS8 deletion was primarily
detected by NGS and confirmed by array-CGH.

p-Thr3977*ysuyz4: highly prevalent in USH2
and rectifiable by read-through drugs

The USH2A mutation ¢.2299delG (p.Glu767Serfs*21) is
the most prevalent USH mutation in several populations
(Liu et al. 1999; Leroy et al. 2001; Pennings et al. 2004;
Aller et al. 2006, 2010a,b; Dreyer et al. 2008). Unexpect-
edly, we found that the USH2A nonsense mutation,
c.11864G>A (p.Trp3955*), previously reported in several
studies (van Wijk et al. 2004; Le Quesne Stabej et al.
2012; Lenarduzzi et al. 2015), was even more common in
our cohort, accounting for 13% of determined USH2A
alleles (compared to 11% for c.2299delG; Fig. 4A). Both,
€.2299delG and p.Trp3955*, have been annotated in
dbSNP (rs80338903 and rs111033364, respectively), and
€.2299delG has a higher minor allele frequency (MAF)
than p.Trp3955* (0.07915 compared to 0.01071%; ExAC
database), with no homozygotes annotated in the healthy
population. Although our cohort consists of patients from
diverse geographic regions and ethnic backgrounds, the
largest group consists of patients of German descent
(65%). The high prevalence of ¢.2299delG and
p-Trp3955* is in accordance with the results of a recent
large-scale study on Usher syndrome (Bonnet et al. 2016).
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Figure 2. CNVs in USH genes detected by quantitative analysis of NGS data. The coverage plots illustrate the statistical readout, with the
absolute coverage deduced from unique read count and as calculated by the CNV analysis mode in SegNext (JSI Medical Systems). The coverage
of affected and neighboring exons of patients (red) and controls (green) from the same NGS runs is shown in overlay schemes for comparison.
While most patients harbor heterozygous deletions, reflected by approximately 50% reduction in coverage, patients P61 and P39 (the
heterozygous father is shown for comparison) have homozygous deletions, reflected by virtually no coverage in the respective plot. Patient P103

had a homozygous duplication of nine CDH23 exons (19-27; also see Fig. S1) the heterozygous father is depicted for comparison.

In contrast to that study, however, we found predomi-
nance of the p.Trp3955* mutation in German patients
where it exceeds the prevalence of ¢.2299delG.

Read-through of p.Trp3955%ysH24

The most prevalent mutation in our study, p.Trp3955*
mutation in USH2A, alters the TGG codon at position
11864 of the cDNA sequence into a premature UAG stop
codon. Targeting of such nonsense mutations by small
molecules such as PTC124 (Welch et al. 2007), known as

translational read-through-inducing drugs (TRIDs), has
become an important therapy approach (Fig. 4B;
reviewed in Nagel-Wolfrum et al. (2016)). To test this
approach for the USH2A p.Trp3955* nonsense mutation,
we transfected HEK293T cells with Flag-tagged wild-type
(USH2A-WT) and mutant USH2A plasmids (USH2A-
Trp3955%), and determined USH2A expression by indi-
rect immunofluorescence using anti-Flag antibodies. In
contrast to USH2A-WT cells (Fig. 4C), a low number of
Flag-positive cells was detected in DMSO-treated USH2A-
Trp3955* cells (Fig. 4C’), most probably resulting from
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Figure 3. Contiguous gene syndrome due to a deletion of USHTC and ABCC8. (A) NGS indicated a homozygous deletion of USHTC exons 3-27
in two not knowingly related USH1 patients from Saudi Arabia, P96 and P97. (B) Array-CGH revealed that the deletion also comprises the
neighboring ABCC8 gene. Thus, the alteration corresponds to a contiguous gene syndrome previously described in the USH7C gene identification
study (Bitner-Glindzicz et al. 2000). The replication of this mutation in our study indicates that this is a founder mutation from the Arabian
Peninsula.
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exons. Two mutations, p.Trp3955* and ¢.2299delG, are predominant. (B) Scheme of PTC124-induced translational read-through of a nonsense
mutation. In the wild-type situation, translation of mRNA results in functional full-length protein. Nonsense mutations introduce a premature
termination codon (red X) on the mRNA level, resulting in a truncated non-functional protein. Read-through-inducing drugs like Ataluren
(PTC124) bind to the ribosomes and promote the incorporation of an amino acid at the position of a PTC, resulting in the expression of full-
length protein. (C) Indirect immunofluorescence analyses of PTC124-induced translational read-through in cells transfected with wild-type (WT)
and mutant (Trp3955%*) constructs (indirect immunofluorescence, anti-Flag antibodies). Flag-tagged USH2A (green) was detected in USH2A-WT
cells but not in (C’) DMSO-treated USH2A-p.Trp3955* cells. (C"’) Application of PTC124 recovered USH2A expression in p.Trp3955*-transfected
cells. Nuclei were stained with DAPI (blue). (D) Increase in USH2A-Flag-positive cells after application of PTC124 (quantification of five
independent experiments. Error bars represent SD; *<0.05; magnification bar: 10 um).

spontaneous read-through of the p.Trp3955* mutation.
Application of PTC124 to the Trp3955* cells resulted in a
3.3-fold increase of USH2A expression (Fig. 4C"”) com-
pared to DMSO-treated Trp3955* cells.

Simultaneous homozygosity of mutations in
non-syndromic genes and a novel Heimler
syndrome gene

In three patients with deaf-blindness, disease was found
to be due to “non-Usher” gene mutations: Quantification
of NGS reads in a Saudi patient from a consanguineous
family, apparently affected by USH1, revealed a homozy-
gous deletion of OTOA, a gene known to be associated

with autosomal recessively inherited deafness, DFNB22.
Because the patient’s retinal phenotype (deep pigment
deposits along the vascular arcades, subretinal fibrosis;
delayed, depressed, and simplified scotopic flash response
in the ERG) appeared compatible with a recessive
NR2E3-related dystrophy (Khan et al. 2007, 2010), this
gene was sequenced. Indeed, a homozygous NR2E3 mis-
sense mutation, p.Arg311Gln, previously reported as a
pathogenic mutation (Haider et al. 2000; Kanda and Swa-
roop 2009; von Alpen et al. 2015), was identified (Fig. 5).

Very recently, Heimler syndrome, characterized by the
association of an “Usher-like” presentation (retinal degen-
eration and hearing loss) with enamel dysplasia and nail
abnormalities (Heimler et al. 1991), has been found to be
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was confirmed by array-CGH analysis. (C) Targeted analysis revealed a homozygous missense mutation of NR2E3. (D) Pedigree of the patient’s

consanguineous family summarizing the genetic findings.

caused by recessive mutations in two genes, PEXI and
PEX6, known to be associated with peroxisome biogenesis
disorders, PBD (Ratbi et al. 2015; Smith et al. 2016; Zaki
et al. 2016). PBD-associated genes have therefore been
considered in our analysis. Here, we identified com-
pound-heterozygous mutations in another PBD-related
gene, PEX26, in two patients from two families (Fig. 6A):
A 14-year-old boy (P135), diagnosed with “Usher syn-
drome with additional abnormalities”, carries two mis-
sense mutations affecting evolutionarily highly conserved
residues, p.Asp43His and p.Arg98Trp (Fig. 6B,C). After
birth, lack of reaction to noise was noted. At 22 months,
profound hearing loss (80 dB), hepatosplenomegaly, and
elevation of liver enzymes (which persisted) were diag-
nosed. Retinitis punctata albescens with macular involve-
ment and significant visual loss was diagnosed at 5 ',
years. Opacities of deciduous teeth indicated thin enamel,
and permanent teeth showed severe enamel dysplasia in
terms of amelogenesis imperfecta combined with gingival

hyperplasia and progressive preeruptive crown resorption
(Fig. 6D,E). The other patient (P136), a 4-year-old girl
with apparently non-syndromic hearing loss, was found
to carry a translation initiation codon mutation (p.Met1?)
and, as P135, p.Arg98Trp. Subsequent detailed inspection
of the deciduous teeth revealed enamel defects. Although
development of retinal degeneration in this patient seems
very likely, stressful in-depth ophthalmological investiga-
tions were not carried out now.

Discussion

Deaf-blindness is mostly of genetic origin in developed
countries, and biallelic mutations in the genes for Usher
syndrome, an autosomal recessive disorder, are the pre-
dominant cause. With 11 known, mostly very large genes
whose mutations explain the majority of cases, Usher syn-
drome is a prime condition for targeted NGS. Several
reports have accordingly shown that the method has
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with PEX26 mutations. (B) Scheme of the
E PEX26 gene and localization of mutations.

matured into a powerful diagnostic tool (Aparisi et al.
2014; Besnard et al. 2014; Bujakowska et al. 2014; Krawitz
et al. 2014; Jiang et al. 2015; Bonnet et al. 2016).

The diagnostic yield in our study is very high and simi-
lar to a recent large-scale study on Usher syndrome
patients (Bonnet et al. 2016). Many mutations were nov-
el, confirming that the genetic basis is often “private” and
not detectable by screens that focus on previously
reported mutations (Cremers et al. 2007). Repeatedly
observed mutations, however, were common, not con-
fined to but particularly in patients from MENA countries
where the rate of parental consanguinity is high (Table 2).
This indicates regional founder mutations that may guide

544

(C) Partial alignment of PEX26/Pex26 peptide
sequences from various species, indicating

high evolutionary conservation of the mutated
residues. (D) Severe enamel dysplasia of
permanent teeth of patient 135 at 117/, years
of age. (E) X-ray of patient 135 showing
preeruptive crown resorption in the upper left
first molar (red arrow) and a local enlargement
of the gingival tissue (blue line) at

13'%,, years of age.

the genetic diagnostic approach. Among the recurrent
mutations are several large CNVs, including the 11pl15-
pl4 deletion syndrome that involves USHIC and ABCCS8
in two KSA families. Hyperinsulinism is therefore a symp-
tom to be considered in deaf(-blind) patients from the
Arabian Peninsula.

Here, we aimed at a one-method approach, based on
targeted NGS. To achieve this, we a) established quantita-
tive readout of NGS data to detect CNVs, with conven-
tional methods like MLPA and array-CGH only being
used for verification of NGS-based CNV detection;
b) included genes mutated in clinically overlapping condi-
tions like Heimler syndrome; and c¢) simultaneously
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Table 2. Repeatedly observed mutations.

NGS Reveals Landscape of Apparent Usher Syndrome

Patients (n) Origin
MYO7A
¢.397dupC p.His133Profs*7 2 Pakistan
c.470+1G>A Splice 2 KSA
.2904G>T p.Glu968Asp rs111033233 2 Germany, Persia, Syria
Cc.3719G>A p.Arg1240GIn rs111033178 2 Germany
c.3503G>A p.Arg1168GIn 2 Germany
CDH23
C.6047-9G>A p.Leu728Serfs*6 2 ltaly, Pakistan
PCDH15
Del ex1-3 p.Glu968Asp 2 Syria
USH1C
Del ex3-27 CNV 2 KSA
USH2A
c.11864G>A p.Trp3955* rs111033364 19 Germany
€.2299delG p.Glu767Serfs*21 rs80338903 16 Germany
Del ex22-24 CNV 5 Germany
€.7595-2144A>G Splice 4 Germany
C.653T>A p.Val218Glu 3 Germany
€.920_923dup p.His308GInfs*16 3 Germany
C.949C>A p.Arg317Arg 3 Germany
c.1036A>C p.Asn346His rs369522997 3 Germany
€.8682-9A>G Splice 3 Germany
.486-1G>C Splice 2 KSA
C.2209C>T p.Arg737* rs111033334 2 Germany
C.9424G>T p.Gly3142* 2 Germany
¢.10388-1G>A Splice 2 Germany
C.14439_14454del p.Cys4813* 2 Germany, Turkey
c.14131C>T p.GIn4711%* 2 Germany
c.105617>C p.Trp3521Arg rs111033264 2 Germany
€.12234_12235delGA p.Asn4079Trpfs*19 rs398124618 2 Germany
c.11054G>A p.Trp3685* 2 Germany
c.11549-1G>A Splice 2 Germany
PEX26
Cc.292C>T p.Arg98Trp rs62641228 2 Germany

enriched genes implicated in isolated deafness to recog-
nize cases with co-occuring non-syndromic defects
mimicking a single syndrome.

Because all CNVs detected by quantitative readout of
NGS data could be confirmed by MLPA or array-CGH
and the majority of patients were found to carry two
(either proven or very likely) biallelic mutations, we
assume that probably no CNV escaped detection in our
study. This eliminates a major dead corner in diagnostic
testing of deaf-blindness genes and enables highly efficient
testing by a single technique, targeted NGS comprising all
exons of genes for Usher syndrome, clinically overlapping
conditions, and the repeatedly reported deep-intronic
€.7595-2144A>G mutation in USHZ2A. Deep-intronic
apart €.7595-2144A>Gygpoa  (which
accounted for only four alleles in our study) have been
reported (Liquori et al. 2016) and would still escape
detection in our non-genomic approach but — given the

mutations from

small proportion of patients with monoallelic or no
mutations — do not seem to play a significant role. Very
recently, however, by whole-genome sequencing, we
found evidence that a deep intronic founder mutation in
CLRNI may significantly contribute to USHI1 on the Ara-
bian Peninsula (Khan et al. 2017). Such recurrent “hid-
den” splice mutations should be considered at least in
patients with the respective ethnic background.

The clinical presentation of most patients with Usher
syndrome corresponded to either USH1 or USH2. All
genetically resolved patients from these two categories
had mutations in Usher syndrome genes. The same
applied to the nine patients diagnosed with “atypical
Usher syndrome” in whom course and/or age of onset of
sensorineural hearing impairment and RP did not allow
for clear-cut assignment to USH1 or USH2 and who had
no additional abnormalities: They were found to have
atypical expressions of USHIB (MYO7A), USHID
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(CDH23), USH2A, and USH2C (ADGRV1I). The diagnosis
had to be reversed in the three remaining patients with
apparent “atypical Usher syndrome”: They were found to
have clinically similar conditions, a peroxisome biogenesis
disorder (PBD; PEX26 mutations), or simultaneous pres-
ence of two non-syndromic conditions. Retrospectively,
these patients had additional abnormalities (in case of
PEX26-associated PBD) or a distinct, NR2E3-typical form
of retinopathy. Detailed clinical characterization before
genetic testing could have largely ruled out Usher syn-
drome beforehand. However, patients undergoing genetic
testing for deaf-blindness usually represent a heteroge-
neous cohort and range from poor to excellent clinically
characterized. Although most will have mutations in
Usher syndrome genes, it is the geneticists’ role to antici-
pate this problem and to equally take rare differential
diagnoses into account.

In patient 93, the specific retinopathy due to NR2E3
mutation homozygosity could have indicated a diagnosis
distinct from Usher syndrome, but congenital deafness
resulting from the homozygous deletion of OTOA is
indistinguishable from the hearing impairment in USHI.
If both components, deafness and RP, present as in Usher
syndrome, as we have previously reported for patients
with double homozygosity for mutations in DFNB59
(deafness) and MERTK (RP) (Ebermann et al. 2007), and
if the co-occurence of the two non-syndromic conditions
in the index patient is not uncovered by their division in
siblings, the genetic diagnosis is essential. Although the
disentanglement of the genetic basis of disease in patient
93 does not change his medical follow-up, it makes a
major difference in genetic counseling for the parents
whose family planning was ongoing: Instead of a 25%
recurrence risk for Usher syndrome in further children,
the actual risk is 25% for non-syndromic deafness, 25%
for non-syndromic retinopathy, and 6.25% for deaf-blind-
ness. With the increasing diagnostic application of large-
scale panel NGS, whole-exome and whole-genome
sequencing, it has become apparent that the co-occurence
of two (or more) monogenic conditions in one patient is
not so uncommon (Boycott and Innes 2017) — and hard
to recognize if it resembles a syndrome. Given the rela-
tively high prevalence of carriers for (mostly recessively
inherited) monogenic retinal dystrophies (with about
20% of the general population assumed to be carriers
(Nishiguchi and Rivolta 2012)) and hearing impairment
(assuming a monogenic cause in about 80% of the
affected newborns (1 in 500) (Shearer and Smith 2012)),
mimicking of Usher syndrome by both conditions should
be a recurrent scenario. Although this is more likely in
offspring from consanguineous parents (as in case of
patient 93), migration from regions with high rates of
consanguinity, like the Middle East and North Africa

C. Neuhaus et al.

(MENA regions), this phenomenon will increase, for
example, in Central Europe. In summary, our results
demonstrate the potential of extended NGS panels
that include non-Usher genes to resolve difficult genetic
constellations.

Inherited retinal dystrophies are a major cause of
blindness worldwide. There has been remarkable progress
in different therapeutic approaches (Scholl et al. 2016),
such as gene therapy and optogenetics. Gene addition
with adeno-associated viral (AAV) vectors has shown to
be effective in case of RPE65 in patients with Leber’s con-
genital amaurosis (LCA) type 2. In Usher syndrome, the
retinopathy component would be the primary target of
gene therapy, especially in patients who still have early-
stage RP or who are still non-syndromic (“only” deaf).
The identification of the causative gene will therefore be
of utmost importance if gene therapy should become rou-
tinely available. However, the enormous size of many
genes, including USH2A, represents a major hurdle for
the packaging capacity of AAV vectors. Therefore, alterna-
tive gene-based strategies for therapy or slowdown of reti-
nal degeneration are necessary. Translational read-
through represents a promising alternative for patients
with nonsense mutations (Nagel-Wolfrum et al. 2014a,b).
Here, we show that PTC124 effectively induces transla-
tional read-through of the predominant p.Trp3955*
USH2A nonsense mutation which accounted for 13% of
determined mutant USH2A alleles in our cohort. Because
35% of Usher syndrome patients with determined muta-
tions in our study carry nonsense mutations on at least
one allele (48/138), translational read-though could be a
promising therapeutic strategy for Usher syndrome
patients of all genetic subtypes.

Pinpointing the molecular diagnosis can be crucial for
specific prophylaxis — as in case of patients P135 and
P136 who both carry biallelic PEX26 mutations. While
P135 expresses the full picture of Heimler syndrome (ex-
cept specific nail abnormalities which do not seem to be
obligate part of the syndrome (Ratbi et al. 2016; Witters
et al. 2016)), the only “Heimler sign” so far in patient
P136 was enamel dysplasia, probably because of her
young age (3 years). This patient can benefit, in terms of
early prophylaxis, from the molecular diagnosis by being
monitored for signs of hepatopathy, elevation of fatty
acids and retinopathy. To protect hepatic function and
lipid metabolism, the patient should avoid certain medi-
cations and noxious substances (e.g., alcohol). Further-
more, and in contrast to Usher syndrome, therapeutic
options could exist for patients with mild PBD who may
benefit from a phytanic acid-restricted diet and extracor-
poreal lipid apheresis (Baldwin et al. 2010; Ruether et al.
2010; Kohlschtitter et al. 2012). In the ideal case, an effec-
tive diet could also counteract progression or even
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manifestation of retinal degeneration. Nine patients (in
whom biallelic Usher or, in one case, Heimler syndrome
gene mutations were found) had been diagnosed with
non-syndromic deafness. If AAV-based gene addition or
read-through approaches should become available as reg-
ular therapies, such early diagnosed patients could benefit
immensely from their early genetic diagnosis.

While exome sequencing has become a reasonable
“one-test-solution” for genetically heterogeneous condi-
tions with a significant proportion of patients lacking
mutations in the known disease genes, we propose NGS
(large) panel analysis for Usher(-like) syndrome — with
the advantage of technically feasible CNV discovery, a
very high diagnostic yield, and uncovering conditions
mimicking Usher syndrome.
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