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Abstract

Fundamental to the development and application of channelized Hotelling observer (CHO) models 

is the selection of the region of interest (ROI) to evaluate. For assessment of medical imaging 

systems, reducing the ROI size can be advantageous. Smaller ROIs enable a greater concentration 

of interrogable objects in a single phantom image, thereby providing more information from a set 

of images and reducing the overall image acquisition burden. Additionally, smaller ROIs may 

promote better assessment of clinical patient images as different patient anatomies present 

different ROI constraints. To this end, we investigated the minimum ROI size that does not 

compromise the performance of the CHO model. In this study, we evaluated both simulated 

images and phantom CT images to identify the minimum ROI size that resulted in an accurate 

figure of merit (FOM) of the CHO’s performance. More specifically, the minimum ROI size was 

evaluated as a function of the following: number of channels, spatial frequency and number of 

rotations of the Gabor filters, size and contrast of the object, and magnitude of the image noise. 

Results demonstrate that a minimum ROI size exists below which the CHO’s performance is 

grossly inaccurate. The minimum ROI size is shown to increase with number of channels and be 

dictated by truncation of lower frequency filters. We developed a model to estimate the minimum 

ROI size as a parameterized function of the number of orientations and spatial frequencies of the 

Gabor filters, providing a guide for investigators to appropriately select parameters for model 

observer studies.
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1. INTRODUCTION

Observer models are a popular and powerful way to predict the diagnostic performance of 

human readers in a number of medical imaging modalities. Compared to human observers, 

these models are more time-efficient and provide an objective measure of image quality [1, 

2]. For this reason their use has been increasingly investigated to guide optimization tasks. 

Channelized Hotelling observers (CHO) are among the most investigated models owing to 

their demonstrated good correlation with human performance results [3-5]. CHO models 

require the acquisition of large datasets to appropriately estimate image statistics, which is 
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particularly burdensome for CT applications [6]. Additionally, CHO models are developed 

for and applied to specific imaging tasks (i.e. detection of objects of different sizes and 

contrast) and numerous samples are required for each specific task. Thus, acquiring images 

of phantoms with high concentrations of objects can provide data for a wide range of clinical 

tasks with fewer image acquisitions (Figure 1 (a)). However, this strategy constrains the ROI 

size surrounding an investigated object, and therefore, it is necessary to understand the effect 

of ROI size on the performance of the CHO model as well as to investigate appropriate 

mitigation strategies.

2. METHODS

2.1 Design and assumptions of CHO model

In this study, we used Gabor filters to channelize images for the CHO model. Gabor filters 

have been shown to provide an effective representation of the human visual system [7]. The 

general form of the Gabor function can be expressed as

(eq. 

1)

where ωs is the channel width, fc the central frequency (both in cycles per pixels), θ the 

orientation angle and β a phase offset.

In this study, unless otherwise specified, the following Gabor filter parameters were used to 

channelize the images:

a)
5 frequency passbands, with center frequencies  and 

widths ωs= 112.96,56.48,28.24,14.12,7.06;

b)
4 orientations: ;

c) 1 phase β = 0.

Thus a total of 20 channels were used in our reference CHO implementation. The channel 

selection was similar to other seminal works in the literature and this model was validated 

with human observer data [4, 8].

The figure of merit (FOM) chosen to assess the performance of the CHO was the 

detectability index, d’, computed as the difference between the means of the signal present 

(tS0) and absent (tN0) test statistic distributions, respectively, divided by the quadratic mean 

of the standard deviations of the two distributions: .
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2.2 Experimental setup

Four 2.5 cm diameter cylinders, which contained eight concentric 5-cm long cylindrical 

objects of different dimensions (3, 6 and 9 mm diameter) and contrast relative to background 

(10, 15 and 45 HU) were inserted into an anthropomorphic abdominal phantom representing 

a small adult (24 cm lateral dimension) (Figure 1 (b)). The phantom was scanned 60 times at 

the clinical dose level in our practice) on a 192-slice CT scanner (Somatom Force, Siemens 

Healthcare). Images were reconstructed with different fields-of-view (FOV) ranging from 15 

to 55 cm and the largest possible square-shaped region of interest (ROI) inscribed within 

each insert was used (~1.5 cm linear dimension). For each configuration, 180 signal-present 

and signal-absent images (3 images/scan) were used to determine the d’ for the object.

2.3 Simulation setup

In order to have greater flexibility and control of the parameter space in the investigation, we 

set up simple simulations to probe the potential factors that influence the minimum ROI size 

resulting in an accurate figure of merit (FOM) of the CHO’s performance. Two-dimensional 

images (1 mm pixels, 10 cm FOV unless otherwise specified) were created by adding a 

circular object (default: 10 mm diameter) to Gaussian noise and 10,000 samples were 

generated for each configuration investigated. Each image was progressively cropped to 

reduce the ROI size and then channelized with the selected Gabor filters (cropped to match 

the image ROI). Subsequently, d’ for the CHO model was computed from the set of 

channelized images. Several different configurations were evaluated: (1) object size: 5-20 

pixel diameter; (2) magnitude and correlation of image noise; (3) number of channels: 

interleaving up to 5 additional spatial frequencies and an additional 4 orientations, as well as 

removing intermediate frequencies or orientations from the base channels; and (4) selection 
of spatial frequencies: base frequencies were scaled by [0.5, 1.5, 2, 2.5, 3, 4] and 

implemented with 8 orientations and 1 phase (40 total channels).

2.4 Parametric model of ROI failure and mitigation strategies

Once the existence of a minimum ROI size was identified below which the CHO’s 

performance is grossly inaccurate, the parameters that were shown to influence the failure 

point were combined in a parametric model.

Finally, we investigated possible mitigation strategies that that could yield uncompromised 

FOMs under certain experimental circumstances:

- ROI interpolation: starting with initial images cropped below the ROI failure point (20 

pixels in linear dimension with our default Gabor configuration), we interpolated them to 

increase their linear dimension, channelize with appropriately scaled Gabor frequencies to 

reflect the fact that such interpolated data would still appear on the observer’s monitor as 

having the same physical size, and computed the SNR for the CHO model as for previous 

studies

- ROI padding: we investigated the effect of artificially increasing the ROI size by padding it 

with different patterns, from uniform values to random background signal of different 

magnitude. All padded ROIs had a linear dimension of 100 pixels.
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3. RESULTS

3.1 Experiments

In Figure 2, we plot the d’ for the 8 objects (one curve for each) as a function of the number 

of pixels (linear dimension) in the ROI for a given FOV. Regardless of the object’s native d’, 

there is a failure point in CHO performance when the ROI is smaller than approximately 

20×20 pixels, corresponding in our case to an image reconstructed FOV larger than 35 cm - 

considering the 1.5×1.5 cm2 physical size constraint of the ROI.

3.2 Simulations

Of the parameters we investigated, size of the object, as well as magnitude and correlation of 

the simulated noise showed no significant influence on the minimum ROI size, as shown in 

Figure 3. In Figure 4, we plot the d’ as a function of ROI size for different number of 

frequency channels (Fig. 4(a)) and orientations (Fig. 4(b)). The data show that both 

parameters significantly shift the minimum ROI size required to achieve acceptable CHO 

performance. In Figure 5(a-d), we show how a given Gabor filter is truncated as the ROI size 

is reduced. Lower frequency Gabor filters suffer more truncation for a given ROI size, which 

in turns leads to failure of the CHO’s performance. This interpretation is supported by the 

plot in Figure 6, where we plot the d’ as a function of ROI size for sets of progressively 

higher spatial frequencies. The number of rotations was chosen to be 8 for all sets, for a total 

number of 40 Gabor filters. Data in Figure 6 indicate that the failure in the CHO’s 

performance observed at a given ROI size can be avoided if the lowest Gabor frequencies are 

removed. However, note that removing the lowest spatial frequencies may invalidate the 

CHO depending on the imaging task and the objectives of the model. The selection of the 

most appropriate set of channel filters for the CHO model is beyond the scope of this 

investigation.

3.3 Parametric model of minimum ROI size

In figure 7(a) we show the minimum ROI necessary to avoid the failure of the CHO model 

for a given sets of Gabor filter frequencies and as a function of number of orientations of the 

Gabor filters. In Figure 7(b), we scale each curve by the lowest spatial frequency in the 

channel set and derive a parametric model that fits the average of all sets. The minimum ROI 

size required to avoid failure of the CHO model induced by truncating the lowest spatial 

frequency Gabor filters can therefore be expressed as:

where fc1 is the lowest spatial frequency and Nrot the number of orientations of the Gabor 

channels used in the CHO model, respectively. Note, this parametric model was derived for 

sets of Gabor filters with harmonic spatial frequencies, i.e. the 2nd lowest spatial frequency 

is 2 times higher than the lowest spatial frequency. If the 2nd lowest spatial frequency is less 

than 2 times higher than the lowest spatial frequency, this parametric model may need to be 

modified to accurately predict the minimum ROI size. The proposed parametric model is 

Ferrero et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



derived from empirical observations that the cropping of the Gabor filters as well as the 

number of orientations used in the Gabor filter set have a profound impact on the CHO 

performance for small ROIs. The fundamental mechanism behind the sudden failure of the 

CHO model when the chosen ROI size is below a certain threshold is not yet fully 

understood. However, the proposed parametric model provides an easy guide for 

investigators to appropriately select parameters for model observer studies.

3.4 Mitigation strategies

In Figure 8(a), we show that interpolating from an initial ROI that would cause a failure of 

the CHO model – with the default set of Gabor channels we used, that failure point resulted 

in 20 pixels in linear dimension for the ROI – is not an effective method to restore the CHO 

performance. Regardless of the final interpolated ROI size, if the initial ROI size is below 

the failure point and the Gabor channels are scaled during interpolation to model an observer 

that is not allowed to zoom in to the image, the amount of cropping of the Gabor channels is 

not reduced by the interpolation process and therefore the performance of the CHO 

performance does not improve.

Conversely, Figure 8(b) shows that padding the initial ROI seems to be an effective strategy, 

provided the padding does not consist of a single value (i.e. zero or one padding). Padding 

an ROI that was too small to yield a sensible metric of the CHO model with background 

values, so that the final ROI size is above the failure point of the chosen set of Gabor 

channels as expressed by the parametric model in Equation 2, restores the performance of 

the CHO model, as the amount of cropping of the Gabor channels is now reduced.

4. CONCLUSIONS

Results from this investigation demonstrate that there exists a limit in the amount an ROI can 

be reduced and still effectively interrogated by a CHO. Moreover, the size of the ROI 

becomes a critical parameter near this limit; there exists a minimum ROI size below which a 

CHO will fail to yield an accurate FOM for a given task. This minimum ROI size is shown 

to be a fundamental aspect of CHO model for images that are channelized with Gabor filters. 

For ROI sizes above the minimum size threshold, CHO results are largely unaffected. Lastly, 

for CHO models in which the input images are channelized with a set of Gabor spatial 

frequencies such that the lowest frequency is at least half of the 2nd lowest frequency, the 

minimum ROI size can be predicted with a parametric model.

These results could be useful in designing phantom-based image quality assessment where it 

is advantageous to include as many clinically representative objects as possible to 

simultaneously investigate numerous clinical imaging tasks (and thereby reduce the overall 

image acquisition burden). Additionally, as CHO models are applied to clinical patient 

images, different patient anatomies will constrain the selection of the ROI, and therefore it is 

necessary to understand the impact of this parameter on the derived CHO FOMs.

ACKNOWLEDGMENTS

Research reported in this publication was supported by the National Institute of Biomedical Imaging and 
Bioengineering of the National Institutes of Health under award number U01EB017185 and R01EB017095. The 

Ferrero et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



content is solely the responsibility of the authors and does not necessarily represent the official views of the 
National Institutes of Health.

REFERENCES

[1]. Barrett HH, Yao J, Rolland JP, et al. Model observers for assessment of image quality. Proceedings 
of the National Academy of Sciences. 1993; 90(21):9758–9765.

[2]. Beutel, J., Kundel, HL., Van Metter, RL. Handbook of Medical Imaging, volume 1: Physics and 
Psychophysics. 2000. 

[3]. Myers KJ, Barrett HH. Addition of a channel mechanism to the ideal-observer model. Journal of 
the Optical Society of America A. 1987; 4(12):2447–2457.

[4]. Yu L, Leng S, Chen L, et al. Prediction of human observer performance in a 2-alternative forced 
choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose 
and reconstruction algorithms. Medical Physics. 2013; 40(4)

[5]. Zhang Y, Leng S, Yu L, et al. Correlation between human and model observer performance for 
discrimination task in CT. Physics in medicine and biology. 2014; 59(13):3389. [PubMed: 
24875060] 

[6]. Ma C, Yu L, Chen B, et al. Impact of number of repeated scans on model observer performance for 
a low-contrast detection task in computed tomography. Journal of Medical Imaging. 2016; 3(2):
023504–023504. [PubMed: 27284547] 

[7]. Eckstein M, Bartroff J, Abbey C, et al. Automated computer evaluation and optimization of image 
compression of x-ray coronary angiograms for signal known exactly detection tasks. Optics 
Express. 2003; 11(5):460–475. [PubMed: 19461753] 

[8]. Wunderlich A, Noo F. Image covariance and lesion detectability in direct fan-beam x-ray 
computed tomography. Physics in medicine and biology. 2008; 53(10):2471. [PubMed: 
18424878] 

Ferrero et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) CT image quality insert phantom with high concentration of interrogable objects, 

designed for observer model studies to maximize image quality assessment for a set of 

acquired CT images. The phantom diameter is ~10 cm. (b) The phantom used for the 

experimental study. The largest ROI size that can be used for each object is approximately 

1.5 cm in diameter, resulting in an ROI size of 20 or fewer pixels for reconstructed FOV 

larger than 35 cm.
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Figure 2. 
d’ vs number of pixels in ROI for different objects – experimental CT data
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Figure 3. 
Plots of d' vs ROI size (a) for different object sizes and (b) for different noise levels. No 

significant influence of these parameters on the minimum ROI size is seen.
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Figure 4. 
Plots of d’ vs ROI size (a) for different number of spatial frequencies and (b) for different 

number of orientations.
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Figure 5. 
(a-c) Image of the lowest frequency Gabor filter (0° orientation) for different ROI sizes (a) 

400×400 (b) 100×100, and (c) 18×18 pixels2. (d) Plot of profile through the center of the 

filter showing the points of truncation for (b)(green line) and (c)(red line).
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Figure 6. 
Plot of SNR d’ vs ROI size for different sets of spatial frequencies.
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Figure 7. 
(a) Plot of minimum ROI size vs number of orientations. (b) Plot of normalized minimum 

ROI size vs number of orientations, and curve fit of data for the parametric model.
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Figure 8. 
Investigation of different mitigation strategies. (a) Effect of interpolation of ROIs of different 

linear dimension prior to channelization. (b) Effect of different padding to the cropped ROI.
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