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Abstract

The concept of lipoprotein mimetics was developed and extensively tested in the last three 

decades. Most lipoprotein mimetics were designed to recreate one or several functions of high-

density lipoprotein in context of cardiovascular disease, however, the application of this approach 

are much broader. Lipoprotein mimetics should not just be seen as a set of compounds aimed at 

replenishing a deficiency or dysfunctionality of individual elements of lipoprotein metabolism but 

rather as a designer concept with remarkable flexibility and numerous applications in medicine 

and biology. In this review, we discuss the fundamental design principles used to create lipoprotein 

mimetics, mechanisms of their action, medical indications and efficacy in animal models and 

human studies.
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Introduction

Lipoproteins are macromolecular complexes of various lipids and proteins found in most 

organisms. In vertebrates, the principal function of lipoproteins is the systemic transport of 

lipids, which otherwise would be insoluble in aqueous solutions. Impaired lipoprotein 

metabolism plays a key role in pathogenesis of many diseases. A classical example is 

familial hypercholesterolemia, a condition causing severe atherosclerosis at early age; 

however, disturbances in lipid and lipoprotein metabolism are key elements in pathogenesis 

of a diverse range of diseases from diabetes, obesity to cancer and infectious diseases. 

Hence, a concept has emerged to correct what’s missing or broken by designing mimetics of 

individual components of the various lipoprotein metabolism pathways. However, with time 

this concept progressed well beyond simple replenishment of a defective element of 

lipoprotein metabolism.
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In humans, lipoprotein metabolism is comprised of two interconnected, but distinctive arms. 

Apolipoprotein B (apoB) containing lipoproteins (chylomicrons, very low density 

lipoprotein (VLDL) and low density lipoprotein (LDL)) deliver lipids, mainly triglycerides 

(TG) and cholesterol, from intestine and liver to other tissues, predominantly to supply TG-

derived fatty acids as a source of energy. The current paradigm is that, at least in context of 

cardiovascular disease, excess of apoB-containing lipoproteins leads deposition of 

cholesterol in the vessel wall and development of atherosclerosis, thus, potential mimetics 

should have a capacity to reduce levels of apoB-containing lipoproteins by e.g. enhancing 

their catabolism. In contrast, apolipoprotein A-I (apoA-I) containing lipoprotein (high-

density lipoprotein (HDL)), removes excessive lipids, predominantly cholesterol, from most 

tissues delivering it to the liver, the only organ capable of catabolism and excretion of 

cholesterol. Because a high level of apoA-I containing lipoproteins is considered beneficial, 

potential mimetics based on HDL should have a capacity to substitute, supplement or 

functionally improve apoA-I containing lipoproteins. Conceptually, adding and 

supplementing is an easier task and the majority of current lipoprotein mimetics are based 

on apoA-I-containing lipoproteins.

In addition to playing a central role in reverse cholesterol transport (RCT), HDL has several 

other functions (for review see [1, 2]). The best investigated function is anti-inflammatory 

property of HDL, affecting both local inflammation (such as expression of adhesion 

molecules on endothelium) and systemic inflammation (such as expression of adhesion 

molecules and cytokine secretion by monocytes). Furthermore, HDL displays anti-oxidant, 

anti-thrombotic and anti-apoptotic functions, improves vascular function and prevents 

aggregation of LDL. Some of these properties are most likely a consequence of the ability of 

HDL to prevent cholesterol accumulation in the cells, i.e. depend on its role in RCT, but 

others are not. It is important to recognize that HDL is not a simple complex of 

apolipoproteins and lipids, but also carries a large number of enzymes, biologically active 

proteins and miRNAs [3, 4] that regulate various aspects of cellular and systemic 

metabolism independently from reverse cholesterol transport. Consequently, as will be 

discussed below, the concept of lipoprotein mimetics is now much broader with applications 

beyond atherosclerosis.

Lipoproteins are natural constituents of human plasma; isolating lipoproteins and separating 

their elements can be easily achieved using routine methodology. CSL, owing its unique 

access to large quantities of human plasma and appropriate technology, uses apoA-I purified 

from human plasma to create HDL mimetics (CSL111 and CSL112). However, most of the 

mimetics are fully synthetic for the following reasons:

• Cost and access to human plasma makes feasibility of large scale production of a 

mimetic-based drug problematic

• The requirements for consistency and ensuring that human plasma product is 

infection- and endotoxin- free are difficult and/or costly to fulfil

• Synthetic analogues provide considerable flexibility in modifying the structure of 

a mimetic, allowing for e.g. adaptation for oral administration or targeting a 

specific function of a lipoprotein
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• Use of natural products creates complexity in IP protection

Lipoprotein mimetics have been used for numerous potential indications (Table 1). Majority 

of studies describe use of lipoprotein mimetics in context of cardiovascular disease. The 

second most frequent indication is cancer. HDL has remarkable anti-cancer properties, 

which were reproduced with HDL mimetics [5–7]. ApoA-I mimetics have also been used to 

reduce obesity and diabetes [8]. ApoA-I and apoE mimetic peptides were shown to reduce 

amyloid burden in animal and cellular models of Alzheimer’s disease [9, 10]. In context of 

infectious diseases, apoA-I mimetic peptides reduced inflammation caused by an infection 

[11] and provided considerable multiple organ protection in sepsis [12]. Anti-inflammatory 

and anti-oxidation properties of HDL were behind the ability of apoA-I mimetics to reduce 

rejection after heart transplantation [13], alleviate asthma [14] and treat experimental 

arthritis [15]. ApoA-I mimetics were also effective in preventing cardiac ischemic/

reperfusion injury [16] and were able to rescue pulmonary hypertension [17]. Finally, 

lipoprotein mimetics were used as carriers for targeted delivery of drugs [18] and contrast 

agents [19] to atherosclerotic plaques and cancer cells [20]. It must be recognized however, 

that most of these findings were generated in cellular and animal models and have not yet 

been translated into clinical trials.

General design principles for lipoprotein mimetics

Several design principles for lipoprotein mimetics were proposed over the years (Table 2). A 

straight forward concept to design a lipoprotein mimetic is to recreate structural and 

functional properties of the native particle in its entirety or at least as close as possible, a 

supplementing/replacement therapy approach. Reconstituted HDL (rHDL) is the most 

advanced example of such approach. RHDL consists of full-length wild type mature human 

apoA-I complexed to phospholipids forming a discoidal particle. Composition and physical 

properties of rHDL are similar to that of nascent HDL; therefore, they are expected to enter 

HDL metabolism cycle recreating most of the biological properties of endogenous HDL. 

Currently, two rHDL mimetics are undergoing trials: CSL112 [21], like its predecessor 

CSL111[22], incorporates apoA-I isolated from human plasma, while CER-001 incorporates 

recombinant apoA-I [23].

Recreation of the lipoprotein structure in vitro creates opportunities to improve functional 

properties of mimetics over natural product. The first attempt was apoA-IMilano –based 

rHDL (also known as ETC-216). ApoA-IMilano is a naturally occurring mutant of apoA-I 

carrying a substitution of Cys for Arg173; apoA-IMilano molecules form dimers [24] and 

may have better antioxidant properties [25]. Carriers of apoA-IMilano have low levels of 

HDL due to enhanced HDL catabolism; however, this was not accompanied by higher risk 

of CVD, leading to an assumption that apoA-IMilano based HDL has enhanced 

atheroprotective functionality. Despite intensive work this assumption, it has not been 

convincingly proven and reasons why carriers of apoA-IMilano have low cardiovascular risk 

are still not entirely clear.

Another approach to improve properties of rHDL was to base it on recombinant trimer of 

apoA-I creating rHDL with functional properties similar to WT apoA-I-based rHDL, but 

Sviridov and Remaley Page 3

Biochem J. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with reduced plasma clearance rate [26, 27]. Trimeric-rHDL was more effective than rHDL 

in slowing development of atherosclerosis in animal model [28]. In another study, pegylation 

of rHDL also retarded its catabolism without adversely affecting functional properties, 

leading to a greater reduction in development of atherosclerosis and plaque stabilization in 

animal model [29].

The most common approach for the design for lipoprotein mimetics involves the use of 

synthetic peptides. Two design approaches have been widely used, namely peptides 

mimicking primary structure of an apolipoprotein and peptides mimicking its secondary 

structure without homology to the primary structure. Uehara et al described a single helix 

peptide (FAMP5) with high degree of homology to C-terminus of apoA-I [30], while 

Bielicki et al described a peptide (ATI-5261) homologous to the C-terminus of apoE [31]. 

Both peptides mimicked the lipid-binding domains of the corresponding apolipoproteins, 

aiming to recreating their cholesterol efflux properties and indeed both peptides were potent 

in cholesterol efflux assay. Sviridov et al further developed this design by describing two bi-

helical peptides (S1A10 and S2A10) based on homology to C-terminus of apoA-I with 

hydrocarbon “staples” introduced to connect turns of the helices. “Stapling” resulted in a 

dramatic enhancement of the ability of the peptides to promote cholesterol efflux and made 

them resistant to proteases [32]. Zhao et al attached three peptides mimicking C-terminus of 

apoA-I to a small organic scaffold; this complex remained active after both intraperitoneal 

and oral administration, indicating protease resistance [33]. Similar design principle was 

used in studies where a mimetic combined several different elements: a peptide capable of 

stimulating cholesterol efflux and/or anchoring to lipoproteins and another peptide 

facilitating a subsequent stage of lipoprotein metabolism. The objective of such design was 

to create a mimetic capable of advancing its cargo along the pathway of lipoprotein 

metabolism. Anantharamaiah et al described conjugates of apoA-I mimetic peptide, active in 

promoting cholesterol efflux from cells, with a mimetic peptide reproducing the sequence of 

the receptor-binding domain of apoE, active in delivering cholesterol to the liver (Ac-

hE-18A-NH2 and L-mR18L) [34, 35]. Similar approach was used by Zhao et al, who 

described a peptide (EpK) containing lipid binding domain and LDL-receptor binding 

domain [36]. Amar et al described a peptide (C-II-a) which is conjugate of an apoA-I 

mimetic, to anchor peptide to a lipoprotein particle, and a apoC-II mimetic, an activator of 

lipoprotein lipase (LPL) [37].

Many lipoprotein mimetic peptides, however, do not carry homology to the primary 

structure of apolipoproteins, instead just recreating its secondary structure, amphipathic α-

helix. Most apolipoproteins contain such helices in their structure, which allows them to 

bind to the hydrophobic lipid core of lipoprotein and at the same time form hydrophilic 

surface of the particle. It was originally suggested by Segrest et al that this structural 

property of apolipoproteins is fundamental to many of their biological functions, including 

cholesterol efflux, and that peptides carrying the same structural elements would have 

similar biological properties [38]. This design principle laid foundation for the first apoA-I 

mimetic peptide, 18A (also known as 2F) [39]. Many peptides were created using this 

principle with modifications to their physiochemical properties. Most modifications aimed at 

further improving lipid-binding properties, and while significant variations in 
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physiochemical properties of the peptides exist, strong lipid-binding property is not always 

beneficial. Subsequent developments of the peptide design included:

• Introducing into the structure of a peptide several hydrophobic amino acids 

increasing their ability to bind lipids and to promote cholesterol efflux. This 

includes the most studied apolipoprotein mimetic, namely peptide 4F [40], which 

is an 18A based peptide with four Phe residues on the hydrophobic face, or 

ETC-642 [41].

• Longer peptides with two amphipathic α-helixes connected by a proline residue 

to recreate secondary structure together with elements of tertiary structure of 

apoA-I, such as 37pA [42]. Bi-helical peptides were generally more potent than 

single helix peptides [43].

• Bi-helical peptides with two helices of different hydrophobicity; this reduced 

damage peptides cause to the plasma membrane due their detergent properties. 

An example of this approach is peptide 5A [44].

• Synthesizing peptides from D-amino acids to enable oral administration, such as 

D-4F [45]. Other reported methods to make peptides resistant to proteases 

allowing oral delivery are stapling of the peptides [32] and administering 

peptides in complex with niclosamide [46].

• Introducing cysteine and histidine to boost anti-oxidant properties of the peptides 

(5A-CH) [47].

• Changes in hydrophobicity, charge and connection angle between the two helices 

to boost lipid-binding and anti-inflammatory properties (ELKs) [47].

A different approach to mimetic design was to focus on function, rather than the structure. 

Cyclodextrins [48] and large and small unilamellar phospholipid vesicles (LUV and SUV) 

[49] are water soluble and are capable of removing cholesterol from cells, although mostly 

through non-specific mechanisms. The overall capacity of these mimetics to promote 

cholesterol efflux exceeds that of HDL and apoA-I, however, the non-specific (i.e. 

independent of any cholesterol transporters) nature of their activity and inability to advance 

their cargo along the lipoprotein metabolic pathways or pass it to other lipoproteins are 

severe limitations.

A recent development in lipoprotein mimetic design is nanoparticle mimetics. Gold 

nanoparticles covered with phospholipids and apoA-I were used to recreate the structure of 

HDL and promoted cholesterol efflux [50, 51] or as carriers for targeted drug delivery [6]. 

Nanoparticles consisting of lipid core resembling HDL and a vector (e.g. apoA-I mimetic 

peptide) were used as carriers for delivery of drugs and contrast agents, as well as to 

promote cholesterol efflux [19, 20]. Advantage of this design is that it allows considerable 

flexibility in adjusting the size of the particle, which is an important determinant of 

lipoprotein functionality, and offers scaffolding on which several functional elements can be 

mounted in different arrangements and combinations.
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Mechanism of action

Lipoproteins perform many functions and synthetic mimetics were designed to recreate 

many of them, as well as to contrive new functions not performed by the native lipoproteins 

(Table 1).

Reverse cholesterol transport

The main intended mechanism of action of many lipoprotein mimetics, at least of HDL 

mimetics, is that they would enhance reverse cholesterol transport (RCT). That is, mimetics 

will take up excessive cholesterol from peripheral cells and deliver it to the liver either 

directly or after transferring it to other lipoproteins. There is evidence that this does occur 

with rHDL – in humans infusion of CSL111 and CSL112 stimulates the capacity of plasma 

to efflux cholesterol from cells in vitro and this precedes the rise in HDL level [52, 53]. 

Removal of apoB-containing lipoproteins from plasma eliminated improvements in 

cholesterol efflux after rHDL infusion, indicating that other elements of lipoprotein 

metabolism are required for this enhancement to work [52]. In rabbits, CSL112 increased 

the capacity of plasma to promote cholesterol efflux and stimulated cholesterol esterification 

[21]. One possible mechanism supported by these findings is that small rHDL particles 

assume role of a “shuttle” taking cholesterol from cells and delivering it to the “sink”, a pool 

of large lipoprotein particles taking up cholesterol from small rHDL and proceeding along 

RCT pathway [52]. However, two other mechanisms cannot be ruled out. First is that 

administered rHDL particles fuse with HDL particles of the recipient, leading to their 

remodelling and release of lipid-free or lipid-poor apoA-I, the latter being the main specific 

cholesterol acceptor. This mechanism is supported by significant increase of preβ1-HDL/free 

apoA-I level after infusions of rHDL [52, 53]. Second mechanism also involves fusion of 

rHDL with the recipient plasma HDL delivering phospholipids to these particles and thus 

improving their ability to accept cellular cholesterol. Overall, it is unlikely, however, that 

rHDL recreates a complete RCT pathway removing cholesterol from cells and delivering 

cholesterol to the liver on its own; most likely it stimulates few initial steps of the RCT then 

feeding cholesterol into the pathway of recipient.

Mimetic peptides, lipid-free or complexed with phospholipids, also successfully recreated 

the ability of HDL and apoA-I to promote cholesterol efflux in vitro [30–32, 54, 55]. 

However, a requirement to feed cholesterol taken up from cells into RCT may be a key 

limitation of compounds mimicking cholesterol efflux only. While apoA-I mimetic peptides 

can fuse with homologous HDL delivering to it their cargo, mimetics like gold nanoparticles 

[56], cyclodextrin [48] and phospholipid vesicles [49] cannot, thus possibly limiting their 

utility in vivo. Peptides combining lipid-binding domain coupled with receptor-binding 

domain, such as Ac-hE-18A-NH2 [34, 35] and EpK [36], have an advantage of being 

capable, at least theoretically, of recreating both early and late steps of RCT. ApoE mimetic 

ATI-5261 promoted cholesterol efflux and the generated particles capable to undergo further 

metabolism similar to HDL, including the ability to be taken up by SR-B1 [57]. In most 

cases, however, it is unlikely that peptides are capable of recreating the full RCT picking up 

cellular cholesterol and transporting it to the liver without first fusing with HDL particles of 
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the recipient. It is more likely that they deliver cellular cholesterol to HDL supplementing a 

rate-limiting step of RCT, rather than generate a parallel pathway.

Independent of the capacity of mimetic peptides to be an acceptor of cellular cholesterol, a 

likely important contributing factor is their ability to stabilize ABCA1 on the cell surface 

[58]. ApoA-I mimetic peptides are also capable of binding to HDL improving its 

functionality and/or displacing apoA-I from the particles with the formation of preβ1-HDL/

apoA-I [59], the mechanisms discussed above in relation to rHDL.

Clearance of plasma lipoproteins

A novel mechanism of clearance of plasma lipoproteins mimicking elements of forward 

cholesterol transport was proposed for apoE mimetics (for recent review see [60]). Peptide 

Ac-hE-18A-NH2 effectively binds to LDL and VLDL through its lipid-binding domain and 

dramatically enhances their clearance by liver significantly reducing hyperlipidemia. 

Interestingly, the increased uptake of apoB-containing lipoproteins in the liver after peptide 

administration was mediated not by classical LDL/VLDL receptors, but rather through 

binding of lipoproteins to heparin sulfate proteoglycane (HSPG). This approach was 

effective in reducing hyperlipidemia and mouse and rabbit models.

Inflammation

Anti-inflammatory properties have also been demonstrated for many mimetic peptides. 

Multiple mechanisms were suggested: (i) inhibition of VCAM expression [41, 47, 61, 62], 

(ii) reduction of cytokine expression [12, 61–63]; (iii) suppression of chemotaxis [64]; (iv) 

reduction of pro-inflammatory properties of modified LDL [65]; (v) inhibition of 

proinflammatory gene expression through altering the assembly of TLR–ligand complexes 

in cell membranes [66]. Which of these pathways is central to the anti-inflammatory ability 

of mimetic peptides is currently not known but is an active area of investigation. Most of the 

anti-inflammatory peptides were tested in context of atherosclerosis; however, several other 

inflammatory diseases are also potential indications. For example, peptides D- 4F and L-4F 

were used to reduce oxidation and inflammation after transplantation [13], in experimental 

obesity [8] and diabetes [67] by upregulation of heme oxygenase-1 [13]. Although 

mechanistically less defined, the anti-inflammatory properties of 4F peptides were probably 

also behind its therapeutic utility in asthma [14], arthritis [15], infection [11, 12] and sepsis 

[68].

Oxidation

Many mimetic peptides have anti-oxidant properties, especially if their sequence includes 

anti-oxidant amino-acids His and Cys [47, 69]. Other mechanisms contributing to anti-

oxidant capacity are stabilization and enhancing activity of PON [70], binding and 

sequestration of oxidized lipids [71] or facilitating transfer of oxidized lipids from LDL to 

HDL [72].

Apoptosis

Lipoprotein mimetics displayed anti-apoptotic properties by reducing endoplasmic reticulum 

stress in macrophages through inhibition of CD-36-mediated uptake of oxLDL [73].
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Vascular function

Several mimetics were able to protect or improve vascular function by increasing NO 

production [74, 75], reducing formation of superoxide anions, which are scavengers of NO 

[34, 76], and improving eNOS-depednent vasodilatation [77].

Thrombogenesis

Mimetics were able to reduce platelet aggregation through lowering levels of thromboxane 

A2, and prostaglandins D2 and E2 [78].

Triglyceride lowering

One feature of apoA-I mimetic peptides is that their administration in animal models often 

results in hypertriglyceridemia; possibly due to the displacement of apoC-II, an important 

cofactor for LPL. To counteract this effect, and perhaps as a new tool to control 

hypertriglyceridemia, Amar et al synthesized a bi-functional peptide, consisting of lipid-

binding sequence anchoring peptide to a lipoprotein particle coupled with a fragment of 

apoC-II known to activate LPL [37]. C-II-a peptide effectively reduced plasma triglyceride 

levels caused by the 5A peptide when both peptides were co-administered in mice; when 

administered by itself it also stimulated lipolysis in apoE-KO mice [37].

LDL aggregation

Modified and especially aggregated LDL are pro-atherogenic and apoA-I mimetic peptide 

L-4F was able to block sphingomyelinase-induced LDL aggregation [79].

Regulation of intestinal uptake of oxidized lipids

Recently Navab et al suggested that the main target of apoA-I mimetic peptides may not be 

systemic lipoprotein metabolism or atherosclerotic plaque, but rather lipid metabolism in the 

small intestine [80]. They found that following oral or subcutaneous administration of D-4F 

into LDLR−/− mice, intestinal and liver levels of metabolites of arachidonic and linoleic 

acids, as well plasma levels of amyloid A and TG were reduced; the effect was independent 

of systemic concentration of the peptide. The interpretation of this finding was that the true 

target in the anti-inflammatory effects of the peptide is the small intestine and that 

concentration of the peptide in the intestine, rather than in plasma, is of primary importance. 

The hypothesis was that various oxidized lipids are produced in the intestine, presumably by 

microbiota, in quantities sufficient to contribute to systemic inflammation and the peptide is 

able to bind these oxidized lipids mitigating their inflammatory effects [81].

As outlined above, mimetic peptides were able to recreate many “non-RCT” functions of 

HDL. As with HDL, however, it is not clear which of the “non-RTC” properties of the 

mimetics are truly independent from their ability to promote cholesterol efflux and reduce 

cellular cholesterol content. For example, several anti-inflammatory properties were 

mechanistically explained by depleting cells of cholesterol, which disrupts lipid rafts playing 

a key role in inflammation [66]. However, some properties of the peptides are clearly 

independent of their ability to modify cellular cholesterol metabolism, such as rescue of 

pulmonary hypertension through regulation of microRNA-193 [17].
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Finally, nanoparticles conjugated with mimetic peptides were used as carriers for targeted 

drug delivery directing lipophilic drugs, including statins, or contrast substances to 

atherosclerotic plaques [19, 82] or cancer cells [5, 6, 20].

Efficacy of the lipoprotein mimetics in animal models and clinical trials

Atherosclerosis

Many lipoproteins mimetics were investigated in animal models of atherosclerosis and in 

early stage clinical trials. Much of the early animal work assessing development of 

atherosclerosis after administration of rHDL has been done with apoA-IMilano-based rHDL 

(ETC-216). Chronic intravenous administration of apoA-IMilano-based rHDL in apoE−/− 

mice almost completely halted development of atherosclerosis [83] and even a single 

injection reduced plaque cholesterol and macrophage content [84] in this model. In rabbit 

model of injury-induced atherosclerosis, a single infusion of apoA-IMilano-based rHDL 

reduced lipid content and size of atherosclerotic plaques in carotid arteries [85]. When tested 

side-by-side, apoA-IMilano-based rHDL was more effective than WT apoA-I-based rHDL in 

reducing atherosclerosis and especially in reducing inflammation in the plaque [86]. 

CER-001 (rHDL) was also effective in stimulating reverse cholesterol transport and reducing 

development of atherosclerosis in LDLR−/− mice [87]. CSL111 in unchanged form and as 

pegylated HDL was only mildly effective in reducing burden of atherosclerosis when 

administered to apoE−/− mice [29].

While some of the early apoA-I mimetic peptides did not substantially affect the 

development of atherosclerosis, most of the re-developed peptides did; variants of the 

peptide 4F are most investigated in this regard. Oral administration of D-4F (a peptide 

synthesized from D-amino acids and therefore resistant to proteolysis in the gut) suppressed 

development of atherosclerosis by 79% in LDLR−/− mice [45] and by 50% in diabetic 

apoE−/− mice [88]. A slightly modified version of D-4F, 6F, expressed in transgenic 

tomatoes and added to Western diet reduced atherosclerosis in LDLR−/− mice by about 40% 

[89]. Smaller reductions of 10–30% were found after intraperitoneal or retro-orbital 

administration of L-4F in apoE−/− mice. The peptide 5A administered intraperitoneally or 

intravenously reduced atherosclerosis in apoE−/−mice by 30–50% [55]. The peptides 

ELK-2A2K2E [90], ATI-5261 [31] and FAMP [30] administered intraperitoneally reduced 

atherosclerosis by 16–30% in apoE−/− mice.

Apo E mimetic peptide Ac-hE18A-NH2 was effective in reducing hyperlipidemia in mouse 

[91] and rabbit [92] models and was also effective in reducing atherosclerosis in mouse 

model [93]. Nanoparticles coupled with monomeric or trimeric apoA-I mimetic peptide 

reduced atherosclerosis in LDLR−/− mice by 50–70% after intraperitoneal or oral (trimeric 

only) administration [33].

In humans, chronic infusion of apoA-IMilano-based rHDL reduced the size of coronary 

atheroma assessed by IVUS [94]. Sort term infusion of WT apoA-I based rHDL, CSL111, 

significantly reduced coronary atheroma volume at high dose, but unfortunately this dose 

had unacceptable level of toxicity, possibly due to excess cholic acid used in the 

reconstitution process. Low dose CSL111 was well tolerated, but the effect on atheroma 
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volume was not statistically significant [22]. New formulation of the CSL product, CSL112, 

was well tolerated [95] and in an early stage clinical trial appears to stimulate markers of 

cholesterol efflux [53]. In a small clinical trial of patients with peripheral vascular disease, a 

single infusion of CSL111 led to significant reductions in cholesterol content and 

inflammation in atherosclerotic plaques [96]. However, CER-001 failed to reduce atheroma 

volume in patients with acute coronary syndrome [23], but mildly decreased carotid mean 

vessel wall area in patients with familial hypoalphalipoproteinemia [97].

Oral administration of the peptide D-4F in humans was well tolerated and reduced 

inflammatory markers despite low bioavailability [98]. Intravenous and subcutaneous 

infusions of L-4F were also well tolerated, the peptide had good bioavailability, but had 

limited effect on HDL level and or functionality and did not improve any inflammatory 

markers [99].

Very few lipoprotein mimetics were tested side-by-side and the variability in doses, route of 

administration, animal models, patient populations and other conditions make comparisons 

of the various mimetics difficult. Generally, most mimetics were active in reducing 

atherosclerosis in vivo in animal studies; however, it is difficult to establish a definitive 

connection between properties of the mimetics in vitro and in vivo and their efficacy in 

reducing atherosclerosis. It is not clear which element of pathogenesis of atherosclerosis is 

the main target of the mimetics, e.g. removal of excessive cholesterol by RCT or 

inflammation or both, and where the main action is, locally or systemically.

Other diseases

The therapeutic potential of lipoprotein mimetics in conditions other than atherosclerosis 

was also extensively tested. The peptide L-4F protected vascular function in animal models 

of hypercholesterolemia and sickle cell disease [100]. D-4F decreased myocardial 

inflammation, improved vascular function and restored angiogenic potential of the hearts in 

mouse model of systemic sclerosis [101]; it also reduced inflammation in animal model of 

asthma [14]. D-4F in combination with statin reduced severity of arthritis in animal model 

[15]. The same combination of D-F4 and statin, as well as apoE mimetic peptide Ac-hE18A-

NH2, reduced amyloid deposition and improved cognitive function in animal models of 

Alzheimer’s disease [9, 10]. L-4F reduced insulin resistance and inflammation in animal 

models of obesity [8]. L-4F also improved vascular function and inflammation in two animal 

models of sepsis [68, 75] and inhibited growth of colon cancer in vivo [7]. As discussed 

above, D-4F rescued pulmonary hypetrtension through an unusual mechanism involving a 

miR193 [17].

In humans, rHDL (CSL111) had profound anti-diabetic effect increasing insulin secretion 

and reducing insulin resistance [102]. It also reduced platelet aggregation and thrombus 

formation ex vivo [103]. Despite findings being fragmented and many of them are yet to be 

confirmed, it is becoming clear that utility of lipoprotein mimetics is not limited to 

atherosclerosis and cardiovascular disease.
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Limitations of lipoprotein mimetics

Utility of lipoprotein mimetics has several important limitations. Cost of synthesis, 

purification and testing of apoA-I, as well as cost of phospholipids to produce rHDL are 

high; cost of synthesis of long peptides is also considerable. This is one reason why rHDL 

preparations are currently being marketed for short-term use in acute cardiac events – to 

rapidly alleviate burden of the ruptured plaque and to stabilize unstable plaques, with other 

types of therapy to follow in long-term. Another limitation is that most of lipoprotein 

mimetics require intravenous administration essentially precluding long-term use of these 

mimetics e.g. as a preventative strategy. This limitation, however, was addressed by several 

means. Peptides synthesized from D-amino acids are resistant to proteolysis in the gut and 

are adsorbed without significant modification. This strategy however has important 

limitations. Firstly, while resistant to gut proteases, D-peptides are also incompatible with 

intestinal transport systems and bioavailability of D-peptides is low [80]. Secondly, these 

peptides are resistant not only to gut proteases, but to proteases in general; the route of their 

catabolism is uncertain and they potentially may accumulate in liver or kidney. Several other 

strategies were suggested to enable oral administration of the peptides such as stapling of α-

helices [32], or use as a complex with niclosamide [46]. Nanoparticles, although containing 

peptides made of L-amino acids, were also resistant to proteolysis in the gut [33]. These 

approaches not only potentially allow for oral administration of the mimetics, but prolong 

usually very rapid turnover. Other approaches to improve pharmacokinetic properties 

include reformulation of lipid content of rHDL [95], pegylation of rHDL [29], or use of 

trimeric apoA-I based rHDL [28].

HDL carries a number of biologically active molecules affecting many aspects of cellular 

metabolism, which may play an important role in determining properties of HDL. This 

aspect is yet to be incorporated into concept of lipoprotein mimetics and most available 

mimetics were not designed or tested for their capacity to selectively deliver biologically 

active proteins and miRNAs.

However, one of the main obstacle for successful translation of an experimental compound 

into an effective medication is the uncertainly about mechanisms. Although many mimetics 

effectively target specific facets of atherosclerosis in vitro and reduce atherosclerosis in vivo, 

there is little evidence that in vitro properties of these mimetics are reproduced in vivo, and 

especially in human studies. Multiple targets, RCT, inflammation, oxidation etc, uncertainty 

of whether mimetics act locally on systemically hold back development of effective 

lipoprotein mimetics. Even with intended target of mimetics, systemic lipoprotein 

metabolism, it is uncertain whether mimetics bind and modify existing lipoproteins or 

deliver cholesterol from cells to HDL or recreate several steps of RCT. Combined with poor 

understanding of complex pathogenesis of atherosclerosis, e.g. uncertainty about the relative 

contribution of cholesterol accumulation, inflammation, oxidation and other facets of 

pathogenesis, as well as of different cell types in the vessel wall to overall severity of the 

disease, makes it difficult to predict what an ideal lipoprotein mimetic should 

mechanistically do and how it should look like.
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An ideal lipoprotein mimetic

Despite these uncertainties, we speculate in the following section on the potential “ideal” 

features of a lipoprotein mimetic (Fig. 1). We restricted our attempts to an HDL mimetic, as 

there is a greater knowledge base in this area. We based our proposal on two reasonable but 

not fully tested assumptions: first, that the main objective of a mimetic is recreation or 

enhancement of RCT, and second, that the mimetic should promote as many stages of RCT 

as possible.

RCT pathway principally consists of three steps: (1) removing free cholesterol from the 

cells, (2) esterifying cholesterol preventing it from flowing back to cells and (3) delivering 

cholesteryl esters to the liver. Thus, the first essential step that must be performed by a 

mimetic is to effect specific cholesterol efflux from cells. Amphipathic α-helical peptides of 

18–37 amino acids seem to be adequate for this activity. Bi-helical peptides where two 

helices connected by a proline residue are more active and more specific, but the role of the 

second helix is most likely in proper positioning of the first helix, and this function can 

possibly be fulfilled by another structure. It may be beneficial to include into the structure of 

the peptide histidine and/or cysteine residues boosting anti-oxidant properties of the mimetic 

without affecting its secondary structure and hydrophobicity. Peptide L-4F or hydrophobic 

helix of the peptide 5A-CH1 may provide template for the first element of the ideal 

lipoprotein mimetic.

The second element of an ideal mimetic should facilitate cholesterol esterification and to 

properly position the “efflux” peptide. A peptide with homology to the 7th helix of apoA-I 

(residues 143–164) would be a suitable candidate for this role when connected to the 

“efflux” peptide through a proline residue. The 7th helix of apoA-I is involved in LCAT 

activation [104], it is less hydrophobic than the “efflux” peptide and, like second helix in 

peptide 5A, it would prevent the structure from “sinking” into the cell membrane, the latter 

seems to be a cause of non-specific efflux and toxicity.

The requirement for the third element of an ideal mimetic is to have a capacity to hold and 

carry a cargo of cholesteryl esters. That could be best fulfilled by an organic nanoparticle 

that has a micellar-like structure with hydrophobic core covered by phospholipid. It is 

expected that the newly formed cholesteryl esters would move into hydrophobic core and the 

particle would acquire additional phospholipids for the expanding surface from cells and/or 

other lipoproteins. Similar micellar particles have been described [105]; however, there is an 

uncertainly of whether it would be best for peptide construct(s) to hold on the particle by the 

hydrophobic face of amphipathic α-helices or to be covalently linked to the particle to 

prevent dissociation. Delivery of cholesteryl esters to the liver occurs via two pathways: after 

exchange of cholesteryl esters for triglycerides through the action of cholesteryl ester 

transfer protein (CETP) and through extraction of cholesteryl esters from HDL by SR-B1 in 

the liver. The former pathway is predominant in humans, however, structural requirements 

for a particle to be able to interact with CETP are uncertain leaving little basis for generating 

a mimetic recreating this feature. Interaction with SR-B1 is known to require presence of 

amphipathic α-helices and is influenced by the particle size, providing a good opportunity 

for empirical modification of these parameters to facilitate the interaction with SR-B1 and 
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release of cholesteryl esters. An advantage of this approach is that, theoretically, the particle 

would recycle, speeding up RCT and benefiting pharmacokinetic properties of the mimetic. 

An alternative approach would be to explore receptor binding domains of apoB or apoE, 

directing mimetic holoparticle to the liver. Advantage of apoE in this context is that its 

receptor binding domain is an amphipathic α-helix of suitable size (16 residues); therefore, 

it may be adapted to substitute the “efflux” peptide combining the two functions. Ideally, a 

mimetic should permit oral administration. The best way to achieve this may be to either 

“staple” the peptide adjusting stoichiometry for the peptide to cover most of the micelle 

surface protecting lipids from the intestinal lipases, or to complex it with niclosamid. Thus, 

the hypothesised structure of an ideal mimetic is a micellar nanoparticle with hydrophobic 

core covered with phospholipids and coupled to a bi-helical stapled peptide consisting of 

one hydrophobic amphipathic α-helix and LCAT-activating domain of apoA-I (Fig. 1).

Conclusions

Recent failures of the clinical trials with CETP inhibitors and the outcomes of the Mendelian 

randomization analysis has put the idea of “HDL therapy” out of favour and on a wrong foot 

[106]. However, most of the approaches tested so far aimed at raising plasma HDL-

cholesterol levels by inhibiting catabolic steps of RCT, perhaps not the ideal way to improve 

cholesterol flow through the pathway. Lipoprotein mimetics offer a different approach; they 

stimulate one or several steps of RCT and improve its functionality without necessarily 

raising plasma HDL levels. They offer remarkable flexibility of structural and functional 

properties allowing adjusting them to almost any requirement. Their potential use is not 

limited to cardiovascular disease; numerous pathologies where cholesterol metabolism is a 

part of their pathogenesis are also potential indications for this type of therapy. Therefore, in 

summary, lipoprotein mimetics offer incredible opportunities, but also many challenges in 

translating these interesting new agents into therapies. The most important challenge is to 

better understand the mechanisms behind many beneficial biological properties of 

lipoprotein mimetics, thus allowing for a more rational drug design.
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Figure 1. 
The proposed structure of an “ideal” lipoprotein mimetic.
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