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Abstract

Objectives—A candidate variant (p.Val496Ala) of the ACSS2 gene (T>C missense, rs59088485 

variant at chr20: bp37 33509608) was previously found to consistently segregate with non-

syndromic cleft lip and/or palate (NSCLP) in three Honduran families. Objectives of this study 

were (1) investigate the frequency of this ACSS2 variant in Honduran unrelated NSCLP patients 

and unrelated unaffected controls and (2) investigate the frequency of this variant in Colombian 

unrelated affected NSCLP patients and unrelated unaffected controls.
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Methods—Sanger sequencing of 99 unrelated Honduran NSCLP patients and 215 unrelated 

unaffected controls for the p.Val496Ala ACSS2 variant was used to determine the carrier 

frequency in NSCLP patients and controls.

Sanger sequencing of 230 unrelated Colombian NSCLP patients and 146 unrelated unaffected 

controls for the p.Val496Ala ACSS2 variant was used to determine the carrier frequency in 

NSCLP patients and controls.

Results—In the Honduran population, the odds ratio of having NSCLP among carriers of the 

p.Val496Ala ACSS2 variant was 4.0 (p = 0.03) with a carrier frequency of 7/99 (7.1%) in 

unrelated affected and 4/215 (1.9%) in unrelated unaffected individuals.

In the Colombian population, the odds ratio of having NSCLP among carriers of the p.Val496Ala 

ACSS2 variant was 2.6 (p value 0.04) with a carrier frequency 23/230 (10.0%) in unrelated 

affected and 6/146 (4.1%) in unrelated unaffected individuals.

Conclusions—These findings support the role of ACSS2 in NSCLP in two independent 

Hispanic populations from Honduras and Colombia.
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Introduction

Cleft lip and/or palate (CLP) is relatively common, occurring in about 1/700 live births 

worldwide1. Of note, there is variability in prevalence amongst different geographical, 

ethnic, and racial groups, with the highest prevalence occurring in Asian and Amerindian 

populations, at a frequency of 1/5001. CLP poses a considerable burden on families and 

society at large, as CLP patients require multidisciplinary care until adulthood to address 

defects in hearing, speech, dentition, nutrition, appearance, and mental health2; ultimately, 

they suffer higher morbidity and mortality throughout their lives3.

CLP is classified as either non-syndromic cleft lip and/or palate (NSCLP), which accounts 

for about 70% of cases4 or syndromic cleft lip and/or palate, which occurs with established 

syndromes such as the Van der Woude, Pierre Robin, and Velocardiofacial syndromes5. 

NSCLP is of particular interest as it represents the majority of CLP cases and is thought to 

occur secondary to a complex host of genetic and environmental factors6, many of which are 

yet to be elucidated.

Genome wide association studies (GWAS) have successfully identified numerous common 

variants associated with NSCLP7 while whole exome sequencing (WES) has been used to 

identify very rare genetic variants associated with oral clefts8. Prior work utilized WES to 

identify a candidate variant (p.Val496Ala) in the ACSS2 gene that consistently segregates 

with NSCLP in three Honduran multiplex families9. This gene is of particular interest in oral 

clefts, as it has been found to be involved in mouse cephalic development10.

The current study objective is to investigate the frequency of the ACSS2 p.Val496Ala variant 

in two independent Hispanic populations (Hondurans and Colombians) in unrelated NSCLP 
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patients and unrelated unaffected controls via separate case control studies in each 

population.

Materials and Methods

Human Subjects

Honduran subjects were identified at Hospital Escuela in Tegucigalpa, Honduras. The 

Honduran subjects included 99 unrelated NSCLP patients, and 215 unrelated unaffected 

controls. Subjects were excluded if they had syndromic characteristics as determined by 

family history and physical examination (lip pits in Van der Woude; micrognathia, 

glossoptosis, or retrognathia in Pierre Robin; congenital heart disease or abnormal facial 

characteristics in Velocardiofacial). Honduran controls were sex-matched pediatric patients 

undergoing minor surgical procedures and were excluded if they had a personal or family 

history of clefting, or if they had any genetic or congenital diseases. Physical exam was 

performed to assess for clefting in cases and controls, and included visual inspection of the 

lips and visual inspection of the entire mouth by using a bright light and a tongue depressor 

to press the child’s tongue to the floor of the mouth. Subclinical features of NSCLP assessed 

on physical exam included a ridge of tissue on the lips and anomalies in dentition. In 

addition, a gloved finger was placed in the mouth to palpate defects in the palate. Written 

informed consent and assent were obtained from Honduran subjects. Venous blood was 

drawn from subjects and pedigrees were constructed. This study was approved by the 

institutional review board of the Columbia University Medical Center.

Colombian subjects were recruited in the past six consecutive years during the annual Smile 

Train Mission at Hospital Universitario Hernando Moncaleano Perdomo in Neiva, 

Colombia. The Colombian subjects included 230 unrelated affected NSCLP patients and 146 

unrelated unaffected controls. Each family was clinically characterized and verified in the 

Smile Train Express database. Collection of biospecimens, medical records, photographs, 

family history, and pedigrees were taken from each individual. Colombian controls were 

sex-matched and excluded if they had a personal or family history of clefting, or any 

congenital or genetic diseases. Written informed consent and assent were obtained from 

Colombian subjects under the protocol from Universidad Surcolombiana, in regulation and 

approved by Columbia University’s IRB.

SNP Genotyping

Genomic DNA was isolated from whole blood samples with Qiagen Flexigene kits (Qiagen, 

Valencia, CA). One candidate variant (p.Val496Ala; T>C missense, rs59088485, at chr20: 

bp37 33509608) in the ACSS2 gene was chosen for these case control studies since it had 

been found to consistently segregate with NSCLP in three Honduran multiplex families in a 

previous study9. This candidate variant is predicted to have damaging characteristics, 

specifically a SIFT score of 0.01, PolyPhen2 of 0.999, and a Combined Annotation–

Dependent Depletion (CADD) score of 25.9. SIFT and PolyPhen2 both use different 

algorithms to assess the damaging nature of an amino acid substitution on protein structure 

and function; SIFT spans 0 to 1, with 0 being the most deleterious11 while PolyPhen2 also 

runs from 0 to 1, but with a score of 1 being the most damaging12. The CADD score 
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aggregates information from a number of different predictors of the damaging nature of 

mutations and a score of >20 indicates that a variant is in the top 1% of most deleterious 

variants in the human genome13. To briefly summarize, the preceding describes that this 

candidate variant is a nucleotide change (T > C) with a resultant missense change (amino 

acid substitution of Valine > Alanine) that has been predicted to have a highly damaging 

effect on protein structure and function based on multiple commonly used algorithms. It was 

also found to be rare in the publicly available population databases, with a frequency in 1000 

genomes of 0.01 and exome aggregation consortium of 0.001859.

Primer314 was used to amplify 400–600 base pair regions. PCR products were sequenced by 

Macrogen (www.macrogenusa.com) and chromatogram results were viewed with FinchTV 

(Version 1.4 http://www.geospiza.com/Products/finchtv.shtml).

Hondurans—Sanger sequencing was performed on the genomic DNA isolated from 99 

unrelated affected Honduran NSCLP patients and 215 unrelated unaffected Honduran 

controls.

Colombians—Sanger sequencing was performed on 230 unrelated affected Colombian 

NSCLP patients and 146 unrelated unaffected Colombian controls.

Statistical Analysis

We determined odds ratios for the p.Val496Ala ACSS2 variant in unrelated affected NSCLP 

patients vs. unrelated unaffected controls for Honduran and Colombian populations (in 

separate analyses for each population).

Results

The results of this study (carrier frequency, odds ratio, confidence interval, and p-value) are 

shown in Table 1. The carrier frequency of p.Val496Ala in the Honduran population was 

7/99 (7.1%) amongst unrelated affected NSCLP patients and 4/215 (1.9%) amongst 

unrelated unaffected controls, with an odds ratio of 4.0 (p value 0.03) and a confidence 

interval of 1.1 to 14.0. In the Colombian population, the p.Val496Ala carrier frequency was 

23/230 (10.0%) amongst unrelated affected NSCLP patients and 6/146 (4.1%) amongst 

unrelated unaffected controls, with an odds ratio of 2.6 (p value 0.04) and a confidence 

interval of 1.0 to 6.5.

Discussion

We previously identified p.Val496Ala in ACSS2 as a variant contributing to NSCLP based 

upon segregation data in three multiplex NSCLP Honduran families. This current study was 

designed to study the association of the p.Val496Ala variant with NSCLP in two 

independent Hispanic populations from Honduras and Colombia to provide independent 

evaluation of the variant. This study demonstrates that the p.Val496Ala variant in ACSS2 is 

significantly more prevalent in NSCLP patients than in controls in two independent Hispanic 

populations as supported by an odds ratio of 4.0 (p value 0.03) and 2.6 (p value 0.04) in 

Hondurans and Colombians, respectively, of variant carriers having NSCLP.
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ACSS2 is one of three genes (ACSS1, ACSS2, and ACSS3)15 that codes acetyl-CoA 

synthetase short chain, a ligase enzyme that catalyzes the ATP-dependent ligation of acetate 

and coenzyme A (CoA) to form acetyl-CoA, which can be used for lipid synthesis or energy 

production16. Typically, ACSS1 is located in the mitochondria, ACSS2 in the cytosol, and 

ACSS3 in the mitochondria17; however, ACSS2 has been found in the mitochondrial matrix 

as well18. During nutrient poor conditions, acetate (rather than glucose) serves as a main 

source of acetyl-CoA19; consequently, mutations of ACSS2 may affect cell growth and 

survival in conditions with nutritional (metabolic) stressors.

Most studies to date focusing on ACSS2 and nutritional (metabolic) stressors have been 

done in the context of tumorigenesis. It has been demonstrated that13C labeled acetate is 

elevated in nutrient poor conditions20 and in patient derived xenograft tumors21, suggesting 

that acetate becomes a more important nutrient source during nutritional (metabolic) stress. 

In addition, ACSS2 has been found to be upregulated to maintain acetate utilization during 

metabolic stress, such as during cancer cell growth21 and lipid-depleted conditions20, 

indicating that ACSS2 plays an increasingly important role during nutritional (metabolic) 

stress.

Other studies have investigated the underlying mechanism of ACSS2’s role in nutrient 

sensing and have distinguished ACSS2 amongst the other ACSS isoforms. With regard to 

the underlying mechanism, a study noted that hypoxia inducible factor 2 (HIF-2), a 

transcription factor in a signaling pathway with ACSS2, is activated during glucose 

deprivation, and demonstrated that this signaling pathway (ACSS2/creb binding protein 

(CBP)/sirtuin 1 (SIRT1)/HIF-2) plays a role in nutrient sensing during cancer growth in 

mammals22. Lastly, a recent study examined the role of ACSS2 in acetate utilization in the 

context of the other isoforms of the enzyme. Specifically, amongst the three ACSS enzymes 

(ACSS1, ACSS2, and ACSS3), ACSS2 was found to have the greatest effect on acetate 

utilization in liver tumor cells, and mice with ACSS2 knockdowns had significantly lower 

tumor burdens than control mice23. Taken together, these studies all point to a role of ACSS2 
in promoting cell growth and survival in nutrient-stressed conditions.

In addition, the ACSS2 gene is involved in development, including cephalic development; 

this role in development coupled with ACSS2’s role in cell growth during nutrient-stressed 

conditions may reveal a potential link between ACSS2 and clefting. Acetyl-CoA synthetase 

is involved in early implantation24 and the early spontaneous differentiation of embryonic 

stem cells25. The concentration of acetyl-CoA synthetase increases throughout fetal 

development26 and has intensified expression in the cephalic region, especially the forebrain 

region, during the second week of mouse development10. Taken together, ACSS2 plays a 

role in cephalic development and in cell growth and survival during nutrient-stressed 

conditions. Given the potential presence of nutritional (metabolic) stressors during 

development, mutations in ACSS2 may predispose cells to difficulty responding to such 

stressors and may pose an impediment to normal craniofacial development.

It is important to note that this candidate variant was found in unaffected controls, and there 

are two likely explanations for this. First, a previous study9 described this candidate variant 

as having incomplete penetrance; thus, controls carrying this candidate variant may have had 
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subclinical signs of cleft lip/palate (i.e. defects of the orbicularis oris muscle). Alternatively, 

the controls carrying this candidate variant may have been completely unaffected. If that is 

the case, it may be that there is an interplay of genetic modifiers, epigenetic regulation 

and/or other genes in addition to this candidate variant on ACSS2 that is responsible for the 

association between ACSS2 and cleft lip/palate.

Another important point to consider is the possible Mayan ancestry of the Honduran and 

Colombian patients. The Honduran population is considered to be homogenous, with the 

majority being mestizo (mixed European and Amerindian descent). Similarly, the majority 

of Colombians are either mestizo or of European descent. It is worth noting that Mayans 

have been found to have higher rates of CLP27,28 and a population-based genetic study 

focusing on the Caribbean has demonstrated that native Mayan, Honduran, and admixed 

Colombians share genetic components29. Though we did not specifically study Mayan 

ancestry in this present study, further studies may investigate the role of Mayan genetic 

influence on other Caribbean and South American populations, specifically as it pertains to 

cleft lip/palate.

The strength of this study is the inclusion of genetic data from two independent Hispanic 

populations. The limitations include the modest sample size and the possible inadvertent 

omission of subclinical features of NSCLP, though the subjects in both populations did 

undergo a thorough physical examination to assess for subclinical features of NSCLP. Future 

directions include the assessment of the association of this candidate variant of ACSS2 in 

additional Hispanic populations, and additional populations of other ethnicities. In addition, 

it would be worthwhile to investigate the genetic modifiers and epigenetic regulation of 

ACSS2, as well as the interplay of other genes with ACSS2.

Conclusion

This study supports previous findings regarding the role of the ACSS2 gene in NSCLP and 

is the first to demonstrate association of this gene in NSCLP in two independent Hispanic 

populations. Additional studies should further characterize the role of this gene in these two 

populations and assess the association between variants in this gene and NSCLP in other 

Hispanic populations.
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Table 1

Honduran and Colombian Case-Control study of the p.Val496Ala ACSS2 variant: carrier frequencies, odds 

ratios, and p-values.

Hondurans Colombians

Cases Controls Cases Controls

Carrier frequency 7/99 (7.1%) 4/215 (1.9%) 23/230 (10.0%) 6/146 (4.1%)

Odds ratio (95% Confidence Interval) 4.0 (1.1 to 14.0) 2.6 (1.0 to 6.5)

P-value 0.03 0.04
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